Randomized SVD, CUR Decomposition, and SPSD Matrix Approximation

Shusen Wang
Outline

• CX Decomposition & Approximate SVD
• CUR Decomposition
• SPSD Matrix Approximation
CX Decomposition

• Given any matrix $A \in \mathbb{R}^{m \times n}$

• The CX decomposition of A
 1. Sketching: $C = AP \in \mathbb{R}^{m \times c}$
 2. Find X such that $A \approx CX$
 • E.g. $X^* = \text{argmin}_X ||A - CX||_F^2 = C^+A$
 • It costs $O(mnc)$
Let the sketching matrix $\mathbf{P} \in \mathbb{R}^{n \times c}$ be defined in the table.

$$\min_{\text{rank}(\mathbf{X}) \leq k} \| \mathbf{A} - \mathbf{CX} \|^2_F \leq (1 + \epsilon) \| \mathbf{A} - \mathbf{A}_k \|^2_F$$

<table>
<thead>
<tr>
<th></th>
<th>Uniform sampling</th>
<th>Leverage score sampling</th>
<th>Gaussian projection</th>
<th>SRHT</th>
<th>Count sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{C} \geq$</td>
<td>$0 \left(\nu k \left(\log k + \frac{1}{\epsilon} \right) \right)$</td>
<td>$0 \left(k \left(\log k + \frac{1}{\epsilon} \right) \right)$</td>
<td>$0 \left(\frac{k}{\epsilon} \right)$</td>
<td>$0 \left((k + \log n) \left(\log k + \frac{1}{\epsilon} \right) \right)$</td>
<td>$0 \left(k^2 + \frac{k}{\epsilon} \right)$</td>
</tr>
</tbody>
</table>

ν is the column coherence of \mathbf{A}_k
CX Decomposition ⇔ Approximate SVD

- CX decomposition ⇔ approximate SVD

\[A \approx CX \]
CX Decomposition ⇔ Approximate SVD

- CX decomposition ⇔ approximate SVD

\[A \approx CX = U_C \Sigma_C V_C^T X \]

SVD:
\[C = U_C \Sigma_C V_C^T \in \mathbb{R}^{m \times c} \]

Time cost: \(O(mc^2) \)
CX Decomposition \Leftrightarrow Approximate SVD

- CX decomposition \Leftrightarrow approximate SVD

$$A \approx CX = U_C \Sigma_C V_C^T X = U_C Z$$

Let $\Sigma_C V_C^T X = Z \in \mathbb{R}^{c \times n}$

SVD: $C = U_C \Sigma_C V_C^T \in \mathbb{R}^{m \times c}$

Time cost: $O(mc^2 + nc^2)$
CX Decomposition ⇔ Approximate SVD

• CX decomposition ⇔ approximate SVD

\[A \approx CX = U_C \Sigma_C V_C^T X = U_C Z = U_C U_Z \Sigma_Z V_Z^T \]

SVD: \(C = U_C \Sigma_C V_C^T \in \mathbb{R}^{m \times c} \)

Let \(\Sigma_C V_C^T X = Z \in \mathbb{R}^{c \times n} \)

SVD: \(Z = U_Z \Sigma_Z V_Z^T \in \mathbb{R}^{c \times n} \)

Time cost: \(O(mc^2 + nc^2 + nc^2) \)
CX Decomposition \Leftrightarrow Approximate SVD

- CX decomposition \Leftrightarrow approximate SVD

$$A \approx CX = UC \Sigma_C V_C^T X = UCZ = UCU_Z \Sigma_Z V_Z^T$$

- SVD: $C = U_C \Sigma_C V_C^T \in \mathbb{R}^{m \times c}$
- SVD: $Z = U_Z \Sigma_Z V_Z^T \in \mathbb{R}^{c \times n}$

$m \times s$ matrix with orthonormal columns

$s \times n$ matrix with orthonormal rows

diagonal matrix

Time cost: $O(mc^2 + nc^2 + nc^2 + mc^2)$
CX Decomposition ⇔ Approximate SVD

- CX decomposition ⇔ approximate SVD
- Done! Approximate rank c SVD: \(A \approx (U_G U_L) \Sigma_L V_L^T \)

\[
A \approx CX = U_C \Sigma_C V_C^T X = U_C Z = U_C U_Z \Sigma_Z V_Z^T
\]

- **Time cost:** \(O(mc^2 + nc^2 + nc^2 + mc^2) = O(mc^2 + nc^2) \)
CX Decomposition \iff Approximate SVD

- CX decomposition \iff approximate SVD

- Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{C} \in \mathbb{R}^{m \times c}$, the approximate SVD costs
 - $O(mnc)$ time
 - $O(mc + nc)$ memory
CX Decomposition

• The CX decomposition of $A \in \mathbb{R}^{m \times n}$
 • Optimal solution: $X^* = \text{argmin}_X \|A - CX\|_F^2 = C^+A$
 • How to make it more efficient?
CX Decomposition

• The CX decomposition of $\mathbf{A} \in \mathbb{R}^{m \times n}$

 - Optimal solution: $\mathbf{X}^* = \arg\min_{\mathbf{X}} \| \mathbf{A} - \mathbf{CX} \|_F^2 = \mathbf{C}^\dagger \mathbf{A}$

 - How to make it more efficient?

