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Supervised Learning

Given training data {(x1, y1), . . . , (xN , yN)}

N input/output pairs; xi - input, yi - output/label
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Supervised Learning

Given training data {(x1, y1), . . . , (xN , yN)}

N input/output pairs; xi - input, yi - output/label

xi is a vector consisting of D features

Also called attributes or dimensions
Features can be discrete or continuous
xim denotes the m-th feature of xi
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N input/output pairs; xi - input, yi - output/label

xi is a vector consisting of D features

Also called attributes or dimensions
Features can be discrete or continuous
xim denotes the m-th feature of xi

Forms of the output:

yi ∈ {1, . . . ,C} for classification; a discrete variable
yi ∈ R for regression; a continuous (real-valued) variable
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Supervised Learning

Given training data {(x1, y1), . . . , (xN , yN)}

N input/output pairs; xi - input, yi - output/label

xi is a vector consisting of D features

Also called attributes or dimensions
Features can be discrete or continuous
xim denotes the m-th feature of xi

Forms of the output:

yi ∈ {1, . . . ,C} for classification; a discrete variable
yi ∈ R for regression; a continuous (real-valued) variable

Goal: predict the output y for an unseen test example x

This lecture: Two intuitive methods

K -Nearest-Neighbors
Decision Trees
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K -Nearest Neighbor (K -NN)

Given training data D = {(x1, y1), . . . , (xN , yN)} and a test point

Prediction Rule: Look at the K most similar training examples
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K -Nearest Neighbor (K -NN)

Given training data D = {(x1, y1), . . . , (xN , yN)} and a test point

Prediction Rule: Look at the K most similar training examples

For classification: assign the majority class label (majority voting)
For regression: assign the average response
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K -Nearest Neighbor (K -NN)

Given training data D = {(x1, y1), . . . , (xN , yN)} and a test point

Prediction Rule: Look at the K most similar training examples

For classification: assign the majority class label (majority voting)
For regression: assign the average response

The algorithm requires:

Parameter K : number of nearest neighbors to look for

Distance function: To compute the similarities between examples
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K -Nearest Neighbor (K -NN)

Given training data D = {(x1, y1), . . . , (xN , yN)} and a test point

Prediction Rule: Look at the K most similar training examples

For classification: assign the majority class label (majority voting)
For regression: assign the average response

The algorithm requires:

Parameter K : number of nearest neighbors to look for

Distance function: To compute the similarities between examples

Special Case: 1-Nearest Neighbor
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K -Nearest Neighbors Algorithm

Compute the test point’s distance from each training point
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Sort the distances in ascending (or descending) order
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K -Nearest Neighbors Algorithm

Compute the test point’s distance from each training point

Sort the distances in ascending (or descending) order

Use the sorted distances to select the K nearest neighbors

Use majority rule (for classification) or averaging (for regression)

(CS5350/6350) K-NN and DT August 25, 2011 4 / 20



K -Nearest Neighbors Algorithm

Compute the test point’s distance from each training point

Sort the distances in ascending (or descending) order

Use the sorted distances to select the K nearest neighbors

Use majority rule (for classification) or averaging (for regression)

Note: K -Nearest Neighbors is called a non-parametric method

Unlike other supervised learning algorithms, K -Nearest Neighbors doesn’t
learn an explicit mapping f from the training data
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K -Nearest Neighbors Algorithm

Compute the test point’s distance from each training point

Sort the distances in ascending (or descending) order

Use the sorted distances to select the K nearest neighbors

Use majority rule (for classification) or averaging (for regression)

Note: K -Nearest Neighbors is called a non-parametric method

Unlike other supervised learning algorithms, K -Nearest Neighbors doesn’t
learn an explicit mapping f from the training data

It simply uses the training data at the test time to make predictions
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K -NN: Computing the distances

The K -NN algorithm requires computing distances of the test example from
each of the training examples
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K -NN: Computing the distances

The K -NN algorithm requires computing distances of the test example from
each of the training examples

Several ways to compute distances

The choice depends on the type of the features in the data
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K -NN: Computing the distances

The K -NN algorithm requires computing distances of the test example from
each of the training examples

Several ways to compute distances

The choice depends on the type of the features in the data

Real-valued features (xi ∈ R
D): Euclidean distance is commonly used

d(xi , xj) =

√

√

√

√

D
∑

m=1

(xim − xjm)2 =
√

||xi ||2 + ||xj ||2 − 2xTi xj
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The K -NN algorithm requires computing distances of the test example from
each of the training examples

Several ways to compute distances

The choice depends on the type of the features in the data

Real-valued features (xi ∈ R
D): Euclidean distance is commonly used

d(xi , xj) =

√

√

√

√

D
∑

m=1

(xim − xjm)2 =
√

||xi ||2 + ||xj ||2 − 2xTi xj

Generalization of the distance between points in 2 dimensions
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K -NN: Computing the distances

The K -NN algorithm requires computing distances of the test example from
each of the training examples

