Three main approaches to determine posterior distributions in belief networks:

- Exploiting the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Search-based approaches that enumerate some of the possible worlds, and estimate posterior probabilities from the worlds generated.
- Stochastic simulation where random cases are generated according to the probability distributions.

A factor is a representation of a function from a tuple of random variables into a number.

We will write factor f on variables X_1, \ldots, X_j as $f(X_1, \ldots, X_j)$. We can assign some or all of the variables of a factor:

- $f(X_1 = v_1, X_2, \dots, X_j)$, where $v_1 \in dom(X_1)$, is a factor on X_2, \dots, X_j .
- $f(X_1 = v_1, X_2 = v_2, ..., X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

The former is also written as $f(X_1, X_2, \ldots, X_j)_{X_1 = v_1}$, etc.

Example factors

$$r(X, Y, Z) := \begin{bmatrix} X & Y & Z & \text{val} \\ t & t & t & 0.1 \\ t & t & f & 0.9 \\ t & f & t & 0.2 \\ f & t & t & 0.4 \\ f & t & f & 0.6 \\ f & f & t & 0.3 \\ f & f & f & 0.7 \end{bmatrix} \quad r(X=t, Y, Z) := \begin{bmatrix} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.2 \\ f & f & 0.8 \end{bmatrix}$$

$$r(X=t, Y, Z=f) := \begin{bmatrix} Y & \text{val} \\ t & 0.2 \\ f & f & 0.8 \end{bmatrix}$$

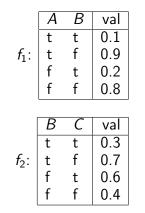
$$r(X=t, Y=f, Z=f) = 0.8$$

< 🗆)

The product of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

 $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$

< □ →



	Α	В	С	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
\times f ₂ :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

 f_1

We can sum out a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2,...,X_j)$$

= $f(X_1 = v_1,...,X_j) + \cdots + f(X_1 = v_k,...,X_j)$

Summing out a variable example

	A	В	С	val
<i>f</i> ₃ :	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

$$\sum_{B} f_{3}: \begin{bmatrix} A & C & \text{val} \\ t & t & 0.57 \\ t & f & 0.43 \\ f & t & 0.54 \\ f & f & 0.46 \end{bmatrix}$$

< □ →

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \land \ldots \land Y_j = v_j$:

$$P(Z|Y_1 = v_1, ..., Y_j = v_j) = \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{P(Y_1 = v_1, ..., Y_j = v_j)} = \frac{P(Z, Y_1 = v_1, ..., Y_j = v_j)}{\sum_Z P(Z, Y_1 = v_1, ..., Y_j = v_j)}$$

So the computation reduces to the probability of $P(Z, Y_1 = v_1, ..., Y_j = v_j)$. We normalize at the end. Suppose the variables of the belief network are X_1, \ldots, X_n . To compute $P(Z, Y_1 = v_1, \ldots, Y_j = v_j)$, we sum out the other variables, $Z_1, \ldots, Z_k = \{X_1, \ldots, X_n\} - \{Z\} - \{Y_1, \ldots, Y_j\}$. We order the Z_i into an elimination ordering.

$$P(Z, Y_{1} = v_{1}, ..., Y_{j} = v_{j})$$

$$= \sum_{Z_{k}} \cdots \sum_{Z_{1}} P(X_{1}, ..., X_{n})_{Y_{1} = v_{1}, ..., Y_{j} = v_{j}}.$$

$$= \sum_{Z_{k}} \cdots \sum_{Z_{1}} \prod_{i=1}^{n} P(X_{i} | parents(X_{i}))_{Y_{1} = v_{1}, ..., Y_{j} = v_{j}}.$$

< 🗆)

• How can we compute ab + ac efficiently?

- How can we compute ab + ac efficiently?
- Distribute out the *a* giving a(b + c)

- How can we compute ab + ac efficiently?
- Distribute out the *a* giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?

- How can we compute ab + ac efficiently?
- Distribute out the *a* giving a(b+c)
- How can we compute $\sum_{Z_1} \prod_{i=1}^n P(X_i | parents(X_i))$ efficiently?
- Distribute out those factors that don't involve Z_1 .

To compute $P(Z|Y_1 = v_1 \land \ldots \land Y_j = v_j)$:

- Construct a factor for each conditional probability.
- Set the observed variables to their observed values.
- Sum out each of the other variables (the {*Z*₁,...,*Z_k*}) according to some elimination ordering.
- Multiply the remaining factors. Normalize by dividing the resulting factor f(Z) by $\sum_{Z} f(Z)$.

To sum out a variable Z_j from a product f_1, \ldots, f_k of factors:

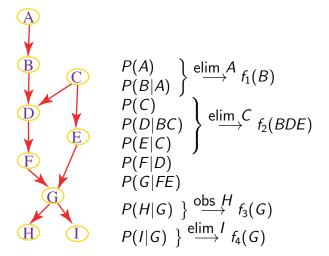
- Partition the factors into
 - those that don't contain Z_j , say f_1, \ldots, f_i ,
 - those that contain Z_j , say f_{i+1}, \ldots, f_k

We know:

$$\sum_{Z_j} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \times \left(\sum_{Z_j} f_{i+1} \times \cdots \times f_k \right).$$

 Explicitly construct a representation of the rightmost factor. Replace the factors f_{i+1},..., f_k by the new factor.

Variable elimination example



< □ →