
GML AdaBoost Matlab Toolbox Manual 
This manual describes the usage of GML AdaBoost matlab toolbox, and is organized as follows: 
in the first section will introduce you to the basic concept of the toolbox, then we give an 
example script that uses the toolbox, section 3 speaks about all available functions and classes 
and section 4 is Q and A. 
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Introduction 
GML AdaBoost Matlab Toolbox is set of matlab functions and classes implementing a family of 
classification algorithms, known as Boosting.  



Implemented algorithms 
So far we have implemented 3 different boosting schemes: Real AdaBoost, Gentle AdaBoost and 
Modest AdaBoost.  
 
Real AdaBoost (see [2] for full description) is the generalization of a basic AdaBoost 
algorithm first introduced by Fruend and Schapire [1]. Real AdaBoost should be treated as a 
basic “hardcore” boosting algorithm.  
 
Gentle AdaBoost is a more robust and stable version of real AdaBoost (see [3] for full 
description). So far, it has been the most practically efficient boosting algorithm, used, for 
example, in Viola-Jones object detector [4]. Our experiments show, that Gentle AdaBoost 
performs slightly better then Real AdaBoost on regular data, but is considerably better on noisy 
data, and much more resistant to outliers. 
 
Modest AdaBoost (see [5] for a full description) – regularized tradeoff of AdaBoost, mostly 
aimed for better generalization capability and resistance to overfitting. Our experiments show, 
that in terms of test error and overfitting this algorithm outperforms both Real and Gentle 
AdaBoost. 

Available weak learners 
Now a tree learner is available (there was only stumps in version 0.1). You can define the 
number of maximum splits that would be done during the training. You can still use a stump 
learner – it’s just a tree with only one split. 

CART 
CART is an acronym for Classification and Regression Trees. Here, we will describe an 
algorithm for using and building a CART decision tree for classification task.  
 
Decision tree is a tree graph, with leaves representing the classification result and nodes 
representing some predicate. Branches of the tree are marked true or false. Classification process 
in case of decision tree is a process of tree traverse. We start from root and descend further, until 
we reach the leaf – the value associated with the leaf is the class of the presented sample. At each 
step we compute the value of the predicate associated with current node. We choose next node 
(or leaf) that is connected with current by the branch with the value of current nodes predicate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. CART example. 
 
Let ( ) ( )mm yxyxS ,,...,, 11=  be a sequence of training examples, where each jx  belongs to the 

domain or instance space nRX ∈  (real valued vector with dimensionality n ( )j
n

jj xxx ,...,1= ), 
and each label jy  belongs to a finite label spaceY . We will consider binary classification task, 
where { }1,1 +−=Y . 
In toolbox we use the following algorithm for construction a node of CART: 

1. For each and all n dimensions find the threshold, that separates S with least error; 
2. Choose dimension i with least error, and construct the node: 

a. With predicate Θ>ix ; 
b. Branches true/false, that are connected with leafs, that have respective 

classification. 
 
Let “error of leaf” be the probability of a sample being misclassified if during the tree traverse 
we stop at this leaf. To construct the whole tree the following algorithm is used:  

1. Construct root node; 
2. Choose leave with largest error; 
3. Construct node, using only those training samples, that are associated with chosen leaf; 
4. Replace chosen leaf with constructed node; 
5. Repeat 2-4 until all leafs have zero error, or predefined number of steps done. 

 
To make CART able to learn on weighted training data we only have to evaluate all errors 
according to weights. 

Additional functionalities 
Alongside with 3 Boosting algorithms we also provide a class that should give you an easy way 
to make a cross-validation test. 
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Authors  
This toolbox was implemented by Alexander Vezhnevets – an undergraduate student of Moscow 
State University. If you have any questions or suggestions, please mail me: 
vezhnick@gmail.com 

Library structure and usage 
Library provides a set of functions that implement classifier boosting procedures. Weak learners 
(classifiers) are implemented as class, while boosting procedures are implemented as global 
functions.  
 
We provide CART (classification trees) as weak learners. Class “tree_node_w” implements 
CART. Number of maximum splits (tree depth) is passed as constructor parameter. User should 
create class object with desired number of splits and pass it to the boosting function.  
Boosting procedure (GentleAdaBoost, ModestAdaBoost, RealAdaBoost) constructs boosted 
classifier committee using training set represented by matrix of training samples and their 
respective labels (see function descriptions for more details). 
 
