Introduction to Artificial Intelligence
CSCI 3202: The Perceptron Algorithm

Greg Grudic
Questions?
Binary Classification

• A binary classifier is a mapping from a set of \(d\) inputs to a single output which can take on one of TWO values
• In the most general setting
 \[
 \text{inputs: } x \in \mathbb{R}^d \\
 \text{output: } y \in \{-1, +1\}
 \]
• Specifying the output classes as -1 and +1 is arbitrary!
 – Often done as a mathematical convenience
A Binary Classifier

Given learning data: \((x_1, y_1), \ldots, (x_N, y_N)\)

A model is constructed:

\[
\hat{y} \in \{-1, +1\}
\]
Linear Separating Hyper-Planes

\[\beta_0 + \sum_{i=1}^{d} \beta_i x_i = 0 \]

\[y = -1 \]

\[\beta_0 + \sum_{i=1}^{d} \beta_i x_i \leq 0 \]

\[y = +1 \]

\[\beta_0 + \sum_{i=1}^{d} \beta_i x_i > 0 \]
Linear Separating Hyper-Planes

• The Model:
 \[\hat{y} = M(x) = \text{sgn}\left[\hat{\beta}_0 + \left(\hat{\beta}_1, \ldots, \hat{\beta}_d \right) x^T \right] \]

• Where:
 \[\text{sgn}[A] = \begin{cases}
 1 & \text{if } A > 0 \\
 -1 & \text{otherwise}
\end{cases} \]

• The decision boundary:
 \[\hat{\beta}_0 + \left(\hat{\beta}_1, \ldots, \hat{\beta}_d \right) x^T = 0 \]
Linear Separating Hyper-Planes

• The model parameters are: \(\left(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d \right) \)

• The \textit{hat} on the betas means that they are estimated from the data

• Many different learning algorithms have been proposed for determining \(\left(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d \right) \)
Rosenblatt’s Preceptron Learning Algorithm

• Dates back to the 1950’s and is the motivation behind Neural Networks
• The algorithm:
 – Start with a random hyperplane \((\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)\)
 – Incrementally modify the hyperplane such that points that are misclassified move closer to the correct side of the boundary
 – Stop when all learning examples are correctly classified
Rosenblatt’s Preceptron Learning Algorithm

• The algorithm is based on the following property:
 – Signed distance of any point \(x \) to the boundary is:
 \[
 d = \frac{\hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) x^T}{\sqrt{\sum_{i=1}^{d} \hat{\beta}_i^2}} \propto \hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) x^T
 \]

• Therefore, if \(M \) is the set of misclassified learning examples, we can push them closer to the boundary by minimizing the following
 \[
 D\left(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d\right) = -\sum_{i \in M} y_i \left(\hat{\beta}_0 + (\hat{\beta}_1, ..., \hat{\beta}_d) x_i^T\right)
 \]
Rosenblatt’s Minimization Function

- This is classic Machine Learning!
- First define a cost function in model parameter space
 \[D(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d) = -\sum_{i \in M} y_i \left(\hat{\beta}_0 + \sum_{k=1}^{d} \hat{\beta}_k x_{ik} \right) \]
- Then find an algorithm that modifies \((\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d)\) such that this cost function is minimized
- One such algorithm is **Gradient Descent**
Gradient Descent

\[D(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d) = \]
The Gradient Descent Algorithm

\[\hat{\beta}_i \leftarrow \hat{\beta}_i - \rho \frac{\partial D(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)}{\partial \hat{\beta}_i} \]

Where the learning rate is defined by: \(\rho > 0 \)
The Gradient Descent Algorithm for the Perceptron

\[
\frac{\partial D(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)}{\partial \hat{\beta}_0} = - \sum_{i \in M} y_i
\]

\[
\frac{\partial D(\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_d)}{\partial \hat{\beta}_j} = - \sum_{i \in M} y_i x_{ij}, \quad j = 1, ..., d
\]

Two Versions of the Perceptron Algorithm:

\[
\begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\vdots \\
\hat{\beta}_d \\
\end{pmatrix}
\leftarrow
\begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\vdots \\
\hat{\beta}_d \\
\end{pmatrix}
- \rho
\begin{pmatrix}
y_i \\
y_i x_{i1} \\
\vdots \\
y_i x_{id} \\
\end{pmatrix}
\]

Update One misclassified point at a time (online)

\[
\begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\vdots \\
\hat{\beta}_d \\
\end{pmatrix}
\leftarrow
\begin{pmatrix}
\hat{\beta}_0 \\
\hat{\beta}_1 \\
\vdots \\
\hat{\beta}_d \\
\end{pmatrix}
- \rho
\begin{pmatrix}
- \sum_{i \in M} y_i \\
- \sum_{i \in M} y_i x_{i1} \\
\vdots \\
- \sum_{i \in M} y_i x_{id} \\
\end{pmatrix}
\]

