3.4
\(P(B \mid T) = P(T \mid B) \frac{P(B)}{P(T)}. \)

\[
P(T) = P(T \mid B) \cdot P(B) + P(T \mid B') \cdot P(B')
\]
\[
0.1000061 = 0.7 \times 0.000013 + 0.1 \times (1 - 0.000013)
\]
\[
P(B \mid T) = 0.7 \times 0.000013 / 0.1000061 = 0.000090994
\]
\[
P(B \mid T') = P(T \mid B') \frac{P(B')}{P(T)}
\]
\[
0.000086994 = 0.1 \times (1 - 0.000013) / 0.1000061
\]

3.9
\(P(A) = \frac{3}{4} \quad P(B) = \frac{2}{5} \quad P(A \cup B) = \frac{4}{5} \)
\(P(A \cap B) = P(A) + P(B) - P(A \cup B) \)
\[
\frac{7}{20} = \frac{3}{4} + \frac{2}{5} - \frac{4}{5}
\]
\(P(A \cap B) = P(B \mid A) \cdot P(A) \) and so
\(P(B \mid A) = \frac{P(A) \cdot P(B)}{P(A \cap B)} \)
\[
\frac{3}{14} = \frac{3}{4} / \left(\frac{7}{20}\right)
\]

3.11
a. The probability that the driver’s blood level does not exceed the legal limit given that the driver tested positive.

b. We are given that \(P(A \mid B) = P(A' \mid B') = p = 0.95 \)
\(P(B) = 0.05, \) so \(P(B') = 1.0 - 0.05 = 0.95 \)

Observe first that \((A \cap B') \) and \((A' \cap B') \) are disjoint, and that the union of these two sets is \(B' \). It follows that \(P(B') = P((A \cap B') \cup (A' \cap B')) = P(A \cap B') + P(A' \cap B') \)
Rearranging terms gives
\(P(A \cap B') = P(B') - P(A' \cap B') \)
It follows that
\(P(A \mid B') \cdot P(B') = P(B') - P(A' \mid B') \cdot P(B') \). So long as \(P(B') > 0 \), we can divide through by \(P(B') \) giving
\(P(A \mid B') = 1 - P(A' \mid B') \).
We wish to find \(P(B' \mid A) = P(A \mid B') P(B') / P(A) \)
\(P(A) = P(A \mid B) \cdot P(B) + P(A \mid B') \cdot P(B') \)
\(P(A) = p \times 0.05 + (1-p) \times (1 - 0.05) \)
Then \(P(B' \mid A) = (1-p) \times (1 - 0.05) / (p \times 0.05 + (1-p) \times 1 - 0.05) \)
For p = .95, this gives

\[(.05 \times .95) / (.95 \times .05 + .05 \times .95) = \frac{1}{2}\]

c. We want \(P(B|A) = P(A|B) \times P(B) / P(A) \)

\[= p \times 0.5 / (p \times 0.05 + (1-p) \times 0.95) = 0.9 \]

Solving for p:

\[0.05p = 0.045p + 0.855 - 0.855p \]

\[0.86p = 0.855 \]

\[p = 99.42\% \]

3.16

a:

\[P(T|D) = 0.98 \]
\[P(T'|D') = 0.95 \]
\[P(D) = 0.01 \]
\[P(D') = 0.99 \]

\[P(D|T) = P(T|D) \times P(D) / P(T) \]

\[P(T) = P(T|D) \times P(D) + P(T|D') \times P(D') \]

\[0.0593 = 0.98 \times 0.01 + (1 - 0.95) \times 0.99 \]

\[P(D|T) = 0.98 \times 0.01 / 0.0593 = 0.165 \]

b:

\[P(D|(S \cap T)) = P(S \cap T|D) \times P(D) / P(S \cap T) \]

\[P(S \cap T) = P(S \cap T|D) \times P(D) + P(S \cap T|D') \times P(D') \]

\[= P(S|D) \times P(D) + P(T|D) \times P(D) + P(S|D') \times P(D') \times P(D) \]

\[= 0.98 \times 0.01 \times 0.98 \times 0.01 + 0.05 \times 0.99 \times 0.05 \times 0.99 = 0.00254629 \]

\[P(D|(S \cap T)) = 0.00009604 / 0.00254629 = 0.28 \]

3.18

We are given that 0 < P(A) < 1 and 0 < P(B) < 1.

a) If A and B are disjoint, then \(A \cap B = \emptyset \) so 0 = P(A \cap B) = P(A) * P(B \| A).

We are given that P(A) > 0. Thus P(B \| A) must be 0.

But P(B) > 0. Hence, P(B \| A) \neq P(B) and A and B are not independent.
b) If A and B are independent, then \(P(A \cap B) = P(A) \times P(B) > 0 \) since both A and B are non-zero. But this means that \(A \cap B \) is not empty (otherwise the probability of their intersection would be 0.) Hence, A and B are not disjoint.

c) Suppose A is a subset of B. Then \(A \cap B = A \). Thus \(P(A) = P(A \cap B) = P(A) \times P(B \mid A) \) and we see that \(P(B \mid A) = 1 \neq P(B) \) since \(P(B) > 1 \). Thus A and B are not independent.

d) A is a subset of \(A \cup B \), and by part c) above cannot in any event be independent.