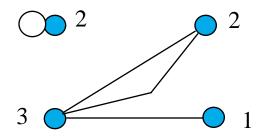
Section 7.2 Graph Terminology

Undirected Graphs

Definition: Two vertices u, v in V are *adjacent* or *neighbors* if there is an edge e between u and v.

The edge e connects u and v.

The vertices u and v are endpoints of e.


efinition: The *degree* of a vertex *y* denoted d

Definition: The *degree* of a vertex v, denoted deg(v), is the number of edges for which it is an endpoint.

A loop contributes twice in an undirected graph.

Example:

• If deg(v) = 0, v is called *isolated*.

• If deg(v) = 1, v is called *pendant*.

The Handshaking Theorem:

Let G = (V, E). Then

$$2|E| = \deg(v)$$

Proof:

Each edge represents contributes twice to the degree count of all vertices.

Q. E. D.

Example:

If a graph has 5 vertices, can each vertex have degree 3? 4?

- The sum is $3 \cdot 5 = 15$ which is an odd number. Not possible.
- The sum is $20 = 2 \mid E \mid$ and 20/2 = 10. May be possible.

Theorem: A graph has an even number of vertices of odd degree.

Proof:

Let V1 = vertices of odd degree

V2= vertices of even degree

The sum must be even. But

- odd times odd = odd
- odd times even = even
- even times even = even
- even plus odd = odd

It doesn't matter whether V2 has odd or even cardinality.

V1 cannot have odd cardinality.

Q. E. D.

Example:

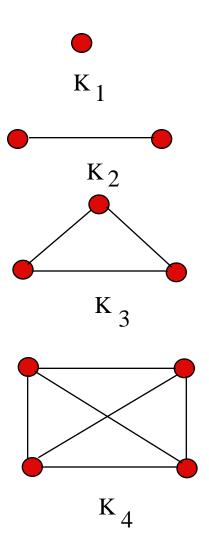
It is not possible to have a graph with 3 vertices each of which has degree 1.

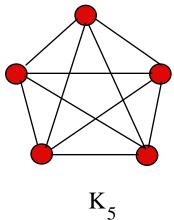
Directed Graphs

Definition: Let $\langle u, v \rangle$ be an edge in G. Then u is an initial vertex and is adjacent to v and v is a terminal vertex and is adjacent from u.

Definition: The *in degree* of a vertex v, denoted deg-(v) is the number of edges which terminate at v.

Similarly, the *out degree* of v, denoted deg+(v), is the number of edges which initiate at v.

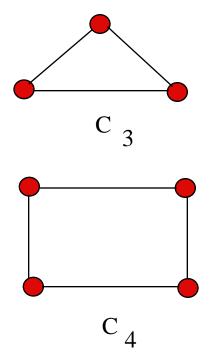

Theorem:
$$|E| = \deg^{-}(v) = \deg^{+}(v)$$

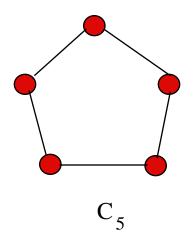

Special Simple Graphs

- Complete graphs K_n: the simple graph with
 - n vertices
 - exactly one edge between every pair of distinct vertices.

Maximum redundancy in local area networks and processor connection in parallel machines.

Examples:

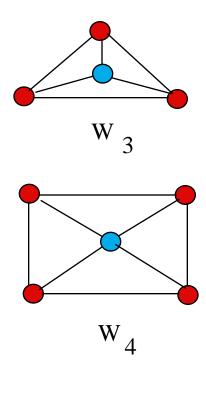




Note: K5 is important because it is the simplest nonplanar graph: It cannot be drawn in a plane with nonintersecting edges.