Update all misclassified points at once (batch)
The Learning Data

Training Data: \((x_1, y_1), \ldots, (x_N, y_N)\)

- Matrix Representation of \(N\) learning examples of \(d\) dimensional inputs

\[
X = \begin{pmatrix}
x_{11} & \cdots & x_{1d} \\
\vdots & \ddots & \vdots \\
x_{N1} & \cdots & x_{Nd}
\end{pmatrix}, \quad Y = \begin{pmatrix}
y_1 \\
\vdots \\
y_N
\end{pmatrix}
\]
The Good Theoretical Properties of the Perceptron Algorithm

• If a solution exists the algorithm will always converge in a finite number of steps!
• Question: Does a solution always exist?
Linearly Separable Data

• Which of these datasets are separable by a linear boundary?

a)

b)
Linearly Separable Data

• Which of these datasets are separable by a linear boundary?

- Not Linearly Separable!
Bad Theoretical Properties of the Perceptron Algorithm

- If the data is not linearly separable, algorithm cycles forever!
 - Cannot converge!
 - This property “stopped” active research in this area between 1968 and 1984…
 - *Perceptrons*, Minsky and Pappert, 1969
- Even when the data is separable, there are infinitely many solutions
 - Which solution is best?
- When data is linearly separable, the number of steps to converge can be very large (depends on size of gap between classes)
What about Nonlinear Data?

• Data that is not linearly separable is called nonlinear data

• Nonlinear data can often be mapped into a nonlinear space where it is linearly separable
Nonlinear Models

• The Linear Model:
\[
\hat{y} = M(x) = \text{sgn} \left[\hat{\beta}_0 + \sum_{i=1}^{d} \hat{\beta}_i x_i \right]
\]

• The Nonlinear (basis function) Model:
\[
\hat{y} = M(x) = \text{sgn} \left[\hat{\beta}_0 + \sum_{i=1}^{k} \hat{\beta}_i \phi_i(x) \right]
\]

• Examples of Nonlinear Basis Functions:
\[
\phi_1(x) = x_1^2 \quad \phi_2(x) = x_2^2 \quad \phi_3(x) = x_1x_2 \quad \phi_4(x) = \sin(x_{55})
\]
Linear Separating Hyper-Planes In Nonlinear Basis Function Space

\[\beta_0 + \sum_{i=1}^{k} \beta_i \phi_i = 0 \]

\[y = +1 \]

\[\beta_0 + \sum_{i=1}^{k} \beta_i \phi_i < 0 \]

\[y = -1 \]
An Example
Kernels as Nonlinear Transformations

- Polynomial
 \[K(x_i, x_j) = \left(\langle x_i, x_j \rangle + q \right)^k \]
- Sigmoid
 \[K(x_i, x_j) = \tanh \left(\kappa \langle x_i, x_j \rangle + \theta \right) \]
- Gaussian or Radial Basis Function (RBF)
 \[K(x_i, x_j) = \exp \left(-\frac{1}{2\sigma^2} \left\| x_i - x_j \right\|^2 \right) \]
The Kernel Model

Training Data: \((x_1, y_1), \ldots, (x_N, y_N) \)

\[\hat{y} = M(x) = \text{sgn} \left[\hat{\beta}_0 + \sum_{i=1}^{N} \hat{\beta}_i K(x_i, x) \right] \]

The number of basis functions equals the number of training examples!

- Unless some of the beta’s get set to zero…
Gram (Kernel) Matrix

Training Data: \((x_1, y_1), \ldots, (x_N, y_N)\)

\[
K = \begin{pmatrix}
K(x_1, x_1) & \cdots & K(x_1, x_N) \\
\vdots & \ddots & \vdots \\
K(x_N, x_1) & \cdots & K(x_N, x_N)
\end{pmatrix}
\]

Properties:
- Positive Definite Matrix
- Symmetric
- Positive on diagonal
- \(N\) by \(N\)
Picking a Model Structure?

• How do you pick the Kernels?
 – Kernel parameters

• These are called learning parameters or hyperparameters
 – Two approaches choosing learning parameters
 • Bayesian
 – Learning parameters must maximize probability of correct classification on future data based on prior biases
 • Frequentist
 – Use the training data to learn the model parameters \(\hat{\beta}_0, \hat{\beta}_1, \ldots, \hat{\beta}_d \)
 – Use validation data to pick the best hyperparameters.

• More on learning parameter selection later
Perceptron Algorithm Convergence

• Two problems:
 – No convergence when data is not separable in basis function space
 – Gives infinitely many solutions when data is separable

• Can we modify the algorithm to fix these problems?