Cell array of weak classifiers and a vector of their weights represent boosted committee. 
Actually, each node of CART trees constructed during the training process is represented as an 
individual weak classifier. Thus a tree with 4 nodes would be represented as a cell array of 4 
nodes and 4 respective numbers in vector of weights. 
 
Constructed committee can be saved to text file. This file can be used for analyzes of constructed 
committee C++ code provided that can load saved committee from file and perform 
classification with it. See TranslateToC function. 

Functions and Classes 

function [Learners, Weights, {final_hyp}] = RealAdaBoost(WeakLrn, Data, 
Labels, Max_Iter, {OldW, OldLrn, final_hyp}) 
Boosts a weak learner WeakLrn using Real AdaBoost algorithm with Max_Iter iterations on 
dataset given in Data and Labels. 
 
Arguments: 

• WeakLrn   - weak learner 
• Data          - training data. Should be DxN matrix, where D is the dimensionality of data, 

and N is the number of training samples; 
• Labels      - training labels. Should be 1xN matrix, where N is the number of training 

samples, any label is either +1 or –1; 
• Max_Iter  - number of iterations; 
• OldW       - weights of already built committee (used for further training of already built 

commitee). Optional parameter; 
• OldLrn    - learners of already built committee (used for further training of already built 

committee). Optional parameter; 
• final_hyp - output for training data of already built committee (used to speed up further 

training of already built committee). Optional parameter. 
    Return: 

• Learners  - cell array of constructed learners. Each learner is a node of CART tree 
represented by object of tree_node_w class; 

• Weights   - weights of learners. This vector has the same size as Learners and represents 
weight of each learner in final committee; 



• final_hyp - output for training data. 
 

function [Learners, Weights, {final_hyp}] = GentleAdaBoost(WeakLrn, Data, 
Labels, Max_Iter, {OldW, OldLrn}) 
Boosts a weak learner WeakLrn using Gentle AdaBoost algorithm with Max_Iter iterations on 
dataset given in Data and Labels. The parameters semantic is the same as in RealAdaBoost 
function. 

function [Learners, Weights, {final_hyp}] = ModestAdaBoost(WeakLrn, 
Data, Labels, Max_Iter, {OldW, OldLrn}) 
Boosts a weak learner WeakLrn using Modest AdaBoost algorithm with Max_Iter iterations on 
dataset given in Data and Labels. The parameters semantics are the same as in RealAdaBoost 
function. 

function Result = Classify(Learners, Weights, Data) 
Classifies Data using boosted assembly of Learners with respective Weights. Result will contain 
real numbers; the signum of those numbers represents the class, and its absolute magnitude is the 
“confidence” of the decision. To obtain classification one should take signum of Result. To 
regulate the rate of false positive / false negative Result could be compared with some threshold. 
Increasing threshold would reduce false positive rate, but will also increase false negative. 
Example: 
Confidence = Classify(Learners, Weights, X); % obtaining real valued results 
Tetta = 0.2;                                                        % TP/FP regulating threshold 
Y = sign(Confidence - Tetta);                           % obtaining classification 

function code = TranslateToC (Learners, Weights, fid) 
Use this function to save constructed classifiers for further use in C++ applications. C++ codes 
that loads saved committee is provided (see C++ directory for code and example usage). File has 
the following format: 
<TN> 
<W> <N > <D> <T> <Ts> {<D> <T> <Ts> } 
<W> <N > <D> <T> <Ts> {<D> <T> <Ts> } 
… 
<end> 
Where: 
TN – total number of weak classifiers; 
W – weight of weak classifier; 
N – number of thresholds representing weak classifier (in CART each node can be represented as 
the set of thresholds); 
D – thresholds dimension; 
T – threshold value; 
Ts – threshold sing. It’s either –1 or +1, resembling if the sample should be greater or lesser than 
threshold to be classified positive. 
 
Arguments: 

• Learners  - learners of committee to be saved; 
• Weights   - weights of committee to be saved; 
• fid       - opened file id (use fopen to make one). 

Return: 
• code      - equals 1 if everything was alright. 



 

@tree_node_w : 
A class that implements a classification tree weak learner. This is the most popular weak learner 
for the boosting algorithms. It splits data by a set of hyper planes orthogonal to coordinate axis. 
We use a greedy splitting rule – at each step we perform a split, which best lowers the total tree 
error. 
 
