Stochastic Simulation

- Idea: probabilities \leftrightarrow samples
- Get probabilities from samples:

X	count			
x_{1}	n_{1}			
\vdots	\vdots			
x_{k}	n_{k}			
total	m	\leftrightarrow	X	probability
:---:	:---:			
x_{1}	n_{1} / m			
\vdots	\vdots			
x_{k}	n_{k} / m			

- If we could sample from a variable's (posterior) probability, we could estimate its (posterior) probability.

Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional) real domain:

- Totally order the values of the domain of X.
- Generate the cumulative probability distribution: $f(x)=P(X \leq x)$.
- Select a value y uniformly in the range $[0,1]$.
- Select the x such that $f(x)=y$.

Cumulative Distribution

1

Forward sampling in a belief network

- Sample the variables one at a time; sample parents of X before you sample X.
- Given values for the parents of X, sample from the probability of X given its parents.

Rejection Sampling

- To estimate a posterior probability given evidence $Y_{1}=v_{1} \wedge \ldots \wedge Y_{j}=v_{j}:$
- Reject any sample that assigns Y_{i} to a value other than v_{i}.
- The non-rejected samples are distributed according to the posterior probability:

$$
P(\alpha) \approx \frac{\sum_{\text {sample } \models \alpha} 1}{\sum_{\text {sample }} 1}
$$

where we consider only samples consistent with observations.

Rejection Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Sm	Le	Re	
s_{1}	true	false	true	false	-	-	\boldsymbol{X}

s_{2}
S_{3}
s_{4} true true true true true true
s_{1000} false false false false
$P(s m)=0.02$
$P(r e \mid s m)=0.32$
How many samples are rejected?
How many samples are used?

Importance Sampling

- Samples have weights: a real number associated with each sample that takes the evidence into account.
- Probability of a proposition is weighted average of samples:

$$
P(\alpha \mid \text { observations }) \approx \frac{\sum_{\text {sample } \models \alpha} \text { weight }(\text { sample })}{\sum_{\text {sample }} \text { weight }(\text { sample })}
$$

- If we can compute P (evidence|sample) we can weight the (partial) sample by this value.
- Mix exact inference with sampling: don't sample all of the variables, but weight each sample appropriately.
- Sample according to a proposal distribution, as long as the samples are weighted appropriately.

Importance Sampling Example: $P(t a \mid s m, r e)$

	Ta	Fi	Al	Le	Weight
s_{1}	true	false	true	false	0.01×0.01

$s_{2} \quad$ false true false false 0.9×0.01
s_{3} false true true true 0.9×0.75
s_{4} true true true true 0.9×0.75
s_{1000} false false true true 0.01×0.75
$P(s m \mid f i)=0.9$
$P(s m \mid \neg f i)=0.01$
$P(r e \mid l e)=0.75$
$P(r e \mid \neg l e)=0.01$

Particle Filtering

- Suppose the evidence is $e_{1} \wedge e_{2}$ $P\left(e_{1} \wedge e_{2} \mid\right.$ sample $)=P\left(e_{1} \mid\right.$ sample $) P\left(e_{2} \mid e_{1} \wedge\right.$ sample $)$
- After computing $P\left(e_{1} \mid\right.$ sample $)$, we may know the sample will have an extremely small probability.
- Idea: we use lots of samples: "particles". A particle is a sample on some of the variables.
- Based on $P\left(e_{1} \mid\right.$ sample $)$, we resample the set of particles. We select from the particles according to their weight.
- Some particles may be duplicated, some may be removed.

