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Graph Based Search

 What I am going to talk about in the next three 
classes:
 Uninformed (blind) Search
 Informed (heuristic based) Search
 Current applications to artificial intelligence

 Robotics
 Computer Games

 Part 3 of your project
 Implement a search algorithm (A*) that will be used for 

navigation on the LAGR robot.



Michael Otte, University of Colorado at Boulder, 2007

Graph Based Search

 What is a graph?
 Nodes (states)

 Initial State
 Goal State

 Arcs (the links between the states)
 Directed
 Undirected

 Cost
 Other stuff:

 Successor Function
 Goal Test
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Graph Based Search

 A simple Graph:

 I am going to do more interesting example on 
the board (with corresponding solution tree).
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Graph Based Search:
Uninformed Search

 Solving a graph can be thought of as searching 
through a tree until a goal state is found.

 Any traditional tree search methods can be 
used (but some may work better than others)
 Depth-First Search
 Breadth-First Search
 Depth-Limited Search
 Iterative Deepening Depth-First Search
 Bidirectional Search
 Dijkstra's Algorithm
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Uninformed Search:
Depth-First Search

 Depth: The number of nodes along the path 
from the initial state.

 Depth-first search always expands the deepest 
node in the current fringe of the search tree.
 Fringe: the set of nodes that the search has found

 It is possible to implement depth first search by 
storing the fringe in a stack.

 Remember to mark a node as visited when it is 
expanded.
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Uninformed Search:
Depth-First Search

 Depth first Requires O(bm) memory.
 b: the (maximum) branching factor
 m: the maximum depth of the tree

 A variant called backtracking search reduces 
memory requirements to O(m) by letting each 
node remember which of its children have been 
explored.

 Problem: what happens if the graph contains an 
infinite number of nodes?

 Depth-first search is not complete or optimal
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Uninformed Search:
Breadth-First Search

 Breadth-first search expands nodes in the order 
of their depth.
 That is, every node of depth n is expanded before 

any node of depth n+1 is expanded.
 This can be implemented in a first-in-first-out queue

 Memory and time: O(bd+1)
 b: branching factor
 d: depth of goal

 Breadth-first search is complete, it is optimal if 
all steps have the same cost.



Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search:
Depth-limited and Iterative Deepening

 Depth-limited search is (usually depth-first) 
search with a constraint on the length of a path.
 Choose the constraint carefully or risk failure

 Iterative Deepening expands this idea: 
 Perform depth-limited search with depth 1,2,3...
 Memory (depth-first based): O(bd)
 Time: O(bd)

 This is faster than breadth-first search! Why?
 Because most nodes exist on the bottom level of the tree 

and breadth-first search inserts an extra layer of nodes  
into the fringe.
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Uninformed Search:
Dijkstra's Shortest Path Algorithm

 Used when arcs have arbitrary non-negative 
costs.

 Basic idea: expand the shortest path first and 
store the distance required to reach each node 
at that node, updating as necessary.
 runtime (if implemented carefully with a Fibonacci 

heap) is O(E + V log V)
 E: total edges in the graph
 V: total vertices in the graph 

 Optimal and Complete
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Graph Based Search:
Informed Search

 Sometimes we can use additional information 
about the world to help guide our search.

 The idea is that we can impart a little bit of 
'common sense' about what is good or bad to 
the system using a heuristic function.

 Algorithms:
 Hill-climbing search
 Genetic Algorithms
 Greedy best-first search 
 A* Search (You will have to implement this one)



Michael Otte, University of Colorado at Boulder, 2007

Informed Search (Local Search)
Hill-Climbing Search

 Suppose that we are told to find the best 
possible state in a space with respect to a 
particular quantity.
 But, the space is huge and we can only make a few 

measurements a time.
 Picture a mouse that is trying to find the top of a 

roller-coaster track.
 Example on board...
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Informed Search (Local Search)
Hill-Climbing Search

 Start at a random location and go up
 If space is convex, then this will always find a global 

solution, if not it will find a local solution.
 Steepest ascent: choose the highest neighbour
 Stochastic Hill Climbing: choose randomly from 

uphill moves (this makes more sense in > 2D) 
 Random Restart: try a bunch of different things.

 Now we have a pack of mice instead of just one.
 Local Beam Search: try a bunch of different things, 

and allow them to communicate.
 If one of the mice finds a good state, it tells its friends 

about it.
 Simulated Annealing: temperature and probability

 So much for the mouse metaphor...
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Informed Search (Local Search)
Genetic Algorithms

 With some probability:
 Independently successful features of individuals are 

randomly combined to form a new individual.
 A new individual is created by mutating an old 

individual.
 A cool example:
   http://www.rennard.org/alife/english/gavgb.html

 Back to global path finding...

http://www.rennard.org/alife/english/gavgb.html
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Graph Based Search:
Uninformed Search Revisited

 On the Quiz from last time:
 Depth First Search: 75%
 Breadth First Search: 75%
 Dijkstra's: 25%

 ... I think that I'll work through a few more 
examples of these things before we move on.
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Uninformed Search Revisited:
Depth First Search

 Another way of thinking about it:
 Recursively expand Nodes based on the order that 

you discover them in.
 That means

 Do not return back to the parent of a node before all 
of the children of the current node have been 
explored.

