
Michael Otte, University of Colorado at Boulder, 2007

Artificial Intelligence:
Graph Based Search Techniques

Presented by Michael Otte

These slides were prepared with help from:
 “Artificial Intelligence, A Modern Approach”

by Stuart Russell and Peter Norvig

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search

 What I am going to talk about in the next three
classes:
 Uninformed (blind) Search
 Informed (heuristic based) Search
 Current applications to artificial intelligence

 Robotics
 Computer Games

 Part 3 of your project
 Implement a search algorithm (A*) that will be used for

navigation on the LAGR robot.

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search

 What is a graph?
 Nodes (states)

 Initial State
 Goal State

 Arcs (the links between the states)
 Directed
 Undirected

 Cost
 Other stuff:

 Successor Function
 Goal Test

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search

 A simple Graph:

 I am going to do more interesting example on
the board (with corresponding solution tree).

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search:
Uninformed Search

 Solving a graph can be thought of as searching
through a tree until a goal state is found.

 Any traditional tree search methods can be
used (but some may work better than others)
 Depth-First Search
 Breadth-First Search
 Depth-Limited Search
 Iterative Deepening Depth-First Search
 Bidirectional Search
 Dijkstra's Algorithm

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Depth-First Search

 Depth: The number of nodes along the path
from the initial state.

 Depth-first search always expands the deepest
node in the current fringe of the search tree.
 Fringe: the set of nodes that the search has found

 It is possible to implement depth first search by
storing the fringe in a stack.

 Remember to mark a node as visited when it is
expanded.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Depth-First Search

 Depth first Requires O(bm) memory.
 b: the (maximum) branching factor
 m: the maximum depth of the tree

 A variant called backtracking search reduces
memory requirements to O(m) by letting each
node remember which of its children have been
explored.

 Problem: what happens if the graph contains an
infinite number of nodes?

 Depth-first search is not complete or optimal

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Breadth-First Search

 Breadth-first search expands nodes in the order
of their depth.
 That is, every node of depth n is expanded before

any node of depth n+1 is expanded.
 This can be implemented in a first-in-first-out queue

 Memory and time: O(bd+1)
 b: branching factor
 d: depth of goal

 Breadth-first search is complete, it is optimal if
all steps have the same cost.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Depth-limited and Iterative Deepening

 Depth-limited search is (usually depth-first)
search with a constraint on the length of a path.
 Choose the constraint carefully or risk failure

 Iterative Deepening expands this idea:
 Perform depth-limited search with depth 1,2,3...
 Memory (depth-first based): O(bd)
 Time: O(bd)

 This is faster than breadth-first search! Why?
 Because most nodes exist on the bottom level of the tree

and breadth-first search inserts an extra layer of nodes
into the fringe.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Dijkstra's Shortest Path Algorithm

 Used when arcs have arbitrary non-negative
costs.

 Basic idea: expand the shortest path first and
store the distance required to reach each node
at that node, updating as necessary.
 runtime (if implemented carefully with a Fibonacci

heap) is O(E + V log V)
 E: total edges in the graph
 V: total vertices in the graph

 Optimal and Complete

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search:
Informed Search

 Sometimes we can use additional information
about the world to help guide our search.

 The idea is that we can impart a little bit of
'common sense' about what is good or bad to
the system using a heuristic function.

 Algorithms:
 Hill-climbing search
 Genetic Algorithms
 Greedy best-first search
 A* Search (You will have to implement this one)

Michael Otte, University of Colorado at Boulder, 2007

Informed Search (Local Search)
Hill-Climbing Search

 Suppose that we are told to find the best
possible state in a space with respect to a
particular quantity.
 But, the space is huge and we can only make a few

measurements a time.
 Picture a mouse that is trying to find the top of a

roller-coaster track.
 Example on board...

Michael Otte, University of Colorado at Boulder, 2007

Informed Search (Local Search)
Hill-Climbing Search

 Start at a random location and go up
 If space is convex, then this will always find a global

solution, if not it will find a local solution.
 Steepest ascent: choose the highest neighbour
 Stochastic Hill Climbing: choose randomly from

uphill moves (this makes more sense in > 2D)
 Random Restart: try a bunch of different things.

 Now we have a pack of mice instead of just one.
 Local Beam Search: try a bunch of different things,

and allow them to communicate.
 If one of the mice finds a good state, it tells its friends

about it.
 Simulated Annealing: temperature and probability

 So much for the mouse metaphor...