A regression problem!
Fast CX Decomposition

- Fast CX [Drineas, Mahoney, Muthukrishnan, 2008][Clarkson & Woodruff, 2013]
 - Draw another sketching matrix $S \in \mathbb{R}^{m \times s}$
 - Compute $\tilde{X} = \arg\min_X \|S^T(A - CX)\|_F^2 = (S^T C)^\dagger (S^T A)$
 - Time cost: $O(ncs) + \text{TimeOfSketch}$
 - When $s = \tilde{O}(c/\epsilon)$,
 $$\|A - C\tilde{X}\|_F^2 \leq (1 + \epsilon) \cdot \min_X \|A - CX\|_F^2$$
Outline

• CX Decomposition & Approximate SVD
• CUR Decomposition
• SPSD Matrix Approximation
CUR Decomposition

- Sketching
 - $\mathbf{C} = \mathbf{AP}_\mathbf{C} \in \mathbb{R}^{m \times c}$
 - $\mathbf{R} = \mathbf{P}_\mathbf{R}^T \mathbf{A} \in \mathbb{R}^{r \times n}$
- Find \mathbf{U} such that $\mathbf{CUR} \approx \mathbf{A}$
- CUR \iff Approximate SVD
 - In the same way as "$\mathbf{CX} \iff \text{Approximate SVD}$"
CUR Decomposition

• Sketching
 • $C = AP_C \in \mathbb{R}^{m \times c}$
 • $R = P^T_RA \in \mathbb{R}^{r \times n}$

• Find U such that $CUR \approx A$

• CUR \iff Approximate SVD
 • In the same way as “$CX \iff$ Approximate SVD”

• 3 types of U
CUR Decomposition

- Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:

\[U = \left(P_R^T A P_C \right)^\dagger \]
CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008] :
 \[U = \left(P_R^T A P_C \right)^+ \]

• Recall the fast CX decomposition
 \[A \approx C \tilde{X} = C \left(P_R^T C \right)^+ \left(P_R^T A \right) \]
CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
 \[\mathbf{U} = (\mathbf{P}_R^T \mathbf{A} \mathbf{P}_C)^\dagger \]

• Recall the fast CX decomposition
 \[\mathbf{A} \approx \mathbf{C} \tilde{\mathbf{X}} = \mathbf{C}(\mathbf{P}_R^T \mathbf{C})^\dagger (\mathbf{P}_R^T \mathbf{A}) = \mathbf{CUR} \]
CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
 \[U = (P_R^T A P_C)^\dagger \]

• Recall the fast CX decomposition
 \[A \approx C \tilde{X} = C (P_R^T C)^\dagger (P_R^T A) = CUR \]

• They’re equivalent: \(C \tilde{X} = C U R \)
CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
 \[U = \left(P^T_R A P_C \right)^\dagger \]

• Recall the fast CX decomposition
 \[A \approx C\tilde{X} = C(P^T_R C)^\dagger (P^T_R A) = \text{CUR} \]

• They’re equivalent: \(C\tilde{X} = C U R \)

• Require \(c = \tilde{O}\left(\frac{k}{\epsilon}\right) \) and \(r = \tilde{O}\left(\frac{c}{\epsilon}\right) \) such that
 \[\|A - \text{CUR}\|_F^2 \leq (1 + \epsilon) \|A - A_k\|_F^2 \]
CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
 \[U = (P_R^T A P_C)^\dagger \]

• Efficient
 • \(O(rc^2) + \text{TimeOfSketch}\)

• Loose bound
 • Sketch size \(\propto \epsilon^{-2}\)

• Bad empirical performance
CUR Decomposition

• Type 2: Optimal CUR

\[U^* = \min_U \| A - \text{CUR} \|_F^2 = C^\dagger A R^\dagger \]
CUR Decomposition

• Type 2: Optimal CUR

\[U^* = \min_U \| A - CUR \|_F^2 = C^\dagger AR^\dagger \]

• Theory [W & Zhang, 2013], [Boutsidis & Woodruff, 2014]:

 • \(C \) and \(R \) are selected by the adaptive sampling algorithm
 • \(c = O \left(\frac{k}{\epsilon} \right) \) and \(r = O \left(\frac{k}{\epsilon} \right) \)
 • \(\| A - CUR \|_F^2 \leq (1 + \epsilon) \| A - A_k \|_F^2 \)
CUR Decomposition

• Type 2: Optimal CUR

$$U^* = \min_U \| A - CUR \|_F^2 = C^\dagger AR^\dagger$$

• Inefficient
 • $O(mnc) + \text{TimeOfSketch}$
CUR Decomposition

• Type 3: Fast CUR [W, Zhang, Zhang, 2015]
 • Draw 2 sketching matrices S_C and S_R
 • Solve the problem
 \[\tilde{U} = \min_\mathbf{U} \left\| S_C^T (A - \text{CUR}) S_R \right\|_F^2 = (S_C^T S_C)^\dagger (S_C^T A S_R) (R S_R)^\dagger \]
• Intuition?
CUR Decomposition