 Memory Requirement Confusion from last time:
 O(db) if we store the unexpanded nodes

 d=depth 
 b=branching factor

 O(d) if we let each node remember which children 
have been expanded.
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Uninformed Search Revisited:
Depth First Search

  Suppose our successor function breaks 
ties by expanding the left most node 
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Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
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Uninformed Search Revisited:
Depth First Search



Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
Depth First Search

Suppose our successor function breaks ties by expanding nodes counter 
clockwise, starting at 12:00. 
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Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
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Depth First Search



Michael Otte, University of Colorado at Boulder, 2007

Uninformed Search Revisited:
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Uninformed Search Revisited:
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Uninformed Search Revisited:
Depth First Search
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Uninformed Search Revisited:
Breadth First Search

 Another way of thinking about it:
 First, look at all nodes 1 arc away from the start
 Then, look at all nodes 2 arcs away from the start
 Next, look at all nodes 3 arcs away from the start
 etc ...

 When you are told about nodes that are too far 
   away, save them for later.
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Uninformed Search Revisited:
Breadth First Search
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Uninformed Search Revisited:
Breadth First Search
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Uninformed Search Revisited:
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Uninformed Search Revisited:
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Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

 Fibonacci heap high level concepts (Wikipedia):
 A forest of trees

 The trees are arranged in a ring (doubly linked list)
 Each tree is a doubly linked list
 Always keep a pointer to the over all minimum

  Lazy operations (some things are saved for later)
 'Merge' just combines forests into a larger ring
 'extract min' basically merges trees along the way 
 'decrease key' makes new trees along the way
 'delete' sets the node's value to -inf then extracts min

 Special constraints:
 Size of a subtree rooted at node of degree k is at least
   Fk+2, where Fk is the kth Fibonacci number.
 In their time analysis they have a notion of saving time for 

later.
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Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search

 Another way of thinking about it:
 Always expand the node that is the closest to the 
   start based on cost.
 When you expand a node, save the back pointer
   along the cheapest path.
 If during an expansion you find a cheaper way to
   get to a child (neighbor), update the child so that it 
   knows about the cheapest way back to the start.
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Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search
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Uninformed Search Revisited:
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Uninformed Search Revisited:
Dijkstra's (least-cost-first) Search



Michael Otte, University of Colorado at Boulder, 2007

Informed Search
Greedy Best-First Search

 Greedy best-first search: expands the node on 
the fringe that is closest to the goal.

 In 2D or 3D Cartesian space, if cost = distance
 Expand the node that is closest to the goal first.
 f(n) = h(n)
 Trip navigation example on the board.
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Informed Search
A* Search

 You are going to implement this as part 3 of 
your project.

 Idea: minimize the total estimated solution cost.
 Expand Nodes that have a low value of:

f(n) = g(n) + h(n)

 g(n): actual cost from the start to a node n
 h(n): estimated cost from node n to the goal 

 If h(n) = 0 this reduces to Dijkstra's
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Informed Search
A* Search

 (This is part 3 of your project).
 Idea: minimize the total estimated solution cost.
 Expand the nodes that has the lowest value of:

f(n) = g(n) + h(n)
 g(n): actual cost from the start to a node n
 h(n): estimated cost from node n to the goal

 If h(n) is an admissible and consistent then A* is 
optimal.

 That is, if h(n) never overestimates the cost to the 
goal, and maintains the triangle inequality, then A* 
will always find the best solution.

 How fast this happens depends on how good your 
heuristic is.
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Informed Search
A* Search

 How to apply this to navigation in: 
 real environments (robotics)
 simulated environments (computer games)

 Step 1: model the world as a 4 or 8-connected 
graph (i.e. a chessboard).
 Graph locations are defied by row and column.
 Neighbours are row ±1 and column ±1
 Let each node contain cost information about the 

world—now the graph is called an occupancy grid.
 Step 2: think of a good heuristic

 Any ideas...
 Step 3: implement A* with your heuristic.
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Informed Search
A* Search

 Step 4: make some code that does this:
–  Sense or input information about your environment
–  figure out your start and goal locations
–  run A* from start to goal on your occupancy grid
–  Move along the resulting path a little bit
–  Repeat  

 This is already implemented on the LAGR robot
 All you have to do is implement A* with your own
   heuristic. 

 Example on board...
 Cat chasing a mouse in an environment that has 
   cost given by: dirt = 1, grass 3, and water = 10
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Informed Search
A* Search

 A*  pseudo-code (found on Wikipedia):
•  function A*(start,goal)
•      var closed := the empty set
•      var q := make_queue(path(start))
•      while q is not empty
•         var p := remove_first(q)
•         var x := the last node of p
•         if x in closed
•             continue
•         if x = goal
•             return p
•         add x to closed
•         foreach y in successors(x)
•             enqueue(q, p, y)
•     return failure
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Informed Search
A* Search

 Grading for part 3
 50 % Does it work off-line on maps that I give it?
 25 % Explanation of why you chose a particular 

heuristic.
 25 % Does it run in real-time on the LAGR robot 

and make good decisions?
 You'll need to have it running at about 1 frame per 

second on a map of 100 X 100 grids