Michael Otte, University of Colorado at Boulder, 2007

Informed Search (Local Search)
Genetic Algorithms

 With some probability:
 Independently successful features of individuals are

randomly combined to form a new individual.
 A new individual is created by mutating an old

individual.
 A cool example:
 http://www.rennard.org/alife/english/gavgb.html

 Back to global path finding...

http://www.rennard.org/alife/english/gavgb.html

Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search:
Uninformed Search Revisited

 On the Quiz from last time:
 Depth First Search: 75%
 Breadth First Search: 75%
 Dijkstra's: 25%

 ... I think that I'll work through a few more
examples of these things before we move on.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

 Another way of thinking about it:
 Recursively expand Nodes based on the order that

you discover them in.
 That means

 Do not return back to the parent of a node before all
of the children of the current node have been
explored.

 Memory Requirement Confusion from last time:
 O(db) if we store the unexpanded nodes

 d=depth
 b=branching factor

 O(d) if we let each node remember which children
have been expanded.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

 Suppose our successor function breaks
ties by expanding the left most node

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Suppose our successor function breaks ties by expanding nodes counter
clockwise, starting at 12:00.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

 Another way of thinking about it:
 First, look at all nodes 1 arc away from the start
 Then, look at all nodes 2 arcs away from the start
 Next, look at all nodes 3 arcs away from the start
 etc ...

 When you are told about nodes that are too far
 away, save them for later.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Breadth First Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

 Fibonacci heap high level concepts (Wikipedia):
 A forest of trees

 The trees are arranged in a ring (doubly linked list)
 Each tree is a doubly linked list
 Always keep a pointer to the over all minimum

 Lazy operations (some things are saved for later)
 'Merge' just combines forests into a larger ring
 'extract min' basically merges trees along the way
 'decrease key' makes new trees along the way
 'delete' sets the node's value to -inf then extracts min

 Special constraints:
 Size of a subtree rooted at node of degree k is at least
 Fk+2, where Fk is the kth Fibonacci number.
 In their time analysis they have a notion of saving time for

later.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

 Another way of thinking about it:
 Always expand the node that is the closest to the
 start based on cost.
 When you expand a node, save the back pointer
 along the cheapest path.
 If during an expansion you find a cheaper way to
 get to a child (neighbor), update the child so that it
 knows about the cheapest way back to the start.

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
Greedy Best-First Search

 Greedy best-first search: expands the node on
the fringe that is closest to the goal.

 In 2D or 3D Cartesian space, if cost = distance
 Expand the node that is closest to the goal first.
 f(n) = h(n)
 Trip navigation example on the board.

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 You are going to implement this as part 3 of
your project.

 Idea: minimize the total estimated solution cost.
 Expand Nodes that have a low value of:

f(n) = g(n) + h(n)

 g(n): actual cost from the start to a node n
 h(n): estimated cost from node n to the goal

 If h(n) = 0 this reduces to Dijkstra's

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 (This is part 3 of your project).
 Idea: minimize the total estimated solution cost.
 Expand the nodes that has the lowest value of:

f(n) = g(n) + h(n)
 g(n): actual cost from the start to a node n
 h(n): estimated cost from node n to the goal

 If h(n) is an admissible and consistent then A* is
optimal.

 That is, if h(n) never overestimates the cost to the
goal, and maintains the triangle inequality, then A*
will always find the best solution.

 How fast this happens depends on how good your
heuristic is.

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 How to apply this to navigation in:
 real environments (robotics)
 simulated environments (computer games)

 Step 1: model the world as a 4 or 8-connected
graph (i.e. a chessboard).
 Graph locations are defied by row and column.
 Neighbours are row ±1 and column ±1
 Let each node contain cost information about the

world—now the graph is called an occupancy grid.
 Step 2: think of a good heuristic

 Any ideas...
 Step 3: implement A* with your heuristic.

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 Step 4: make some code that does this:
– Sense or input information about your environment
– figure out your start and goal locations
– run A* from start to goal on your occupancy grid
– Move along the resulting path a little bit
– Repeat

 This is already implemented on the LAGR robot
 All you have to do is implement A* with your own
 heuristic.

 Example on board...
 Cat chasing a mouse in an environment that has
 cost given by: dirt = 1, grass 3, and water = 10

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 A* pseudo-code (found on Wikipedia):
• function A*(start,goal)
• var closed := the empty set
• var q := make_queue(path(start))
• while q is not empty
• var p := remove_first(q)
• var x := the last node of p
• if x in closed
• continue
• if x = goal
• return p
• add x to closed
• foreach y in successors(x)
• enqueue(q, p, y)
• return failure

Michael Otte, University of Colorado at Boulder, 2007

Informed Search
A* Search

 Grading for part 3
 50 % Does it work off-line on maps that I give it?
 25 % Explanation of why you chose a particular

heuristic.
 25 % Does it run in real-time on the LAGR robot

and make good decisions?
 You'll need to have it running at about 1 frame per

second on a map of 100 X 100 grids

