Section 7.4
Closures of Relations

Definition: Theclosure of arelation R with respect to
property P isthe relation obtained by adding the minimum
number of ordered pairsto R to obtain property P.
In terms of the digraph representation of R

 To find the reflexive closure - add loops.

 To find the symmetric closure - add arcsin the
opposite direction.

 To find the transitive closure - if thereis a path from
ato b, add an arc from ato b.

Note: Reflexive and symmetric closures are easy.
Transitive closures can be very complicated.

Definition: Let Abeasetandlet D ={<x, x> | xin A}.
D is called the diagonal relation on A (sometimes called
the equality relation E).
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Note that D isthe smallest (has the fewest number of
ordered pairs) relation which isreflexive on A.

Reflexive Closure

Theorem: Let R be arelation on A. The reflexive closure
of R, denoted r(R), is RE D.

» Add loopsto all vertices on the digraph
representation of R.

* Put 1's on the diagonal of the connection matrix of
R.

Symmetric Closure

Definition: Let R bearelationon A. Then R ™ or the
inverse of RistherelationR *={<y,x><x,y> R

Note: toget R *

o reverse al the arcsin the digraph representation of
R

« take the transpose M ' of the connection matrix M
of R.
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Note: Thisrelation is sometimes denotedasR " or R ©
and called the converse of R

The composition of the relation with its inverse does not
necessarily produce the diagonal relation (recall that the
composition of a bijective function with itsinverseisthe
identity).

Theorem: Let R be arelation on A. The symmetric
closureof R, denoted s(R), istherelation RE R .

Examples:
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r(R)
(b‘/\
D
S(R)

Examples:
elf A=Z, then r(* )=2ZxZ
If A=Z", theng(<)=1.
What is the (infinite) connection matrix of s(<)?

eIf A= Z, thens(E) =7
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Theorem: Let R, and R, be relations from A to B. Then
*(R)*=R
*(RReER)*'"=R*eR,™*
*(RRcCR)*'=R*cR,*
«(AXxB)'=BxA
e ;1=
+R1=R"
*(R-R)'=R*-R,*
«If A= B, then (RR,) 1= R, 'R, *

elIf R,1 R,thenR,*1 R,*

Theorem: Rissymmetriciff R= R

Paths

Definition: A path of lengthn inadigraph Gisa
sequence of edges <X,, X;><X;, X,> ... <X,q, X;>.

The terminal vertex of the previous arc matches with the
Initial vertex of the following arc.
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If X, = X, the path is called acycle or circuit. Similarly for
relations.

Theorem: Let R be arelation on A. Thereis a path of
length nfrom ato b iff <a,b> 1 R".

Proof: (by induction)

» Basis: An arc from ato b isapath of length 1
whichisin R' = R. Hence the assertion istrue for n= 1.

* |nduction Hypothes's: Assume the assertion is true
for n.

Show it must be true for n+1.
Thereis apath of length n+1 from ato b iff thereisan x in
A such that there is a path of length 1 from ato x and a
path of length n from x to b.
From the Induction Hypothesis,
<g, x> 1 R

and since <x , b> isapath of length n,

<x,b> 1 R"

<a, X1 R
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and

<x,b>1 R"
then

<a,b>1 R"oR =R™!

by the inductive definition of the powers of R.

Q. E. D.
Useful Results
for Transitive Closure
Theorem:
IfAl BandCIl B,thenAE CI B.
Theorem:
IfRI Sand Tl Uthen RoTI SoU.
Corollary:
If R SthenR"| &
Theorem:

If Ristransitivethen soisR"
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Trick proof: Show (R"? = (R)"| R"

Theorem: If R*=R for somej > k, then R*™= R" for
somen€£].

We don’'t get any new relations beyond R,

As soon as you get a power of R that isthe same as one
you had before, STOP.

Transitive Closure

Recall that the transitive closure of arelation R, t(R), is
the smallest transitive relation containing R.

Also recall
Ristrangitiveiff R"iscontained in R for all n

Hence, if thereis a path from x to y then there must be an
arcfromxtoy, or <x,y>isinR.

Example:

olf A= ZandR={<i,i+1>}thent(R) = <

» Suppose R: isthe following:
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=

What ist(R)?

O

Definition: The connectivity relation or the star closure
of therelation R, denoted R*, isthe set of ordered pairs
<a, b> such that thereisapath (in R) from ato b:

¥
R = |JR"

n=1

Examples:
eletA=ZandR= {<i,i+1>}. R* = <.

» Let A =the set of people, R= {<x, y> | personx is
aparent of persony}. Rx = ?
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Theorem: t(R) = R*.
Proof:
Note: thisis not the same proof as in the text.
We must show that R*
1) isatransitive relation
2) contains R
3) isthe smallest transitive relation which
contains R
Proof:
Part 2):
Easy from the definition of R*.
Part 1):
Suppose <x, y> and <y, z> arein R*.
Show <x, zz isin R*.

By definition of R*, <x, y> isin R™ for some m
and <y, z> isin R" for some n.

Then <x,z> isinR"R™= R™"which is
contained in R*. Hence, R* must be transitive.
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Part 3):

Now suppose Sis any transitive relation that
contains R.

We must show S contains R* to show R* isthe
smallest such relation.

RI SsoR?1 1 SsinceSistrangtive
ThereforeR"1 S'1 Sfor all n. (why?)

Hence S must contain R* since it must also
contain the union of all the powers of R.

Q.E.D.

In fact, we need only consider paths of length n or less.

Theorem: If |A | = n, then any path of length > n must
contain acycle.

Proof:
If we write down alist of more than n vertices representing

apath in R, some vertex must appear at least twice in the
list (by the Pigeon Hole Principle).
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Thus R* for k> n doesn’t contain any arcs that don’t
already appear in the first n powers of R.

Corollary: If |A|=n,thent(R)=R*=RE R*E ... E
Rn

Corollary: We can find the connection matrix of t(R) by
computing the join of the first n powers of the connection
matrix of R.

Powerful Algorithm!

Example:

Do the following in class:
RA2:
RA3:
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RM:

RAS:

{(R) = R*:

So that you don’t get bored, here are some problems to
discuss on your next blind date:

1) Do the closure operations commute?
* Does st(R) = ts(R)?
* Doesrt(R) =tr(R)?
* Doesrs(R) = sr(R)?

2) Do the closure operations distribute
» Over the set operations?
» Over inverse?
* Over complement?

e Qver set inclusion?
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Examples:
* Doest(R1- R2) =t(R1) - t(R2)?

e Doesr(R?) =[r(R)]*?
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