

Principle Component Analysis

- Principle component analysis (PCA) finds the directions of the axes of the ellipsoid.
- There are two ways to think about what PCA does next:
 - Projects every point perpendicularly onto the axes of the ellipsoid.
 - Rotates the ellipsoid so its axes are parallel to the coordinate axes, and translates the ellipsoid so its center is at the origin.

Tim Marks, Cognitive Science Department

SD

Point is a weighted sum of eigenvectors z_{r}

 $\begin{bmatrix} \leftarrow & \mathbf{v}_1 & \rightarrow \\ \leftarrow & \mathbf{v}_2 & \rightarrow \\ \vdots & \\ \leftarrow & \mathbf{v}_D & \rightarrow \end{bmatrix} \begin{bmatrix} \uparrow \\ \mathbf{z} \\ \downarrow \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_D \end{bmatrix}$

• To both sides of the equation, multiply on the left by *V*:

$$VV^{T}\mathbf{z} = Vc.$$
 Because V is orthonormal, $VV^{T} = I:$
 $I\mathbf{z} = Vc$

PCA expresses the mean-subtracted point, z = x - m, as a weighted sum of the eigenvectors v_i:

Eigenfaces Eigenfaces (the principal components of face space) provide a low-dimensional representation of any face, which can be used for: Face recognition Facial expression recognition Image reconstruction

Tim Marks, Cognitive Science Department

SD

PCA for face representation• To approximate a face using k dimensions, order the eigenfaces in order of largest-to-smallest eigenvalue, and only use the first k eigenfaces. $\begin{bmatrix} \vec{U}^T & \vec{z} & \vec{c} \\ (+ u_1 \rightarrow) \\ (+ u_2 \rightarrow) \\ (- u_k \rightarrow) \end{bmatrix} \begin{bmatrix} \uparrow \\ \vec{z} \\ \downarrow \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_k \end{bmatrix}$ • PCA approximates a mean-subtracted face, $\mathbf{z} = \mathbf{x} - \mathbf{m}$, as a weighted sum of the first k eigenfaces: $\vec{z} = \begin{bmatrix} \vec{U} & \vec{c} \\ u_1 & u_2 & \cdots & u_k \\ \downarrow & \downarrow & \cdots & u_k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = c_1 \begin{bmatrix} \uparrow \\ u_1 \\ \downarrow \end{bmatrix} + c_2 \begin{bmatrix} \uparrow \\ u_2 \\ \downarrow \end{bmatrix} + \cdots + c_k \begin{bmatrix} \uparrow \\ u_k \\ \downarrow \end{bmatrix}$ **EXENCE**<

