Understanding independence: example

Understanding independence: questions

- On which given probabilities does $P(N)$ depend?
- If you were to observe a value for B, which variables' probabilities will change?
- If you were to observe a value for N, which variables' probabilities will change?
- Suppose you had observed a value for M; if you were to then observe a value for N, which variables' probabilities will change?
- Suppose you had observed B and Q; which variables' probabilities will change when you observe N ?

What variables are affected by observing?

- If you observe variable \bar{Y}, the variables whose posterior probability is different from their prior are:
- The ancestors of \bar{Y} and
- their descendants.
- Intuitively (if you have a causal belief network):
- You do abduction to possible causes and
- prediction from the causes.

Common descendants

- tampering and fire are independent
- tampering and fire are dependent given alarm
- Intuitively, tampering can explain away fire

Common ancestors

- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

Chain

- alarm and report are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the alarm affects report is by affecting leaving.

Pruning Irrelevant Variables

Suppose you want to compute $P\left(X \mid e_{1} \ldots e_{k}\right)$:

- Prune any variables that have no observed or queried descendents.
- Connect the parents of any observed variable.
- Remove arc directions.
- Remove observed variables.
- Remove any variables not connected to X in the resulting (undirected) graph.

