
Monte Carlo Integration

In these notes we first review basic numerical integration methods (using Riemann ap-
proximation and the trapezoidal rule) and their limitations for evaluating multidimensional
integrals. Next we introduce stochastic integration methods based on Monte Carlo and im-
portance sampling. We conclude with a section on computationally efficient generation of
random numbers, when the sampling density is known up to a normalizing constant.

An excellent reference for this material is the book by Robert and Casella [1]. These
stochastic methods have found numerous applications in engineering; see for instance the
papers in the 2002 special issue of the IEEE Transactions on Signal Processing [2].

1 Riemann Integration

Consider the problem of evaluating an integral I =
∫ b

a
φ(x) dx. The Riemann approximation

to I is given by

În =

n
∑

i=1

(xi − xi−1)φ(xi) (1)

where a = x0 < x1 < x2 < · · · < xn = b. This may be viewed as approximating φ(x) with a
piecewise-constant function φ̂n(x) which is equal to φ(xi) for all x ∈ [xi, xi−1] and 1 ≤ i ≤ n.
Indeed În =

∫

φ̂n. Assuming that the derivative φ′(x) is bounded, and that xi = a+(b−a) i
n
,

the maximum absolute error due to this approximation is upper bounded as

|φ(x) − φ̂n(x)| ≤ 1

n
(b − a)‖φ′‖∞

with equality if φ(x) is an affine function. Hence the error incurred by approximating the
integral with a Riemann sum is at most |În − I| ≤ C

n
for some constant C = (b − a)2‖φ′‖∞

independent of n.

2 Trapezoidal Rule

The approximation formula (1) can be improved by replacing φ(xi) with 1
2
[φ(xi) + φ(xi−1)]:

În =
n

∑

i=1

(xi − xi−1)
1

2
[φ(xi) + φ(xi−1)]. (2)

This is the so-called trapezoidal rule, which is extensively used for numerical integration.
For instance, if φ(x) is an affine function, the approximation is exact. For general functions
φ(x), the approximation error is due to the curvature of φ. If the second derivative φ′′(x)
exists and is bounded, it may be shown (by application of Taylor’s theorem again) that
|În − I| ≤ C

n2 for some constant C.
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3 Multidimensional Integration

For d-dimensional integrals, X is a subset of R
d. An integral can be approximated by a

Riemann sum, similarly to Sec. 1, or using a trapezoidal rule as in Sec. 2. If a n-point
approximation is used, the trapezoidal rule yields an approximation error |În − I| ≤ C

n2/d for

some constant C. This is the same formula as in 1D, except that n is replaced with n1/d (the
number of points per coordinate in case X is discretized using a cubic lattice). Hence n needs
to increase exponentially with d to achieve a target approximation error. This phenomenon
is known as the curse of dimensionality.

The stochastic methods for numerical integration avoid the curse of dimensionality, as the
resulting integrals may be approximated with an accuracy of the order of 1/

√
n, where n is

the number of samples X1, · · · , Xn taken from X . Hence the stochastic methods outperform

the deterministic ones for dimensions d > 4 and are worse for d < 4.

4 Classical Monte Carlo Integration

The basic problem considered in this section and the following one is as follows. Given a pdf
f(x), x ∈ X and a function h(x), x ∈ X , evaluate the integral

µ = Ef [h(X)] =

∫

X

h(x)f(x) dx.

Note these methods can be used to evaluate any integral I =
∫

X
φ(x) dx by expressing φ as

the product of a pdf f and another function h.

Given X1, X2, · · · , Xn drawn iid from the pdf f , estimate µ by the empirical average

µ̂n =
1

n

n
∑

i=1

h(Xi).

By the strong law of large numbers, we have µ̂n
a.s→ µ as n → ∞. The variance of µ̂n is

Var(µ̂n) =
1

n
Var[h(X)] =

1

n

∫

X

(h(x) − µ)2f(x) dx.

We will henceforth assume that Ef [h
2(X)] < ∞.

Example. Let f be the Cauchy distribution, f(x) = 1
π(1+x2)

, x ∈ R, and h(x) the

indicator function for the interval [0, 2]. We have

µ =

∫ 2

0

1

π(1 + x2)
dx ≈ 0.35.
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The estimator of µ is given by

µ̂n =
1

n
1{0≤Xi≤2}.

Its variance is

Var(µ̂n) =
µ(1 − µ)

n
≈ 0.21

n
.

This method is intuitively inefficient because only 35% of the samples contribute to the sum
giving µ̂n. Can we do better?

5 Importance Sampling

The idea here is to drawn samples not from f , but from an auxiliary pdf g (often called
instrumental density). Specifically, given X1, X2, · · · , Xn drawn iid from the pdf g, estimate
µ by the empirical average

µ̂n =
1

n

n
∑

i=1

f(Xi)

g(Xi)
h(Xi).

