Section 7.1 Relations and Their Properties

Definition: A binary relation R from a set A to a set B is a subset R $A \times B$.

Note: there are no constraints on relations as there are on functions.

We have a common graphical representation of relations:

Definition: A Directed graph or a Digraph D from A to B is a collection of vertices $V \in A$ B and a collection of edges $R \in A \times B$. If there is an ordered pair $e = \langle x, y \rangle$ in R then there is an arc or edge from x to y in D. The elements x and y are called the *initial* and terminal vertices of the edge e.

Examples:

• Let $A = \{ a, b, c \}$

• $B = \{1, 2, 3, 4\}$

• R is defined by the ordered pairs or edges

$$\{, , \}$$

can be represented by the digraph D:

Definition: A binary relation R *on a set A* is a subset of $A \times A$ or a relation from A to A.

Example:

- $A = \{a, b, c\}$
- $R = \{ \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle \}.$

Then a digraph representation of R is:

Note: An arc of the form $\langle x, x \rangle$ on a digraph is called a *loop*.

Question: How many binary relations are there on a set A?

Special Properties of Binary Relations

Given:

- A Universe U
- A binary relation R on a subset A of U

Definition: R is reflexive iff

$$x[x \mid U < x, x > R]$$

Note: if U = then the implication is true vacuously

The void relation on a void Universe is reflexive!

Note: If U is not void then <u>all</u> vertices in a reflexive relation must have loops!

Definition: R is symmetric iff

$$x y[\langle x, y \rangle R \langle y, x \rangle R]$$

Note: If there is an arc $\langle x, y \rangle$ there must be an arc $\langle y, x \rangle$.

Definition: R is antisymmetric iff

$$x \quad y[\langle x, y \rangle \quad R \quad \langle y, x \rangle \quad R \quad x = y]$$

Note: If there is an arc from x to y there cannot be one from y to x if x y.

You should be able to show that logically: if $\langle x, y \rangle$ is in R and x y then $\langle y, x \rangle$ is not in R.

Definition: R is *transitive* iff

$$x \ y \ z[< x, y > R < y, z > R < x, z > R]$$

Note: if there is an arc from x to y and one from y to z then there must be one from x to z.

This is the most difficult one to check. We will develop algorithms to check this later.

Examples:

A.

В.

 \mathbf{C}

D.

A: not reflexive symmetric antisymmetric transitive

C: not reflexive not symmetric antisymmetric not transitive B: not reflexive not symmetric not antisymmetric not transitive

D: not reflexive not symmetric antisymmetric transitive

Combining Relations

Set operations

A very large set of potential questions -

Let R1 and R2 be binary relations on a set A:

If R1 has property 1

and

R2 has property 2,

does

R1 * R2 have property 3

where * represents an arbitrary binary set operation?

Example:

If

• R1 is symmetric,

and

• R2 is antisymmetric,

does it follow that

• R1 R2 is transitive?

If so, prove it. Otherwise find a counterexample.

Example:

Let R1 and R2 be transitive on A. Does it follow that

R1 R2

is transitive?

Consider

- $A = \{1, 2\}$
- $R1 = \{<1,2>\}$
- $R2 = \{ <2, 1 > \}$

Then R1 R2 = $\{<1, 2>, <2, 1>\}$ which is <u>not</u> transitive! (Why?)

Composition

Definition: Suppose

- R1 is a relation from A to B
- R2 is a relation from B to C.

Then the composition of R2 with R1, denoted R2 o R1 is the relation from A to C:

If $\langle x. y \rangle$ is a member of R1 and $\langle y, z \rangle$ is a member of R2 then $\langle x, z \rangle$ is a member of R2 \circ R1.

Note: For $\langle x, z \rangle$ to be in the composite relation R2 \circ R1 there must exist a y in B

Note: We read them right to left as in functions.

Example:

 $R2 \circ R1 = \{ \langle b, D \rangle, \langle b, B \rangle \}$

Definition: Let R be a binary relation on A. Then

Basis: $R^1 = R$

Induction: $R^{n+1} = R^n \circ R$

Note: an ordered pair $\langle x, y \rangle$ is in Rⁿ iff there is a *path* of length n from x to y following the arcs (in the direction of the arrows) of R.

Example:

Very Important **Theorem:**

R is transitive iff R^n R for n > 0.

Proof:

1. R transitive R^n R

Use a direct proof and a proof by induction:

- Assume *R* is transitive.
- Now show R^n R by induction.

Basis: Obviously true for n = 1.

Induction:

• The induction hypothesis:

'assume true for n'.

• Show it must be true for n + 1.

 $R^{n+1} = R^n \circ R$ so if $\langle x, y \rangle$ is in R^{n+1} then there is a z such that $\langle x, z \rangle$ is in R^n and $\langle z, y \rangle$ is in R.

But since R^n R, $\langle x, z \rangle$ is in R.

R is transitive so $\langle x, y \rangle$ is in R.

Since $\langle x, y \rangle$ was an arbitrary edge the result follows.

2. R^n R transitive

Use the fact that R^2 R and the definition of transitivity. Proof left to the

Q. E. D.

Discrete Mathematics and Its Applications 4/E