• A Markov chain is a special sort of belief network:

$$\underbrace{s_0}, \underbrace{s_1}, \underbrace{s_2}, \underbrace{s_3}, \underbrace{s_4}$$

- Thus, $P(S_{t+1}|S_0,...,S_t) = P(S_{t+1}|S_t)$.
- Often S_t represents the state at time t. Intuitively S_t conveys all of the information about the history that can affect the future states.
- "The past is independent of the future given the present."

- A stationary Markov chain is when for all t > 0, t' > 0, $P(S_{t+1}|S_t) = P(S_{t'+1}|S_{t'})$.
- We specify $P(S_0)$ and $P(S_{t+1}|S_t)$.
 - Simple model, easy to specify
 - Often the natural model
 - The network can extend indefinitely

Hidden Markov Model

• A Hidden Markov Model (HMM) is a belief network:

- *P*(*S*₀) specifies initial conditions
- $P(S_{t+1}|S_t)$ specifies the dynamics
- $P(O_t|S_t)$ specifies the sensor model

- Suppose a robot wants to determine its location based on its actions and its sensor readings: Localization
- This can be represented by the augmented HMM:

Example localization domain

• Circular corridor, with 16 locations:

- Doors at positions: 2, 4, 7, 11.
- Noisy Sensors
- Stochastic Dynamics
- Robot starts at an unknown location and must determine where it is.

- P(Observe Door | At Door) = 0.8
- P(Observe Door | Not At Door) = 0.1

Example Dynamics Model

- $P(loc_{t+1} = L | action_t = goRight \land loc_t = L) = 0.1$
- $P(loc_{t+1} = L + 1 | action_t = goRight \land loc_t = L) = 0.8$
- $P(loc_{t+1} = L + 2|action_t = goRight \land loc_t = L) = 0.074$
- P(loc_{t+1} = L'|action_t = goRight ∧ loc_t = L) = 0.002 for any other location L'.
 - All location arithmetic is modulo 16.
 - The action goLeft works the same but to the left.

Combining sensor information

• Example: we can combine information from a light sensor and the door sensor Sensor Fusion

 S_t robot location at time t D_t door sensor value at time t L_t light sensor value at time t

< 🗆)