Clearly this method reduces to standard Monte-Carlo if g = f . It is required that supp{f} ⊆
supp{g}, i.e., f(x) > 0 ⇒ g(x) > 0.

By the strong law of large numbers, we have

µ̂n
a.s→ Eg

[

f(X)

g(X)
h(X)

]

=

∫

X

f(x)h(x) dx = µ

as n → ∞. Hence the estimator remains unbiased. Its variance is

Varg(µ̂n) =
1

n
Varg

[

f(X)

g(X)
h(X)

]

=
1

n

{

Eg

(

f(X)

g(X)
h(X)

)2

− µ2

}

=
1

n

{
∫

X

f 2(x)

g(x)
h2(x) dx − µ2

}

which generally differs from Varf(µ̂n). The idea of importance sampling is to find a good g
such that

Varg(µ̂n) < Varf (µ̂n).

For the Cauchy example above, consider the uniform pdf over [0, 2]:

g(x) =
1

2
1{0≤x≤2} =

1

2
h(x).

Then we have

µ̂n =
1

n

n
∑

i=1

2

π(1 + X2
i )

.
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The variance of this estimator is

Varg(µ̂n) =
1

n

{
∫ 2

0

2f 2(x) dx − µ2

}

≈ 0.009

n

i.e., about 20 times smaller than Varf(µ̂n)!

In principle one may seek g that minimizes Varg(µ̂n) over all possible pdf’s. The solution
is otained using the method of Lagrange multipliers: minimize the Lagrangian

L(g, λ) = Varg(µ̂n) + λ

∫

X

g(x) dx

=

∫

X

v(x)

g(x)
dx + λ

∫

X

g(x) dx

where λ is the Lagrange multiplier, and we have used the shorthand v(x) = f 2(x)h2(x).
Taking the Fréchet derivative of L(g, λ) with respect to g(x), we obtain

0 =
∂L(g, λ)

∂g(x)
= − v(x)

g2(x)
+ λ, x ∈ X

whence

g(x) =
√

v(x)/λ =
f(x)|h(x)|

∫

X
f(x)|h(x)| dx

where the value of λ was selected to ensure that
∫

g = 1. The expression above is elegant,
however evaluating g(x) requires computation of the integral in the numerator, which is as
hard as the original problem! In practice thus one is content to find a “good” g that assigns
high probability to regions where f(x)|h(x)| is large. Ideally the ratio f(x) |h(x)|

g(x)
would be

roughly constant over X .

6 Random Number Generation

A classical method for generating a real random variable X from an arbitrary cdf F (x) is
to generate a random variable U uniformly distributed over [0, 1] and then apply the inverse
cdf to U , resulting in X = F−1(U) with the desired distribution. Indeed

Pr[X ≤ x] = Pr[U ≤ F (x)] = F (x).

Now suppose the pdf f(x) is known up to a normalization constant which is difficult or
expensive to compute. An example is when samples have to be generated from a posterior
distribution f(x|y) = p(y|x) p(x)

∫

p(y|x) p(x) dx
, where the integral in the denominator is the normalization

constant.

A good method in this case is the so-called Accept-reject method [1, Ch. 2.3]. We are

given an auxiliary pdf g(x) which is easy to sample, and a constant M such that f(x)
Mg(x)

≤ 1

holds and is easy to evaluate for all x ∈ supp(f). The Accept-reject method works as follows:
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(1) Generate independent random variables X ∼ g and U ∼ Uniform [0, 1].

(2) Accept Y = X if U ≤ f(X)
Mg(X)

≤ 1.

Return to (1) otherwise.

Claim: Y ∼ f .

Proof: The cdf for Y is

Pr[Y ≤ y] = Pr

[

X ≤ y

∣

∣

∣

∣

U ≤ f(X)

Mg(X)

]

=
Pr

[

X ≤ y, U ≤ f(X)
Mg(X)

]

Pr
[

X ≤ ∞, U ≤ f(X)
Mg(X)

] =
N(y)

N(∞)
. (3)

The numerator of (3) takes the form

N(y) =

∫ y

−∞

dx g(x)

∫
f(x)

Mg(x)

0

du

=
1

M

∫ y

−∞

f(x) dx

hence N(∞) = 1
M

. Substituting back into (3), we obtain Pr[Y ≤ y] =
∫ y

−∞
f(x) dx, which

proves the claim. 2

As a final observation, in Step 2 of the Accept-reject algorithm, the probability of accep-
tance is equal to N(∞) = 1

M
. If X = R, this forces the tails of g to be heavier than those of

f , otherwise the ratio f/g would be unbounded, and so would M .
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