Section 8.2

Graph Terminology

Undirected Graphs

Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

The edge e connects u and v.
The vertices u and v are endpoints of e.

Definition: The degree of a vertex v, denoted $\operatorname{deg}(v)$, is the number of edges for which it is an endpoint.

A loop contributes twice in an undirected graph.

Example:

- If $\operatorname{deg}(v)=0, v$ is called isolated.
- If $\operatorname{deg}(v)=1, v$ is called pendant.

The Handshaking Theorem:

Let $G=(V, E)$. Then

$$
2|E|=\sum_{v \in V} \operatorname{deg}(v)
$$

Proof:
Each edge contributes twice to the degree count of all vertices.
Q. E. D.

Example:
If a graph has 5 vertices, can each vertex have degree 3 ? 4 ?

- The sum is $3 \cdot 5=15$ which is an odd number. Not possible.
- The sum is $20=2|E|$ and $20 / 2=10$. May be possible.

Theorem: A graph has an even number of vertices of odd degree.

Proof:
Let \quad V1 $=$ vertices of odd degree
$\mathrm{V} 2=$ vertices of even degree
The sum must be even. But

- odd times odd = odd
- odd times even = even
- even times even $=$ even
- even plus odd = odd

It doesn't matter whether V2 has odd or even cardinality.
V1 cannot have odd cardinality.
Q. E. D.

Example:
It is not possible to have a graph with 3 vertices each of which has degree 1 .

Directed Graphs

Definition: Let $\langle u, v\rangle$ be an edge in G. Then u is an initial vertex and is adjacent to v and v is a terminal vertex and is adjacent from u.

Definition: The in degree of a vertex v, denoted deg-(v) is the number of edges which terminate at v.

Similarly, the out degree of v, denoted $\operatorname{deg}+(v)$, is the number of edges which initiate at v.

Theorem: $|E|=\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)$

Special Simple Graphs

- Complete graphs - K_{n} : the simple graph with
- n vertices
- exactly one edge between every pair of distinct vertices.

Maximum redundancy in local area networks and processor connection in parallel machines.

Examples:

Note: K5 is important because it is the simplest nonplanar graph: It cannot be drawn in a plane with nonintersecting edges.

- Cycles:

C_{n} is an n vertex graph which is a cycle. Local area networks are sometimes configured this way called Ring networks.

C_{5}

- Wheels:

Add one additional vertex to the cycle C_{n} and add an edge from each vertex to the new vertex to produce W_{n}.

Provides redundancy in local area networks.

- n -Cubes:

Q_{n} is the graph with 2^{n} vertices representing bit strings of length n.

An edge exists between two vertices that differ by one bit position.

A common way to connect processors in parallel machines.

Intel Hypercube.

Q_{3}

Bipartite Graphs

Definition: A simple graph G is bipartite if V can be partitioned into two disjoint subsets V_{1} and V_{2} such that every edge connects a vertex in V_{1} and a vertex in V_{2}.

Note: There are no edges which connect vertices in V_{l} or in V_{2}.

A bipartite graph is complete if there is an edge from every vertex in V_{1} to every vertex in V_{2}, denoted $K_{m, n}$ where $m=$ $\left|V_{1}\right|$ and $n=\left|V_{2}\right|$.

Examples:

- Suppose bigamy is permitted but not same sex marriages and males are in V1 and females in V2 and an edge represents a marriage. If every male is married to every female then the graph is complete.
- Supplier, warehouse transportation models are bipartite and an edge indicates that a given supplier sends inventory to a given warehouse.
- A Star network is a $K_{l, n}$ bipartite graph.

- C_{k} for k even is a bipartite graph: even numbered vertices in $V 1$, odd numbered in $V 2$.

- Is the following graph bipartite?

If a is in $V 1$ then $e, \mathrm{~d}$ and b must be in $V 2$ (why?).
Then c is in Vl and there is no inconsistency.
We rearrange the graph as follows:

New Graphs from Old
Definition: (W, F) is a subgraph of $G=(V, E)$ if

$$
W \subseteq V \text { and } F \subseteq E .
$$

Definition: If $G 1$ and $G 2$ are simple then

$$
G 1 \cup G 2=(V 1 \cup V 2, E 1 \cup E 2)
$$

and the graph is simple.

Examples:

- Find the subgraphs of Q_{I} :

- Count the number of subgraphs of a given graph.
- Find the union of the two graphs G_{1} and G_{2} :

Note: The important properties of a graph do not depend on how we draw it. We want to be able to identify two graphs that are the same (up to labeling of the vertices).

