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Stochastic processes as Dynamic Bayesian Networks

A Dynamic Bayesian Network is a probabilistic graphical model that represents a sequence
of random variables and their conditional dependencies.

A Markov Chain is a simple Dynamic Bayesian Network with the Markov property.

p(Xn+1 = x | X1 = x1,X2 = x2, . . . ,Xn = xn) = p(Xn+1 = x | Xn = xn)

Random walks (Graph Theory), Thermodynamics, Enzyme activity (Chemistry), Data
compression and pattern recognition (Information Science), Google’s PageRank, Asset pricing
(Finance), Population processes (Biology), Algorithmic music composition, Baseball statistics,
Text generation...
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Latent Variables and Hidden Markov Models
A Hidden Markov Model is another example of a Dynamic Bayesian Network.

Inference tasks for HMMs

Filtering: Given model parameters and sequence of observations, compute distribution
over hidden states, p(Xt | y(1), . . . , y(t)).

Smoothing: Given model parameters and sequence of observations, compute distribution
over hidden states for point in time in the past, p(Xk | y(1), . . . , y(t)), for k < t.

Probability of an observed sequence

Most likely explanation
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Properties of Bayesian Networks

Given G a directed, acyclic graph over random variables X1, . . . ,Xn.

Let Xπi be the set of parents for node Xi.

We associate with each node the conditional probability distribution of Xi given its
parents: p(Xi | Xπi ).

Joint probability distribution p factorises according to G if p can be expressed as

p(x1, . . . , xn) =
n∏

i=1

p(xi | xπi ).

Individual factors are p(xi | xπi ) are called conditional probability distributions.

Cryptanalysis (Mathematics), Speech recognition, Part-of-speech tagging (Natural Language
Processing), Gene prediction, Protein folding, Bio-sequencing (Biology)...
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Goals of graphical models

Provide compact factorisations of large, joint probability distributions.

Use local functions which exploit conditional independencies in the models.

Consider the example.

By the chain rule, the joint probability is given by

P(C, S,R,W) = P(C)× P(S | C)× P(R | C, S)× P(W | C, S,R).

By using conditional independence relationships we can rewrite this as

P(C, S,R,W) = P(C)× P(S | C)× P(R | C)× P(W | S,R).
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Markov Random Fields as Undirected Graphical Models

A Markov Random Field is an undirected probabilistic graphical model representing random
variables and their conditional dependencies.

Given G = (V,E) undirected graph over random variables (Xv)v∈V .

Pairwise Markov Property

Xu ⊥ Xv | XV\{u,v}, for {u, v} /∈ E

Any two non-adjacent variables are conditionally independent given all other variables.

Local Markov Property

Xv ⊥ XV\v∪N(v) | XN(v), for N(v) = neighbors of v

A variable is conditionally independent of all other variables given its neighbours.

Global Markov Property

XA ⊥ XB | XS, where every path from A to B passes through S

Any two subsets of variables are conditionally independent given a separating subset.
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In the directed model, we had a local conditional probability distributions at each node,
depending on nodes’ parents. These served as the factors of the joint probability
distribution.

What is our equivalent for the undirected model?

→ Define local factors on (maximal) cliques.
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Represent the joint probabilitiy distribution as a product of clique potentials

p(X1 = x1, . . . ,Xn = xn) =
1
Z

∏
ci∈C

ψi(ci),

where ci is a clique in the set of all cliques C in the graph and ψi(ci) is the ith clique potential, a
function of only the values of the clique members in ci. Each potential function ψi must be
positive, but unlike probability distribution functions they need not sum to 1. Normalization
constant Z is therefore required in order to create a valid probability distribution

Z =
∑

x

∏
ci∈C

ψi(ci).