Class methods:  
 
function tree_node = tree_node_w(max_splits) – constructor. Call to make the object, 
max_splits specifies the maximum amount of tree splits during training. 
  
function nodes = train(node, dataset, labels, weights) – trains a tree to fit dataset in to labels, 
with respect to weights. nodes – is a cell array that contains terminal tree nodes. 
Arguments: 

• node      - object of tree_node_w class (initialized properly); 
• dataset   - training data; 
• labels    - training labels; 
• weights   - weights of training data. Needed for boosting procedure; 

Return: 
• nodes     - tree is represented as a cell array of its nodes. 

 
function y = calc_output(tree_node, XData) – classifies XData with tree_node and stores 
result in y. 
Arguments: 

• tree_node - classification tree node; 
• XData      - data that will be classified. 

Return: 
• y    - +1, if XData belongs to tree node, -1 otherwise (y is a vector) 

 

@crossvalidation : 
A class that helps to perform a crossvalidation. It works like a storage class, you should pass the 
data alongside with labels and the class automatically splits it into the specified number of 
subsets. You can then access any fold you want.  
 
Class methods:  
 
function this = crossvalidation(folds) – constructor. Use to create an object with specified 
number of folds. 
 
function this = Initialize(this, Data, Labels) – initializes the object. Data and Labels will be 
split in to the specified in constructor number of folds and stored within the class. Data should 
be a NK ×  matrix, where K is the instance space dimensionality and N is the number of training 
samples; Labels must be N×1  matrix. 
 
function [Data, Labels] = GetFold(this, N) – returns Data and Labels of fold N stored in this. 
 
function [Data, Labels] = CatFold(this, Data, Labels, N) – concatenates the fold N to Data 
and Labels. 



Example scripts 

Example_1 script 
% Step1: reading Data from the file 
file_data = load('Ionosphere.txt'); 
Data = file_data(:,1:end-1)'; 
Labels = file_data(:, end)'; 
Labels = Labels*2 - 1; 
  
MaxIter = 200; % boosting iterations 
  
% Step2: splitting data to training and control set 
TrainData   = Data(:,1:2:end); 
TrainLabels = Labels(1:2:end); 
  
ControlData   = Data(:,2:2:end); 
ControlLabels = Labels(2:2:end); 
  
% Step3: constructing weak learner 
weak_learner = tree_node_w(3); % pass the number of tree splits to the 
constructor 
  
% Step4: training with Gentle AdaBoost 
[RLearners RWeights] = GentleAdaBoost(weak_learner, TrainData, TrainLabels, 
MaxIter); 
  
% Step5: training with Modest AdaBoost 
[MLearners MWeights] = ModestAdaBoost(weak_learner, TrainData, TrainLabels, 
MaxIter); 
  
% Step6: evaluating on control set 
ResultR = sign(Classify(RLearners, RWeights, ControlData)); 
  
ResultM = sign(Classify(MLearners, MWeights, ControlData)); 
  
% Step7: calculating error 
ErrorR  = sum(ControlLabels ~= ResultR) 
  
ErrorM  = sum(ControlLabels ~= ResultM) 
 
 

Comments on the script 
Step 1 – data is loaded from txt file. Each line of which is a data sample (feature vector). Last 
element of line is the class marker (it is 0/1 in example, so that is why “Labels = Labels*2 - 1;” line 
is required); 
Step 2 – we split data in two subsets; half goes to control set, half to training set; 
Step 3 – here we construct a tree weak learner, which would be used for boosting. We pass the 
max number of splits (1 = stump); 
Step 4 and 5 – we boost weak learners with two different algorithms, using training set; 
Step 6 – calculating classifiers output on control set; 
Step 7 – calculating error. 

Example_2 script 
% Step1: reading Data from the file 
file_data = load('Ionosphere.txt'); 
Data = file_data(:,1:end-1)'; 



Labels = file_data(:, end)'; 
Labels = Labels*2 - 1; 
  
MaxIter = 100; % boosting iterations 
  
% Step2: splitting data to training and control set 
TrainData   = Data(:,1:2:end); 
TrainLabels = Labels(1:2:end); 
  
ControlData   = Data(:,2:2:end); 
ControlLabels = Labels(2:2:end); 
  
% and initializing matrices for storing step error 
RAB_control_error = zeros(1, MaxIter); 
MAB_control_error = zeros(1, MaxIter); 
GAB_control_error = zeros(1, MaxIter); 
  
