Section 7.5
 Equivalence Relations

Now we group properties of relations together to define new types of important relations.

Definition: A relation R on a set A is an equivalence relation iff R is

- reflexive
- symmetric
and
- transitive

It is easy to recognize equivalence relations using digraphs.

- The subset of all elements related to a particular element forms a universal relation (contains all possible arcs) on that subset. The (sub)digraph representing the subset is called a complete (sub)digraph. All arcs are present.
- The number of such subsets is called the rank of the equivalence relation

Examples:

A has 3 elements:

rank $=3$

rank $=2$

rank $=2$

rank $=2$

rank $=1$

- Each of the subsets is called an equivalence class.
- A bracket around an element means the equivalence class in which the element lies.

$$
[x]=\{y \mid\langle x, y\rangle \text { is in } R\}
$$

- The element in the bracket is called a representative of the equivalence class. We could have chosen any one.

Examples:

An interesting counting problem:

Count the number of equivalence relations on a set A with n elements. Can you find a recurrence relation?

The answers are

- 1 for $n=1$
- 3 for $n=2$
- 5 for $n=3$

How many for $n=4$?

Definition: Let $S_{1}, S_{2}, \ldots, S_{n}$ be a collection of subsets of A. Then the collection forms a partition of A if the subsets are nonempty, disjoint and exhaust A :

- $S_{i} \neq \varnothing$
- $S_{i} \cap S_{j}=\varnothing$ if $i \neq j$
- $\cup S_{i}=A$

A

Theorem: The equivalence classes of an equivalence relation R partition the set A into disjoint nonempty subsets whose union is the entire set.

This partition is denoted A / R and called

- the quotient set, or
- the partition of A induced by R, or,
- A modulo R.
no. of partitions: $B _n+1=$ sum $_k=0^{\wedge} n B _n * C(n, k)$
Examples:
- Ex. 1, p. 508
- Ex. 4, p. 509
- Ex. 9, p. 512, problem 18, p. 514

$$
\begin{gathered}
A=[a] \cup[b]=[a] \cup[c]=\{a\} \cup\{b, c\} \\
\operatorname{rank}=2
\end{gathered}
$$

Theorem: Let R be an equivalence relation on A. Then either

$$
\begin{gathered}
{[a]=[b]} \\
\text { or } \\
{[a] \cap[b]=\varnothing}
\end{gathered}
$$

Theorem: If R_{1} and R_{2} are equivalence relations on A then $R_{1} \cap R_{2}$ is an equivalence relation on A.

Proof: It suffices to show that the intersection of

- reflexive relations is reflexive,
- symmetric relations is symmetric,
and
- transitive relations is transitive.

You provide the details.

Definition: Let R be a relation on A. Then the reflexive, symmetric, transitive closure of $R, \operatorname{tsr}(R)$, is an equivalence relation on A, called the equivalence relation induced by R.

Example:

R

Theorem: $\operatorname{tsr}(R)$ is an equivalence relation

Proof:

We have to be careful and show that $\operatorname{tsr}(R)$ is still symmetric and reflexive.

- Since we only add arcs vs. deleting arcs when computing closures it must be that $\operatorname{tsr}(R)$ is reflexive since all loops $\langle x, x\rangle$ on the diagraph must be present when constructing $\mathrm{r}(R)$.
- If there is an arc $\langle\mathrm{x}, \mathrm{y}>$ then the symmetric closure of $\mathrm{r}(R)$ ensures there is an arc $\langle\mathrm{y}, \mathrm{x}\rangle$.
- Now argue that if we construct the transitive closure of $\operatorname{sr}(R)$ and we add an edge $\langle\mathrm{x}, \mathrm{z}>$ because there is a path from x to z , then there must also exist a path from z to x (why?) and hence we also must add an edge $\langle\mathrm{z}, \mathrm{x}\rangle$. Hence the transitive closure of $\operatorname{sr}(R)$ is symmetric.
Q. E. D.

