
GML AdaBoost Matlab Toolbox Manual
This manual describes the usage of GML AdaBoost matlab toolbox, and is organized as follows:
in the first section will introduce you to the basic concept of the toolbox, then we give an
example script that uses the toolbox, section 3 speaks about all available functions and classes
and section 4 is Q and A.

Introduction ...1

Implemented algorithms ...2
Available weak learners ..2

CART..2
Additional functionalities..3
Authors ...4

Library structure and usage...4
Functions and Classes ...4

function [Learners, Weights, {final_hyp}] = RealAdaBoost(WeakLrn, Data, Labels,
Max_Iter, {OldW, OldLrn, final_hyp})...4
function [Learners, Weights, {final_hyp}] = GentleAdaBoost(WeakLrn, Data, Labels,
Max_Iter, {OldW, OldLrn})...5
function [Learners, Weights, {final_hyp}] = ModestAdaBoost(WeakLrn, Data, Labels,
Max_Iter, {OldW, OldLrn})...5
function Result = Classify(Learners, Weights, Data)...5
function code = TranslateToC (Learners, Weights, fid) ..5
@tree_node_w : ...6
@crossvalidation : ...6

Example scripts..7
Example_1 script ...7

Comments on the script ..7
Example_2 script ...7

Comments on the script ..9
Example_3 script ...9

Comments on the script ..11
TrainAndSave script ...11

Comments on the script ..11
Q and A: ...11

What version of Matlab should I have for the toolbox to work? ..11
Is this toolbox free to use?...12
I found a bug!...12
How should I represent my data to use it in toolbox?..12
How to load my data from txt file to use it in your toolbox?...12
Can I regulate false positive to false negative rate? ...12
What is the best way to analyze the resulting committee? ..12
Can I use constructed committee in C++ application? ..12

Reference ..12

Introduction
GML AdaBoost Matlab Toolbox is set of matlab functions and classes implementing a family of
classification algorithms, known as Boosting.

Implemented algorithms
So far we have implemented 3 different boosting schemes: Real AdaBoost, Gentle AdaBoost and
Modest AdaBoost.

Real AdaBoost (see [2] for full description) is the generalization of a basic AdaBoost
algorithm first introduced by Fruend and Schapire [1]. Real AdaBoost should be treated as a
basic “hardcore” boosting algorithm.

Gentle AdaBoost is a more robust and stable version of real AdaBoost (see [3] for full
description). So far, it has been the most practically efficient boosting algorithm, used, for
example, in Viola-Jones object detector [4]. Our experiments show, that Gentle AdaBoost
performs slightly better then Real AdaBoost on regular data, but is considerably better on noisy
data, and much more resistant to outliers.

Modest AdaBoost (see [5] for a full description) – regularized tradeoff of AdaBoost, mostly
aimed for better generalization capability and resistance to overfitting. Our experiments show,
that in terms of test error and overfitting this algorithm outperforms both Real and Gentle
AdaBoost.

Available weak learners
Now a tree learner is available (there was only stumps in version 0.1). You can define the
number of maximum splits that would be done during the training. You can still use a stump
learner – it’s just a tree with only one split.

CART
CART is an acronym for Classification and Regression Trees. Here, we will describe an
algorithm for using and building a CART decision tree for classification task.

Decision tree is a tree graph, with leaves representing the classification result and nodes
representing some predicate. Branches of the tree are marked true or false. Classification process
in case of decision tree is a process of tree traverse. We start from root and descend further, until
we reach the leaf – the value associated with the leaf is the class of the presented sample. At each
step we compute the value of the predicate associated with current node. We choose next node
(or leaf) that is connected with current by the branch with the value of current nodes predicate.

Figure 1. CART example.

Let () ()mm yxyxS ,,...,, 11= be a sequence of training examples, where each jx belongs to the

domain or instance space nRX ∈ (real valued vector with dimensionality n ()j
n

jj xxx ,...,1=),
and each label jy belongs to a finite label spaceY . We will consider binary classification task,
where { }1,1 +−=Y .
In toolbox we use the following algorithm for construction a node of CART:

1. For each and all n dimensions find the threshold, that separates S with least error;
2. Choose dimension i with least error, and construct the node:

a. With predicate Θ>ix ;
b. Branches true/false, that are connected with leafs, that have respective

classification.

Let “error of leaf” be the probability of a sample being misclassified if during the tree traverse
we stop at this leaf. To construct the whole tree the following algorithm is used:

1. Construct root node;
2. Choose leave with largest error;
3. Construct node, using only those training samples, that are associated with chosen leaf;
4. Replace chosen leaf with constructed node;
5. Repeat 2-4 until all leafs have zero error, or predefined number of steps done.

