
Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior)
probability, we could estimate its (posterior) probability.
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Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional)
real domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .
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Cumulative Distribution
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Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before you sample X .

Given values for the parents of X , sample from the
probability of X given its parents.
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Rejection Sampling

To estimate a posterior probability given evidence
Y1= v1 ∧ . . . ∧ Yj = vj :

Reject any sample that assigns Yi to a value other than
vi .

The non-rejected samples are distributed according to the
posterior probability:

P(α) ≈
∑

sample|=α 1∑
sample 1

where we consider only samples consistent with
observations.
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Rejection Sampling Example: P(ta|sm, re)

Ta Fi

SmAl

Le

Re

Ta Fi Al Sm Le Re
s1 true false true false — — 8

s2 false true false true false false 8

s3 false true true true true true 4

s4 true true true true true true 4

. . .
s1000 false false false false — — 8

P(sm) = 0.02
P(re|sm) = 0.32
How many samples are rejected?
How many samples are used?
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Importance Sampling

Samples have weights: a real number associated with
each sample that takes the evidence into account.

Probability of a proposition is weighted average of
samples:

P(α|observations) ≈
∑

sample|=α weight(sample)∑
sample weight(sample)

If we can compute P(evidence|sample) we can weight the
(partial) sample by this value.

Mix exact inference with sampling: don’t sample all of
the variables, but weight each sample appropriately.

Sample according to a proposal distribution, as long as
the samples are weighted appropriately.
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Importance Sampling Example: P(ta|sm, re)

Ta Fi

SmAl

Le

Re

Ta Fi Al Le Weight
s1 true false true false 0.01× 0.01
s2 false true false false 0.9× 0.01
s3 false true true true 0.9× 0.75
s4 true true true true 0.9× 0.75
. . .
s1000 false false true true 0.01× 0.75

P(sm|fi) = 0.9
P(sm|¬fi) = 0.01
P(re|le) = 0.75
P(re|¬le) = 0.01
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Particle Filtering

Suppose the evidence is e1 ∧ e2
P(e1 ∧ e2|sample) = P(e1|sample)P(e2|e1 ∧ sample)

After computing P(e1|sample), we may know the sample
will have an extremely small probability.

Idea: we use lots of samples: “particles”. A particle is a
sample on some of the variables.

Based on P(e1|sample), we resample the set of particles.
We select from the particles according to their weight.

Some particles may be duplicated, some may be removed.
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