• Cycles:

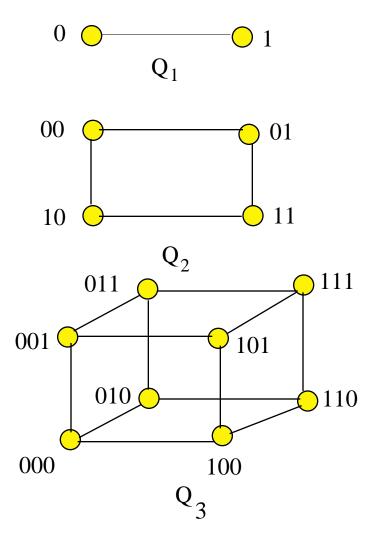
C_n is an n vertex graph which is a cycle. Local area networks are sometimes configured this way called Ring networks.



• Wheels:

Add one additional vertex to the cycle C_n and add an edge from each vertex to the new vertex to produce W_n .

Provides redundancy in local area networks.


• n-Cubes:

 Q_n is the graph with 2^n vertices representing bit strings of length n.

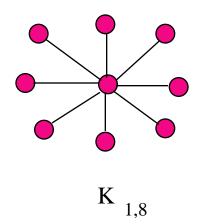
An edge exists between two vertices that differ by one bit position.

A common way to connect processors in parallel machines.

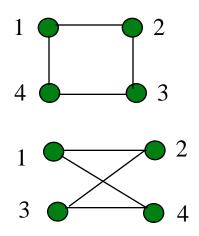
Intel Hypercube.

Bipartite Graphs

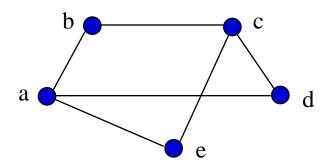
Definition: A simple graph G is *bipartite* if V can be partitioned into two disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2 .


Note: There are no edges which connect vertices in V_1 or in V_2 .

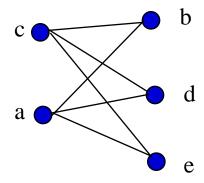
A bipartite graph is *complete* if there is an edge from every vertex in V_1 to every vertex in V_2 , denoted $K_{m,n}$ where $m = |V_1|$ and $n = |V_2|$.



Examples:


- Suppose bigamy is permitted but not same sex marriages and males are in V1 and females in V2 and an edge represents a marriage. If every male is married to every female then the graph is complete.
- Supplier, warehouse transportation models are bipartite and an edge indicates that a given supplier sends inventory to a given warehouse.
 - A Star network is a $K_{1,n}$ bipartite graph.

• C_k for k even is a bipartite graph: even numbered vertices in VI, odd numbered in V2.


• Is the following graph bipartite?

If a is in V1 then e, c and b must be in V2 (why?).

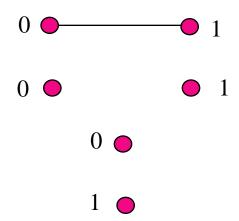
Then c is in VI and there is no inconsistency.

We rearrange the graph as follows:

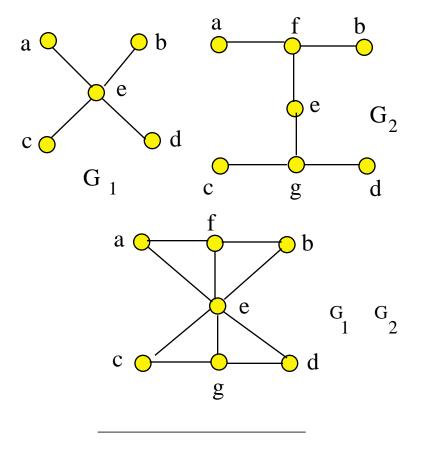
New Graphs from Old

Definition: (W, F) is a subgraph of G = (V, E) if

W V and F E.


Definition: If G1 and G2 are simple then

$$G1 \quad G2 = (V1 \quad V2, E1 \quad E2)$$


and the graph is simple.

Examples:

• Find the subgraphs of Q_1 :

• Find the union of the two graphs G_1 and G_2 :

Note: The important properties of a graph do not depend on how we draw it. We want to be able to identify two graphs that are the same (up to labeling of the vertices).