To make CART able to learn on weighted training data we only have to evaluate all errors
according to weights.

Additional functionalities
Alongside with 3 Boosting algorithms we also provide a class that should give you an easy way
to make a cross-validation test.

31 >x

23 >x

05 >x

3.22 >x

1−=y

1+=y 1−=y 1−=y

False True

True

True
True

False

False

Authors
This toolbox was implemented by Alexander Vezhnevets – an undergraduate student of Moscow
State University. If you have any questions or suggestions, please mail me:
vezhnick@gmail.com

Library structure and usage
Library provides a set of functions that implement classifier boosting procedures. Weak learners
(classifiers) are implemented as class, while boosting procedures are implemented as global
functions.

We provide CART (classification trees) as weak learners. Class “tree_node_w” implements
CART. Number of maximum splits (tree depth) is passed as constructor parameter. User should
create class object with desired number of splits and pass it to the boosting function.
Boosting procedure (GentleAdaBoost, ModestAdaBoost, RealAdaBoost) constructs boosted
classifier committee using training set represented by matrix of training samples and their
respective labels (see function descriptions for more details).

Cell array of weak classifiers and a vector of their weights represent boosted committee.
Actually, each node of CART trees constructed during the training process is represented as an
individual weak classifier. Thus a tree with 4 nodes would be represented as a cell array of 4
nodes and 4 respective numbers in vector of weights.

Constructed committee can be saved to text file. This file can be used for analyzes of constructed
committee C++ code provided that can load saved committee from file and perform
classification with it. See TranslateToC function.

Functions and Classes

function [Learners, Weights, {final_hyp}] = RealAdaBoost(WeakLrn, Data,
Labels, Max_Iter, {OldW, OldLrn, final_hyp})
Boosts a weak learner WeakLrn using Real AdaBoost algorithm with Max_Iter iterations on
dataset given in Data and Labels.

Arguments:

• WeakLrn - weak learner
• Data - training data. Should be DxN matrix, where D is the dimensionality of data,

and N is the number of training samples;
• Labels - training labels. Should be 1xN matrix, where N is the number of training

samples, any label is either +1 or –1;
• Max_Iter - number of iterations;
• OldW - weights of already built committee (used for further training of already built

commitee). Optional parameter;
• OldLrn - learners of already built committee (used for further training of already built

committee). Optional parameter;
• final_hyp - output for training data of already built committee (used to speed up further

training of already built committee). Optional parameter.
 Return:

• Learners - cell array of constructed learners. Each learner is a node of CART tree
represented by object of tree_node_w class;

• Weights - weights of learners. This vector has the same size as Learners and represents
weight of each learner in final committee;

• final_hyp - output for training data.

function [Learners, Weights, {final_hyp}] = GentleAdaBoost(WeakLrn, Data,
Labels, Max_Iter, {OldW, OldLrn})
Boosts a weak learner WeakLrn using Gentle AdaBoost algorithm with Max_Iter iterations on
dataset given in Data and Labels. The parameters semantic is the same as in RealAdaBoost
function.

function [Learners, Weights, {final_hyp}] = ModestAdaBoost(WeakLrn,
Data, Labels, Max_Iter, {OldW, OldLrn})
Boosts a weak learner WeakLrn using Modest AdaBoost algorithm with Max_Iter iterations on
dataset given in Data and Labels. The parameters semantics are the same as in RealAdaBoost
function.

function Result = Classify(Learners, Weights, Data)
Classifies Data using boosted assembly of Learners with respective Weights. Result will contain
real numbers; the signum of those numbers represents the class, and its absolute magnitude is the
“confidence” of the decision. To obtain classification one should take signum of Result. To
regulate the rate of false positive / false negative Result could be compared with some threshold.
Increasing threshold would reduce false positive rate, but will also increase false negative.
Example:
Confidence = Classify(Learners, Weights, X); % obtaining real valued results
Tetta = 0.2; % TP/FP regulating threshold
Y = sign(Confidence - Tetta); % obtaining classification

function code = TranslateToC (Learners, Weights, fid)
Use this function to save constructed classifiers for further use in C++ applications. C++ codes
that loads saved committee is provided (see C++ directory for code and example usage). File has
the following format:
<TN>
<W> <N > <D> <T> <Ts> {<D> <T> <Ts> }
<W> <N > <D> <T> <Ts> {<D> <T> <Ts> }
…
<end>
Where:
TN – total number of weak classifiers;
W – weight of weak classifier;
N – number of thresholds representing weak classifier (in CART each node can be represented as
the set of thresholds);
D – thresholds dimension;
T – threshold value;
Ts – threshold sing. It’s either –1 or +1, resembling if the sample should be greater or lesser than
threshold to be classified positive.

