Section 7.1

Relations and Their Properties

Definition: A binary relation R from a set A to a set B is a subset $R \subseteq A \times B$.

Note: there are no constraints on relations as there are on functions.

We have a common graphical representation of relations:
Definition: A Directed graph or a Digraph D from A to B is a collection of vertices $V \subseteq A \cup B$ and a collection of edges $R \subseteq A \times B$. If there is an ordered pair $\mathrm{e}=\langle\mathrm{x}, \mathrm{y}\rangle$ in R then there is an arc or edge from x to y in D . The elements x and y are called the initial and terminal vertices of the edge e.

Examples:

- Let $A=\{a, b, c\}$
- $\mathrm{B}=\{1,2,3,4\}$
- R is defined by the ordered pairs or edges

$$
\{\langle a, 1\rangle,\langle a, 2\rangle,\langle c, 4\rangle\}
$$

can be represented by the digraph D :

Definition: A binary relation R on a set A is a subset of $A \times A$ or a relation from A to A.

Example:

$$
\begin{aligned}
& \text { - } A=\{a, b, c\} \\
& \cdot R=\{\langle a, a\rangle,\langle a, b\rangle,\langle a, c\rangle\} .
\end{aligned}
$$

Then a digraph representation of R is:

Note: An arc of the form $\langle\mathrm{x}, \mathrm{x}>$ on a digraph is called a loop.

Question: How many binary relations are there on a set A?

Special Properties of Binary Relations

Given:

- A Universe U
- A binary relation R on a subset A of U

Definition: R is reflexive iff

$$
\forall x[x \in U \rightarrow<x, x>\in R]
$$

Note: if $\mathrm{U}=\varnothing$ then the implication is true vacuously
The void relation on a void Universe is reflexive!
Note: If U is not void then all vertices in a reflexive relation must have loops!

Definition: R is symmetric iff

$$
\forall x \forall y[<x, y>\in R \rightarrow<y, x>\in R]
$$

Note: If there is an $\operatorname{arc}\langle x, y>$ there must be an $\operatorname{arc}\langle y, x\rangle$.

Definition: R is antisymmetric iff

$$
\forall x \forall y[<x, y>\in R \wedge<y, x>\in R \rightarrow x=y]
$$

Note: If there is an arc from x to y there cannot be one from y to x if $\mathrm{x} \neq \mathrm{y}$.

You should be able to show that logically: if $\langle x, y>$ is in R and $x \neq y$ then $\langle y, x>$ is not in R.

Definition: R is transitive iff

$$
\forall x \forall y \forall z[<x, y>\in R \wedge<y, z>\in R \rightarrow<x, z>\in R]
$$

Note: if there is an arc from x to y and one from y to z then there must be one from x to z .

This is the most difficult one to check. We will develop algorithms to check this later.

Examples:
A.

C.

D.

A: not reflexive symmetric antisymmetric transitive

C: not reflexive not symmetric antisymmetric not transitive

B: not reflexive not symmetric not antisymmetric not transitive

D: not reflexive not symmetric antisymmetric transitive

Combining Relations

Set operations

A very large set of potential questions -
Let R1 and R2 be binary relations on a set A:
If R1 has property 1
and
R2 has property 2,
does
R 1 * R 2 have property 3
where * represents an arbitrary binary set operation?
Example:
If

- R1 is symmetric,
and
- R 2 is antisymmetric,
does it follow that
$-\mathrm{R} 1 \cup \mathrm{R} 2$ is transitive?
If so, prove it. Otherwise find a counterexample.

Example:

Let R1 and R2 be transitive on A. Does it follow that

$R 1 \cup R 2$

is transitive?
Consider

- $\mathrm{A}=\{1,2\}$
- $R 1=\{\langle 1,2\rangle\}$
- $\mathrm{R} 2=\{\langle 2,1\rangle\}$

Then R1 \cup R2 $=\{\langle 1,2\rangle,\langle 2,1\rangle\}$ which is not transitive! (Why?)

Composition

Definition: Suppose

- $R 1$ is a relation from A to B
- R 2 is a relation from B to C .

Then the composition of R 2 with R 1 , denoted $\mathrm{R} 2 \circ \mathrm{R} 1$ is the relation from A to C :

If $\langle\mathrm{x} . \mathrm{y}\rangle$ is a member of R 1 and $\langle\mathrm{y}, \mathrm{z}\rangle$ is a member of $R 2$ then $\langle x, z\rangle$ is a member of $R 2 \circ R 1$.

Note: For $\langle\mathrm{x}, \mathrm{z}$ > to be in the composite relation R2。R1 there must exist a y in B . . .

Note: We read them right to left as in functions.

Example:

$$
\mathrm{R} 2 \circ \mathrm{R} 1=\{\langle\mathrm{b}, \mathrm{D}\rangle,\langle\mathrm{b}, \mathrm{~B}\rangle\}
$$

Definition: Let R be a binary relation on A . Then

$$
\text { Basis: } \mathrm{R}^{1}=\mathrm{R}
$$

$$
\text { Induction: } \mathrm{R}^{\mathrm{n}+1}=\mathrm{R}^{\mathrm{n}} \circ \mathrm{R}
$$

Note: an ordered pair $\left\langle\mathrm{x}, \mathrm{y}>\right.$ is in R^{n} iff there is a path of length n from x to y following the arcs (in the direction of the arrows) of R.

Example:

R

Very Important
 Theorem:

R is transitive iff $\mathrm{Rn}^{\mathrm{n}} \subseteq \mathrm{R}$ for $\mathrm{n}>0$.
Proof:

1. R transitive $\rightarrow R^{n} \subseteq R$

Use a direct proof and a proof by induction:

- Assume R is transitive.
- Now show $R^{n} \subseteq R$ by induction.

Basis: Obviously true for $\mathrm{n}=1$.

Induction:

- The induction hypothesis:

'assume true for n'.

- Show it must be true for $\mathrm{n}+1$.
$R^{n+1}=R^{n} \circ R$ so if $\langle\mathrm{x}, \mathrm{y}\rangle$ is in R^{n+1} then there is a z such that $\left\langle\mathrm{x}, \mathrm{z}>\right.$ is in R^{n} and $<\mathrm{z}, \mathrm{y}>$ is in R.

But since $R^{n} \subseteq R,<\mathrm{x}, \mathrm{z}>$ is in R.
R is transitive so <x, y> is in R.
Since $\langle x, y>$ was an arbitrary edge the result follows.

2. $R^{n} \subseteq R \rightarrow R$ transitive

Use the fact that $R^{2} \subseteq R$ and the definition of transitivity. Proof left to the

Q. E. D.