(Hammersley-Clifford Theorem) Every MRF can be specified via clique potentials.
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Interpretation of clique potentials

Often, clique potentials take the form ψi(ci) = exp(−fi(ci)) with fi(ci) an energy function over
values ci. The energy is an indicator of the likelihood of the corresponding relationships within
the clique, with higher energy configuration having lower probability. The joint p.d. becomes

p(X1 = x1, . . . ,Xn = xn) =
1
Z

exp

−∑
ci∈C

fi(ci)

 .
Example: Spin Glass model

A spin glass is a collection of magnetic moments (spins) whose low temperature state is
disordered.

Spins can be in one of two states, (+1,−1).

There is competition among interactions between moments (so-called frustration).

Interactions are at least partially random.

Rajtmajer Introduction to Markov Random Fields

latecki
Highlight

latecki
Highlight

latecki
Highlight

latecki
Highlight



Outline

Interpretation of clique potentials

Often, clique potentials take the form ψi(ci) = exp(−fi(ci)) with fi(ci) an energy function over
values ci. The energy is an indicator of the likelihood of the corresponding relationships within
the clique, with higher energy configuration having lower probability. The joint p.d. becomes

p(X1 = x1, . . . ,Xn = xn) =
1
Z

exp

−∑
ci∈C

fi(ci)

 .
Example: Spin Glass model

A spin glass is a collection of magnetic moments (spins) whose low temperature state is
disordered.

Spins can be in one of two states, (+1,−1).

There is competition among interactions between moments (so-called frustration).

Interactions are at least partially random.

Rajtmajer Introduction to Markov Random Fields



Outline

Interpretation of clique potentials

Often, clique potentials take the form ψi(ci) = exp(−fi(ci)) with fi(ci) an energy function over
values ci. The energy is an indicator of the likelihood of the corresponding relationships within
the clique, with higher energy configuration having lower probability. The joint p.d. becomes

p(X1 = x1, . . . ,Xn = xn) =
1
Z

exp

−∑
ci∈C

fi(ci)

 .
Example: Spin Glass model

A spin glass is a collection of magnetic moments (spins) whose low temperature state is
disordered.

Spins can be in one of two states, (+1,−1).

There is competition among interactions between moments (so-called frustration).

Interactions are at least partially random.

Rajtmajer Introduction to Markov Random Fields



Outline

Interpretation of clique potentials

Often, clique potentials take the form ψi(ci) = exp(−fi(ci)) with fi(ci) an energy function over
values ci. The energy is an indicator of the likelihood of the corresponding relationships within
the clique, with higher energy configuration having lower probability. The joint p.d. becomes

p(X1 = x1, . . . ,Xn = xn) =
1
Z

exp

−∑
ci∈C

fi(ci)

 .
Example: Spin Glass model

A spin glass is a collection of magnetic moments (spins) whose low temperature state is
disordered.

Spins can be in one of two states, (+1,−1).

There is competition among interactions between moments (so-called frustration).

Interactions are at least partially random.

Rajtmajer Introduction to Markov Random Fields

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil

latecki
Pencil



Outline

The Ising Model (2-D Markov Random Field)

Spins are arranged in a (d-dimensional) lattice, and each spin interacts with its nearest
neighbors.

Energy is given by H(x) =
∑

ij βijxixj +
∑

i αixi.

Goal: Find phase transitions.

The Ising model is very popular for explaining the effect of ”society” or ”environment” on a
”component” or ”individual”. Example applications from flocking behaviour, behaviour of
neural networks, sociology...
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Conditional Random Fields

A special type of a Markov Random Field, a Conditional Random Field allows that each
random variable may also be conditioned upon a set of global observations.

Define G = (V,E) to be an undirected graphical Markov Random Field model over random
variable (Xv)v∈V and O a random variable representing observation sequences. (X,O) is a
conditional random field. The probability of a particular label sequence x given observation
sequence o is a normalized product of potential functions, each of the form

exp

∑
j

λjtj(xi−1, xi, o, i) +
∑

k

µksk(xi, o, i)

 ,

where tj(xi−1, xi, o, i) is a transition feature function of the entire observation sequence and the
labels at positions i and i− 1 in the label sequence; sk(xi, o, i) is a state feature function of the
label at position i and the observation sequence; and λj and µk are parameters (to be estimated
from training data).
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Conditional Random Fields, an example

The SIR epidemic model

S

IR

?