% Step3: constructing weak learner 
weak_learner = tree_node_w(3); % pass the number of tree splits to the 
constructor 
  
% and initializing learners and weights matices 
GLearners = []; 
GWeights = []; 
RLearners = []; 
RWeights = []; 
NuLearners = []; 
NuWeights = []; 
  
% Step4: iterativly running the training 
  
for lrn_num = 1 : MaxIter 
  
    clc; 
    disp(strcat('Boosting step: ', num2str(lrn_num),'/', num2str(MaxIter))); 
  
    %training gentle adaboost 
    [GLearners GWeights] = GentleAdaBoost(weak_learner, TrainData, 
TrainLabels, 1, GWeights, GLearners); 
  
    %evaluating control error 
    GControl = sign(Classify(GLearners, GWeights, ControlData)); 
  
    GAB_control_error(lrn_num) = GAB_control_error(lrn_num) + sum(GControl ~= 
ControlLabels) / length(ControlLabels); 
  
    %training real adaboost 
    [RLearners RWeights] = RealAdaBoost(weak_learner, TrainData, TrainLabels, 
1, RWeights, RLearners); 
  
    %evaluating control error 
    RControl = sign(Classify(RLearners, RWeights, ControlData)); 
  
    RAB_control_error(lrn_num) = RAB_control_error(lrn_num) + sum(RControl ~= 
ControlLabels) / length(ControlLabels); 
  
    %training modest adaboost 
    [NuLearners NuWeights] = ModestAdaBoost(weak_learner, TrainData, 
TrainLabels, 1, NuWeights, NuLearners); 
  



    %evaluating control error 
    NuControl = sign(Classify(NuLearners, NuWeights, ControlData)); 
  
    MAB_control_error(lrn_num) = MAB_control_error(lrn_num) + sum(NuControl 
~= ControlLabels) / length(ControlLabels); 
  
end 
  
% Step4: displaying graphs 
figure, plot(GAB_control_error); 
hold on; 
plot(MAB_control_error, 'r'); 
  
plot(RAB_control_error, 'g'); 
hold off; 
  
legend('Gentle AdaBoost', 'Modest AdaBoost', 'Real AdaBoost'); 
xlabel('Iterations'); 
ylabel('Test Error'); 
 

Comments on the script 
This script implements iterative training of boosted committee. At step 4 we start a cycle in 
which training is done. For each iteration control error is stored and afterwards control error 
graphs are displayed. Note, that while training we pass committees constructed on previous steps 
to boosting function – this is done to speed up the process. 

Example_3 script 
file_data = load('Ionosphere.txt'); 
  
%transforming data to toolbox formats 
FullData = file_data(:,1:end-1)'; 
FullLabels = file_data(:, end)'; 
FullLabels = FullLabels*2 - 1; 
  
  
MaxIter = 100; % boosting iterations 
CrossValidationFold = 5; % number of cross-validation folds 
  
weak_learner = tree_node_w(2); % constructing weak learner 
  
% initializing matrices for storing step error 
RAB_control_error = zeros(1, MaxIter); 
MAB_control_error = zeros(1, MaxIter); 
GAB_control_error = zeros(1, MaxIter); 
  
% constructing object for cross-validation 
CrossValid = crossvalidation(CrossValidationFold);  
  
% initializing it with data 
CrossValid = Initialize(CrossValid, FullData, FullLabels); 
  
NuWeights = []; 
  
% for all folds 
for n = 1 : CrossValidationFold     
    TrainData = []; 
    TrainLabels = []; 
    ControlData = []; 



    ControlLabels = []; 
     
    % getting current fold 
    [ControlData ControlLabels] = GetFold(CrossValid, n); 
     
    % concatinating other folds into the training set 
    for k = 1:CrossValidationFold 
        if(k ~= n) 
            [TrainData TrainLabels] = CatFold(CrossValid, TrainData, 
TrainLabels, k);  
        end 
    end 
   
    GLearners = []; 
    GWeights = []; 
    RLearners = []; 
    RWeights = []; 
    NuLearners = []; 
    NuWeights = []; 
     
    %training and storing the error for each step 
    for lrn_num = 1 : MaxIter 
  
        clc; 
        disp(strcat('Cross-validation step: ',num2str(n), '/', 
num2str(CrossValidationFold), '. Boosting step: ', num2str(lrn_num),'/', 
num2str(MaxIter))); 
  