Arguments:

• Learners - learners of committee to be saved;
• Weights - weights of committee to be saved;
• fid - opened file id (use fopen to make one).

Return:
• code - equals 1 if everything was alright.

@tree_node_w :
A class that implements a classification tree weak learner. This is the most popular weak learner
for the boosting algorithms. It splits data by a set of hyper planes orthogonal to coordinate axis.
We use a greedy splitting rule – at each step we perform a split, which best lowers the total tree
error.

Class methods:

function tree_node = tree_node_w(max_splits) – constructor. Call to make the object,
max_splits specifies the maximum amount of tree splits during training.

function nodes = train(node, dataset, labels, weights) – trains a tree to fit dataset in to labels,
with respect to weights. nodes – is a cell array that contains terminal tree nodes.
Arguments:

• node - object of tree_node_w class (initialized properly);
• dataset - training data;
• labels - training labels;
• weights - weights of training data. Needed for boosting procedure;

Return:
• nodes - tree is represented as a cell array of its nodes.

function y = calc_output(tree_node, XData) – classifies XData with tree_node and stores
result in y.
Arguments:

• tree_node - classification tree node;
• XData - data that will be classified.

Return:
• y - +1, if XData belongs to tree node, -1 otherwise (y is a vector)

@crossvalidation :
A class that helps to perform a crossvalidation. It works like a storage class, you should pass the
data alongside with labels and the class automatically splits it into the specified number of
subsets. You can then access any fold you want.

Class methods:

function this = crossvalidation(folds) – constructor. Use to create an object with specified
number of folds.

function this = Initialize(this, Data, Labels) – initializes the object. Data and Labels will be
split in to the specified in constructor number of folds and stored within the class. Data should
be a NK × matrix, where K is the instance space dimensionality and N is the number of training
samples; Labels must be N×1 matrix.

function [Data, Labels] = GetFold(this, N) – returns Data and Labels of fold N stored in this.

function [Data, Labels] = CatFold(this, Data, Labels, N) – concatenates the fold N to Data
and Labels.

Example scripts

Example_1 script
% Step1: reading Data from the file
file_data = load('Ionosphere.txt');
Data = file_data(:,1:end-1)';
Labels = file_data(:, end)';
Labels = Labels*2 - 1;

MaxIter = 200; % boosting iterations

% Step2: splitting data to training and control set
TrainData = Data(:,1:2:end);
TrainLabels = Labels(1:2:end);

ControlData = Data(:,2:2:end);
ControlLabels = Labels(2:2:end);

% Step3: constructing weak learner
weak_learner = tree_node_w(3); % pass the number of tree splits to the
constructor

% Step4: training with Gentle AdaBoost
[RLearners RWeights] = GentleAdaBoost(weak_learner, TrainData, TrainLabels,
MaxIter);

% Step5: training with Modest AdaBoost
[MLearners MWeights] = ModestAdaBoost(weak_learner, TrainData, TrainLabels,
MaxIter);

% Step6: evaluating on control set
ResultR = sign(Classify(RLearners, RWeights, ControlData));

ResultM = sign(Classify(MLearners, MWeights, ControlData));

% Step7: calculating error
ErrorR = sum(ControlLabels ~= ResultR)

ErrorM = sum(ControlLabels ~= ResultM)

Comments on the script
Step 1 – data is loaded from txt file. Each line of which is a data sample (feature vector). Last
element of line is the class marker (it is 0/1 in example, so that is why “Labels = Labels*2 - 1;” line
is required);
Step 2 – we split data in two subsets; half goes to control set, half to training set;
Step 3 – here we construct a tree weak learner, which would be used for boosting. We pass the
max number of splits (1 = stump);
Step 4 and 5 – we boost weak learners with two different algorithms, using training set;
Step 6 – calculating classifiers output on control set;
Step 7 – calculating error.