Let p be the probability that a susceptible node becomes infected by a sick neighbor in a given
time interval.
Let q be the probability that an infected node recovers (or dies) in a given time interval.

Susceptible Infectious Recovered

Susceptible (1− p)in(v) 1− (1− p)in(v) 0
Infectious 0 1− q q
Recovered 0 0 1

Table 1: Transition probabilities at each time interval during the lifespan of the disease
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Rajtmajer and Vukičević, 2011

Γ - (weighted, oriented) graph of network states and transitions

v ∈ Γ - one of the possible 3n states

uv ∈ Γ - if u can be transformed to v in one step, with weight(uv) = probability of transition

For example:

1

2

34

5

1 - R

2 - R

3 - S4 - I

5 - I

1- I

2 - R

3 - S4 - I

5 - S

Figure 1: graph G, state u (S,I and R denote susceptible, infectious or recovered), state v

The weight of uv ∈ Γ is calculated as

q · (1− p) · 1 · (1− q) · (1− (1− p)2).
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I - initial probability vector

(Given fixed known starting state x ∈ V(Γ), Ix = 1 and Ix = 0 elsewhere.)

M - transition matrix size 3n × 3n

Mk · I - progression from I in k steps

Theorem

Let p, q ∈ (0, 1) and let I be any initial probability vector. There is a limit vector W = Mk · I.
Moreover, in the limit vector probabilities corresponding to all acute states are equal to zero.

→We can model the (entire) course of the epidemic.

Real world problems should be attacked using a Monte Carlo approach.
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Classification of network hubs:

outhub - node which causes the most harm to the network as a whole (as measured by the
sum of other nodes’ chances to get sick) if it first to become infected and introduce the
disease to rest of the population

inhub - node which is most susceptible to get the disease, given that the disease may be
start at any other node in the graph (measured as the average probability to becoming
infected, over all n− 1 introduction points)

transition hub - node which would most alleviate the harm to the network, should it
become immune (by vaccination), and therefore unable to catch or spread the disease

Should all three hubs should be given as the nodes with highest degree?
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Consider the network.

5

4

3

2
7

1

8

9

10

6

Figure 2: Sample network

We fix p and q. Using both the complete algorithm with complexity 6n to determine all possible
courses of the epidemic on the network and the Monte Carlo method (for comparison), we
determine the following probabilities.
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Outhub: probability that a randomly chosen vertex will become infected given vertex i is first to
be infected

Inhub: probability that i will become infected given a randomly chosen vertex is first to be
infected

Trans hub: probability that a randomly chosen vertex will become infected given i is vaccinated

Vertex (i) Outhub Inhub Trans hub Vertex (i) Outhub Inhub Trans hub
1 0.593589 0.591562 0.478138 1 0.59406 0.59147 0.47786
2 0.593589 0.591562 0.478138 2 0.59153 0.59174 0.47825
3 0.593589 0.591562 0.478138 3 0.59163 0.59136 0.47774
4 0.619712 0.611778 0.426127 4 0.62041 0.61165 0.42626
5 0.619712 0.611778 0.426127 5 0.61917 0.61152 0.42623
6 0.585350 0.594192 0.376840 6 0.58460 0.59377 0.37710
7 0.535528 0.539843 0.397074 7 0.53791 0.53956 0.39708
8 0.475483 0.478576 0.507061 8 0.47471 0.47838 0.50675
9 0.475483 0.478576 0.507061 9 0.47584 0.47824 0.50686
10 0.475483 0.478576 0.507061 10 0.47613 0.47830 0.50725

Table 2: Figure 12 hubs with the complete calculation and Monte Carlo approximation, respectively

Vertex 6 is the transition hub, although it has lowest degree(!)
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Applications of Random Field models

Labelling and parsing sequential data
Natural language text
Biological sequences

Computer vision
Image segmentation
Object recognition

Figure 3: fMRI
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