
Belief network inference

Three main approaches to determine posterior distributions in
belief networks:

Exploiting the structure of the network to eliminate (sum
out) the non-observed, non-query variables one at a time.

Search-based approaches that enumerate some of the
possible worlds, and estimate posterior probabilities from
the worlds generated.

Stochastic simulation where random cases are generated
according to the probability distributions.
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.
We will write factor f on variables X1, . . . ,Xj as f (X1, . . . ,Xj).
We can assign some or all of the variables of a factor:

f (X1 = v1,X2, . . . ,Xj), where v1 ∈ dom(X1), is a factor
on X2, . . . ,Xj .

f (X1 = v1,X2 = v2, . . . ,Xj = vj) is a number that is the
value of f when each Xi has value vi .

The former is also written as f (X1,X2, . . . ,Xj)X1 = v1 , etc.
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Example factors

r(X ,Y ,Z ):

X Y Z val
t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X=t,Y ,Z ):

Y Z val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X=t,Y ,Z=f ):
Y val
t 0.9
f 0.8

r(X=t,Y=f ,Z=f ) = 0.8
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Multiplying factors

The product of factor f1(X ,Y ) and f2(Y ,Z ), where Y are

the variables in common, is the factor (f1 × f2)(X ,Y ,Z )
defined by:

(f1 × f2)(X ,Y ,Z ) = f1(X ,Y )f2(Y ,Z ).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk},
from factor f (X1, . . . ,Xj), resulting in a factor on X2, . . . ,Xj

defined by:

(
∑
X1

f )(X2, . . . ,Xj)

= f (X1 = v1, . . . ,Xj) + · · ·+ f (X1 = vk , . . . ,Xj)
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Summing out a variable example

f3:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val
t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)

P(Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj).

So the computation reduces to the probability of
P(Z ,Y1 = v1, . . . ,Yj = vj).
We normalize at the end.
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Probability of a conjunction

Suppose the variables of the belief network are X1, . . . ,Xn.
To compute P(Z ,Y1 = v1, . . . ,Yj = vj), we sum out the other
variables, Z1, . . . ,Zk = {X1, . . . ,Xn} − {Z} − {Y1, . . . ,Yj}.
We order the Zi into an elimination ordering.

P(Z ,Y1 = v1, . . . ,Yj = vj)

=
∑
Zk

· · ·
∑
Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi |parents(Xi))Y1 = v1,...,Yj = vj .
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

How can we compute ab + ac efficiently?

Distribute out the a giving a(b + c)

How can we compute
∑

Z1

∏n
i=1 P(Xi |parents(Xi))

efficiently?

Distribute out those factors that don’t involve Z1.
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Variable elimination algorithm

To compute P(Z |Y1 = v1 ∧ . . . ∧ Yj = vj):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

Sum out each of the other variables (the {Z1, . . . ,Zk})
according to some elimination ordering.

Multiply the remaining factors. Normalize by dividing the
resulting factor f (Z ) by

∑
Z f (Z ).
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Summing out a variable

To sum out a variable Zj from a product f1, . . . , fk of factors:

Partition the factors into
I those that don’t contain Zj , say f1, . . . , fi ,
I those that contain Zj , say fi+1, . . . , fk

We know:

∑
Zj

f1× · · ·×fk = f1× · · ·×fi×

∑
Zj

fi+1× · · ·×fk

 .

Explicitly construct a representation of the rightmost
factor. Replace the factors fi+1, . . . , fk by the new factor.
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Variable elimination example

A

B
C

D

E

F

G

H I

P(A)
P(B |A)

}
elim A−→ f1(B)

P(C )
P(D|BC )
P(E |C )

 elim C−→ f2(BDE )

P(F |D)
P(G |FE )

P(H |G )
} obs H−→ f3(G )

P(I |G )
} elim I−→ f4(G )
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