        %training gentle adaboost 
        [GLearners GWeights] = GentleAdaBoost(weak_learner, TrainData, 
TrainLabels, 1, GWeights, GLearners); 
        
        %evaluating control error 
        GControl = sign(Classify(GLearners, GWeights, ControlData)); 
         
        GAB_control_error(lrn_num) = GAB_control_error(lrn_num) + 
sum(GControl ~= ControlLabels) / length(ControlLabels);  
         
        %training real adaboost 
        [RLearners RWeights] = RealAdaBoost(weak_learner, TrainData, 
TrainLabels, 1, RWeights, RLearners); 
        
        %evaluating control error 
        RControl = sign(Classify(RLearners, RWeights, ControlData)); 
         
        RAB_control_error(lrn_num) = RAB_control_error(lrn_num) + 
sum(RControl ~= ControlLabels) / length(ControlLabels);  
  
        %training modest adaboost 
        [NuLearners NuWeights] = ModestAdaBoost(weak_learner, TrainData, 
TrainLabels, 1, NuWeights, NuLearners); 
        
        %evaluating control error 
        NuControl = sign(Classify(NuLearners, NuWeights, ControlData)); 
                 
        MAB_control_error(lrn_num) = MAB_control_error(lrn_num) + 
sum(NuControl ~= ControlLabels) / length(ControlLabels); 
        
    end     
end 
  



%saving results 
%save(strcat(name,'_result'),'RAB_control_error', 'MAB_control_error', 
'CrossValidationFold', 'MaxIter', 'name', 'CrossValid'); 
  
% displaying graphs 
figure, plot(GAB_control_error / CrossValidationFold ); 
hold on; 
plot(MAB_control_error / CrossValidationFold , 'r'); 
  
plot(RAB_control_error / CrossValidationFold, 'g'); 
hold off; 
  
legend('Gentle AdaBoost', 'Modest AdaBoost', 'Real AdaBoost'); 
title(strcat(num2str(CrossValidationFold), ' fold cross-validation')); 
xlabel('Iterations'); 
ylabel('Test Error'); 

Comments on the script 
This script implements iterative training of boosted committee with cross-validation . The only 
difference from Example_2 is the use of @crossvalidation class. 

TrainAndSave script 
file_data = load('Ionosphere.txt'); 
Data = file_data(:,1:end-1)'; 
Labels = file_data(:, end)'; 
Labels = Labels*2 - 1; 
  
% Data = Data'; 
% Labels = Labels'; 
  
weak_learner = tree_node_w(2); 
  
% Step1: training with Gentle AdaBoost 
[RLearners RWeights] = RealAdaBoost(weak_learner, Data, Labels, 200); 
  
% Step2: training with Modest AdaBoost 
[MLearners MWeights] = ModestAdaBoost(weak_learner, Data, Labels, 200); 
  
fid = fopen('RealBoost.txt','w'); 
TranslateToC(RLearners, RWeights, fid); 
fclose(fid); 
  
fid = fopen('ModestBoost.txt','w'); 
TranslateToC(MLearners, MWeights, fid); 
fclose(fid); 

Comments on the script 
This script illustrates TranslateToC function usage. This script is much similar to Example_1. 

Q and A: 

What version of Matlab should I have for the toolbox to work? 
We don’t use any version specific functions, so it should work with most versions of Matlab. It 
will work on Matlab 6 and Matlab 7 for sure. 



Is this toolbox free to use? 
Yes. You can use it in any way you want and you don’t have to pay anyone. Although you must 
mention that you used our toolbox, if you publish any results that were obtained using it. 

I found a bug! 
Please mail me, so I can fix it. avezhnevets@graphics.cs.msu.ru 

How should I represent my data to use it in toolbox? 
It should be a NK ×  matrix, where K is the instance space dimensionality and N is the number 
of training samples; and a vector ( N×1  matrix) with labels (-1, +1). 

How to load my data from txt file to use it in your toolbox? 
You can use any method, that matlab provides. For most of txt files “load('data.txt');” 
should work fine. 

Can I regulate false positive to false negative rate? 
Yes. See description of “Classify” function. 

What is the best way to analyze the resulting committee? 
We advice you to save committee using “TranslateToC” function and analyze the txt file. Its 
format is described in “Library structure and usage” section. 

Can I use constructed committee in C++ application? 
Yes. See TranslateToC function and TrainAndSave example. 
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