Example_2 script
% Step1: reading Data from the file
file_data = load('Ionosphere.txt');
Data = file_data(:,1:end-1)';

Labels = file_data(:, end)';
Labels = Labels*2 - 1;

MaxIter = 100; % boosting iterations

% Step2: splitting data to training and control set
TrainData = Data(:,1:2:end);
TrainLabels = Labels(1:2:end);

ControlData = Data(:,2:2:end);
ControlLabels = Labels(2:2:end);

% and initializing matrices for storing step error
RAB_control_error = zeros(1, MaxIter);
MAB_control_error = zeros(1, MaxIter);
GAB_control_error = zeros(1, MaxIter);

% Step3: constructing weak learner
weak_learner = tree_node_w(3); % pass the number of tree splits to the
constructor

% and initializing learners and weights matices
GLearners = [];
GWeights = [];
RLearners = [];
RWeights = [];
NuLearners = [];
NuWeights = [];

% Step4: iterativly running the training

for lrn_num = 1 : MaxIter

 clc;
 disp(strcat('Boosting step: ', num2str(lrn_num),'/', num2str(MaxIter)));

 %training gentle adaboost
 [GLearners GWeights] = GentleAdaBoost(weak_learner, TrainData,
TrainLabels, 1, GWeights, GLearners);

 %evaluating control error
 GControl = sign(Classify(GLearners, GWeights, ControlData));

 GAB_control_error(lrn_num) = GAB_control_error(lrn_num) + sum(GControl ~=
ControlLabels) / length(ControlLabels);

 %training real adaboost
 [RLearners RWeights] = RealAdaBoost(weak_learner, TrainData, TrainLabels,
1, RWeights, RLearners);

 %evaluating control error
 RControl = sign(Classify(RLearners, RWeights, ControlData));

 RAB_control_error(lrn_num) = RAB_control_error(lrn_num) + sum(RControl ~=
ControlLabels) / length(ControlLabels);

 %training modest adaboost
 [NuLearners NuWeights] = ModestAdaBoost(weak_learner, TrainData,
TrainLabels, 1, NuWeights, NuLearners);

 %evaluating control error
 NuControl = sign(Classify(NuLearners, NuWeights, ControlData));

 MAB_control_error(lrn_num) = MAB_control_error(lrn_num) + sum(NuControl
~= ControlLabels) / length(ControlLabels);

end

% Step4: displaying graphs
figure, plot(GAB_control_error);
hold on;
plot(MAB_control_error, 'r');

plot(RAB_control_error, 'g');
hold off;

legend('Gentle AdaBoost', 'Modest AdaBoost', 'Real AdaBoost');
xlabel('Iterations');
ylabel('Test Error');

Comments on the script
This script implements iterative training of boosted committee. At step 4 we start a cycle in
which training is done. For each iteration control error is stored and afterwards control error
graphs are displayed. Note, that while training we pass committees constructed on previous steps
to boosting function – this is done to speed up the process.

Example_3 script
file_data = load('Ionosphere.txt');

%transforming data to toolbox formats
FullData = file_data(:,1:end-1)';
FullLabels = file_data(:, end)';
FullLabels = FullLabels*2 - 1;

MaxIter = 100; % boosting iterations
CrossValidationFold = 5; % number of cross-validation folds

weak_learner = tree_node_w(2); % constructing weak learner

% initializing matrices for storing step error
RAB_control_error = zeros(1, MaxIter);
MAB_control_error = zeros(1, MaxIter);
GAB_control_error = zeros(1, MaxIter);

% constructing object for cross-validation
CrossValid = crossvalidation(CrossValidationFold);

% initializing it with data
CrossValid = Initialize(CrossValid, FullData, FullLabels);

NuWeights = [];

% for all folds
for n = 1 : CrossValidationFold
 TrainData = [];
 TrainLabels = [];
 ControlData = [];

 ControlLabels = [];

 % getting current fold
 [ControlData ControlLabels] = GetFold(CrossValid, n);

 % concatinating other folds into the training set
 for k = 1:CrossValidationFold
 if(k ~= n)
 [TrainData TrainLabels] = CatFold(CrossValid, TrainData,
TrainLabels, k);
 end
 end

 GLearners = [];
 GWeights = [];
 RLearners = [];
 RWeights = [];
 NuLearners = [];
 NuWeights = [];

 %training and storing the error for each step
 for lrn_num = 1 : MaxIter

 clc;
 disp(strcat('Cross-validation step: ',num2str(n), '/',
num2str(CrossValidationFold), '. Boosting step: ', num2str(lrn_num),'/',
num2str(MaxIter)));

 %training gentle adaboost
 [GLearners GWeights] = GentleAdaBoost(weak_learner, TrainData,
TrainLabels, 1, GWeights, GLearners);

 %evaluating control error
 GControl = sign(Classify(GLearners, GWeights, ControlData));

 GAB_control_error(lrn_num) = GAB_control_error(lrn_num) +
sum(GControl ~= ControlLabels) / length(ControlLabels);