Several ways to compute distances

The choice depends on the type of the features in the data

Real-valued features (xi ∈ R
D): Euclidean distance is commonly used

d(xi , xj) =

√

√

√

√

D
∑

m=1

(xim − xjm)2 =
√

||xi ||2 + ||xj ||2 − 2xTi xj

Generalization of the distance between points in 2 dimensions

||xi || =
√

∑D

m=1 x
2
im is called the norm of xi

Norm of a vector x is also its length
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K -NN: Computing the distances

The K -NN algorithm requires computing distances of the test example from
each of the training examples

Several ways to compute distances

The choice depends on the type of the features in the data

Real-valued features (xi ∈ R
D): Euclidean distance is commonly used

d(xi , xj) =

√

√

√

√

D
∑

m=1

(xim − xjm)2 =
√

||xi ||2 + ||xj ||2 − 2xTi xj

Generalization of the distance between points in 2 dimensions

||xi || =
√

∑D

m=1 x
2
im is called the norm of xi

Norm of a vector x is also its length

xTi xj =
∑D

m=1 ximxjm is called the dot (or inner) product of xi and xj
Dot product measures the similarity between two vectors (orthogonal vectors
have dot product=0, parallel vectors have high dot product)
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K -NN: Feature Normalization

Note: Features should be on the same scale

Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize
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K -NN: Feature Normalization

Note: Features should be on the same scale

Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize

One way is:

Replace xim by zim = (xim−x̄m)
σm

(make them zero mean, unit variance)
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K -NN: Feature Normalization

Note: Features should be on the same scale

Example: if one feature has its values in millimeters and another has in
centimeters, we would need to normalize

One way is:

Replace xim by zim = (xim−x̄m)
σm

(make them zero mean, unit variance)

x̄m = 1
N

∑N

i=1 xim: empirical mean of mth feature

σ
2
m = 1

N

∑N

i=1(xim − x̄m)
2: empirical variance of mth feature
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K -NN: Some other distance measures

Binary-valued features

Use Hamming distance: d(xi , xj) =
∑D

m=1 I(xim 6= xjm)

Hamming distance counts the number of features where the two examples
disagree

Mixed feature types (some real-valued and some binary-valued)?

Can use mixed distance measures

E.g., Euclidean for the real part, Hamming for the binary part

Can also assign weights to features: d(xi , xj) =
∑D

m=1 wmd(xim, xjm)
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Choice of K - Neighborhood Size

Small K

Creates many small regions for each class
May lead to non-smooth) decision boundaries and overfit
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Choice of K - Neighborhood Size

Small K

Creates many small regions for each class
May lead to non-smooth) decision boundaries and overfit

Large K

Creates fewer larger regions
Usually leads to smoother decision boundaries (caution: too smooth decision
boundary can underfit)
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Choice of K - Neighborhood Size

Small K

Creates many small regions for each class
May lead to non-smooth) decision boundaries and overfit

Large K

Creates fewer larger regions
Usually leads to smoother decision boundaries (caution: too smooth decision
boundary can underfit)

Choosing K

Often data dependent and heuristic based
Or using cross-validation (using some held-out data)
In general, a K too small or too big is bad!
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K -Nearest Neighbor: Properties

What’s nice

Simple and intuitive; easily implementable
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Asymptotically consistent (a theoretical property)

With infinite training data and large enough K , K -NN approaches the best
possible classifier (Bayes optimal)
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What’s nice

Simple and intuitive; easily implementable

Asymptotically consistent (a theoretical property)

With infinite training data and large enough K , K -NN approaches the best
possible classifier (Bayes optimal)

What’s not so nice..

Store all the training data in memory even at test time

Can be memory intensive for large training datasets
An example of non-parametric, or memory/instance-based methods
Different from parametric, model-based learning models
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What’s nice

Simple and intuitive; easily implementable

Asymptotically consistent (a theoretical property)

With infinite training data and large enough K , K -NN approaches the best
possible classifier (Bayes optimal)

What’s not so nice..

Store all the training data in memory even at test time
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Distance computations with N training points (D features each)
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Can be memory intensive for large training datasets
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Different from parametric, model-based learning models

Expensive at test time: O(ND) computations for each test point

Have to search through all training data to find nearest neighbors
Distance computations with N training points (D features each)

Sensitive to noisy features
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K -Nearest Neighbor: Properties

What’s nice

Simple and intuitive; easily implementable

Asymptotically consistent (a theoretical property)

With infinite training data and large enough K , K -NN approaches the best
possible classifier (Bayes optimal)

What’s not so nice..

Store all the training data in memory even at test time

Can be memory intensive for large training datasets
An example of non-parametric, or memory/instance-based methods
Different from parametric, model-based learning models

Expensive at test time: O(ND) computations for each test point

Have to search through all training data to find nearest neighbors
Distance computations with N training points (D features each)

Sensitive to noisy features

May perform badly in high dimensions (curse of dimensionality)

In high dimensions, distance notions can be counter-intuitive!
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Not Covered (Further Readings)

Computational speed-ups (don’t want to spend O(ND) time)

Improved data structures for fast nearest neighbor search

Even if approximately nearest neighbors, yet may be good enough

Efficient Storage (don’t want to store all the training data)

E.g., subsampling the training data to retain “prototypes”

Leads to computational speed-ups too!

Metric Learning: Learning the “right” distance metric for a given dataset
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