 %training real adaboost
 [RLearners RWeights] = RealAdaBoost(weak_learner, TrainData,
TrainLabels, 1, RWeights, RLearners);

 %evaluating control error
 RControl = sign(Classify(RLearners, RWeights, ControlData));

 RAB_control_error(lrn_num) = RAB_control_error(lrn_num) +
sum(RControl ~= ControlLabels) / length(ControlLabels);

 %training modest adaboost
 [NuLearners NuWeights] = ModestAdaBoost(weak_learner, TrainData,
TrainLabels, 1, NuWeights, NuLearners);

 %evaluating control error
 NuControl = sign(Classify(NuLearners, NuWeights, ControlData));

 MAB_control_error(lrn_num) = MAB_control_error(lrn_num) +
sum(NuControl ~= ControlLabels) / length(ControlLabels);

 end
end

%saving results
%save(strcat(name,'_result'),'RAB_control_error', 'MAB_control_error',
'CrossValidationFold', 'MaxIter', 'name', 'CrossValid');

% displaying graphs
figure, plot(GAB_control_error / CrossValidationFold);
hold on;
plot(MAB_control_error / CrossValidationFold , 'r');

plot(RAB_control_error / CrossValidationFold, 'g');
hold off;

legend('Gentle AdaBoost', 'Modest AdaBoost', 'Real AdaBoost');
title(strcat(num2str(CrossValidationFold), ' fold cross-validation'));
xlabel('Iterations');
ylabel('Test Error');

Comments on the script
This script implements iterative training of boosted committee with cross-validation . The only
difference from Example_2 is the use of @crossvalidation class.

TrainAndSave script
file_data = load('Ionosphere.txt');
Data = file_data(:,1:end-1)';
Labels = file_data(:, end)';
Labels = Labels*2 - 1;

% Data = Data';
% Labels = Labels';

weak_learner = tree_node_w(2);

% Step1: training with Gentle AdaBoost
[RLearners RWeights] = RealAdaBoost(weak_learner, Data, Labels, 200);

% Step2: training with Modest AdaBoost
[MLearners MWeights] = ModestAdaBoost(weak_learner, Data, Labels, 200);

fid = fopen('RealBoost.txt','w');
TranslateToC(RLearners, RWeights, fid);
fclose(fid);

fid = fopen('ModestBoost.txt','w');
TranslateToC(MLearners, MWeights, fid);
fclose(fid);

Comments on the script
This script illustrates TranslateToC function usage. This script is much similar to Example_1.

Q and A:

What version of Matlab should I have for the toolbox to work?
We don’t use any version specific functions, so it should work with most versions of Matlab. It
will work on Matlab 6 and Matlab 7 for sure.

Is this toolbox free to use?
Yes. You can use it in any way you want and you don’t have to pay anyone. Although you must
mention that you used our toolbox, if you publish any results that were obtained using it.

I found a bug!
Please mail me, so I can fix it. avezhnevets@graphics.cs.msu.ru

How should I represent my data to use it in toolbox?
It should be a NK × matrix, where K is the instance space dimensionality and N is the number
of training samples; and a vector (N×1 matrix) with labels (-1, +1).

How to load my data from txt file to use it in your toolbox?
You can use any method, that matlab provides. For most of txt files “load('data.txt');”
should work fine.

Can I regulate false positive to false negative rate?
Yes. See description of “Classify” function.

What is the best way to analyze the resulting committee?
We advice you to save committee using “TranslateToC” function and analyze the txt file. Its
format is described in “Library structure and usage” section.

Can I use constructed committee in C++ application?
Yes. See TranslateToC function and TrainAndSave example.

Reference
[1] Y Freund and R. E. Schapire. Game theory, on-line prediction and boosting. In Proceedings of the Ninth Annual

Conference on Computational Learning Theory, pages 325–332, 1996.
[2] R.E. Schapire and Y. Singer Improved boosting algorithms using confidence-rated predictions. Machine Learning,

37(3):297-336, December 1999.
[3] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: A statistical view of boosting. The

Annals of Statistics, 38(2):337–374, April 2000.
[4] P. Viola and M. Jones. Robust Real-time Object Detection. In Proc. 2nd Int'l Workshop on Statistical and Computational

Theories of Vision -- Modeling, Learning, Computing and Sampling, Vancouver, Canada, July 2001.
[5] A. Vezhnevets and V. Vezhnevets. Modest AdaBoost – teaching AdaBoost to generalize better. Graphicon 2005.
[6] Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and
Computer Science.