- The optimal \mathbf{U} matrix is obtained by the optimization problem

$$\mathbf{U}^* = \min_{\mathbf{U}} \| \mathbf{CUR} - \mathbf{A} \|_F^2$$
CUR Decomposition

- Approximately solve the optimization problem, e.g. by column selection

\[
\min_{\mathbf{U}} \quad \text{subject to} \quad \mathbf{U} \mathbf{U}^\top = \mathbf{U}^\top \mathbf{U} = \mathbf{I}
\]

\[
\mathbf{F} = \begin{bmatrix}
\mathbf{U} & \mathbf{E} & \mathbf{F}
\end{bmatrix}
\]
CUR Decomposition

- Solve the small scale problem

\[
\min_{U} \left\| \begin{array}{c}
\text{red}
\end{array} \right\| - \left\| \begin{array}{c}
\text{blue}
\end{array} \right\| \right\|_{F}^{2}
\]
CUR Decomposition

• Type 3: Fast CUR [W, Zhang, Zhang, 2015]
 - Draw 2 sketching matrices $S_C \in \mathbb{R}^{m \times s_c}$ and $S_R \in \mathbb{R}^{n \times s_r}$
 - Solve the problem
 $$\tilde{U} = \min_U \left\| S_C^T (A - CUR) S_R \right\|_F^2 = (S_C^T C)^\dagger (S_C^T A S_R)(R S_R)^\dagger$$

• Theory
 - $s_c = O \left(\frac{c}{\epsilon} \right)$ and $s_r = O \left(\frac{r}{\epsilon} \right)$
 - $\left\| A - C\tilde{U}R \right\|_F^2 \leq (1 + \epsilon) \cdot \min_U \left\| A - CUR \right\|_F^2$
CUR Decomposition

• Type 3: Fast CUR [W, Zhang, Zhang, 2015]
 • Draw 2 sketching matrices $S_C \in \mathbb{R}^{m \times s_c}$ and $S_R \in \mathbb{R}^{n \times s_r}$
 • Solve the problem
 \[
 \tilde{U} = \min_U \left\| S_C^T (A - CUR) S_R \right\|_F^2 = \left(S_C^T C \right)^\dagger \left(S_C^T A S_R \right) \left(R S_R \right)^\dagger
 \]

• Efficient
 • $O(s_c s_r (c + r)) + \text{TimeOfSketch}$

• Good empirical performance
A:
\[m = 1920 \]
\[n = 1168 \]

C and R:
- \(c = r = 100 \)
- uniform sampling

\(\mathbf{A} \):
- \(m = 1920 \)
- \(n = 1168 \)

\(\mathbf{C} \) and \(\mathbf{R} \):
- \(c = r = 100 \)
- uniform sampling

Type 1: Fast CX
- \(s_c = 2c, \quad s_r = 2r \)

Type 2: Optimal CUR
- \(s_c = 4c, \quad s_r = 4r \)

Type 3: Fast CUR
- \(s_c = 4c, \quad s_r = 4r \)
Conclusions

• Approximate truncated SVD
 • CX decomposition
 • CUR decomposition (3 types)

• Fast CUR is the best
Outline

• CX Decomposition & Approximate SVD
• CUR Decomposition
• SPSD Matrix Approximation
Motivation 1: Kernel Matrix

• Given n samples $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^d$ and kernel function $\kappa(\cdot, \cdot)$.
• E.g. Gaussian RBF kernel

$$\kappa(x_i, x_j) = \exp \left(-\frac{||x_i - x_j||^2}{\sigma^2}\right).$$
Motivation 1: Kernel Matrix

- Given \(n \) samples \(\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d \) and kernel function \(\kappa(\cdot, \cdot) \).
- E.g. Gaussian RBF kernel
 \[\kappa(\mathbf{x}_i, \mathbf{x}_j) = \exp \left(- \frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{\sigma^2} \right). \]
- Computing the kernel matrix \(\mathbf{K} \in \mathbb{R}^{n \times n} \)
 - where \(k_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j) \)
 - costs \(O(n^2d) \) time
Motivation 2: Matrix Inversion

• Solve the linear system

$$(K + \alpha I_n)w = y$$

to find $w \in \mathbb{R}^n$.

- $K \in \mathbb{R}^{n \times n}$ is the kernel matrix
- $y = [y_1, \ldots, y_n] \in \mathbb{R}^n$ contains the labels
Motivation 2: Matrix Inversion

• Solve the linear system

\[(K + \alpha I_n)w = y\]

to find \(w \in \mathbb{R}^n\).

• Solution: \(w^* = (K + \alpha I_n)^{-1}y\)
Motivation 2: Matrix Inversion

• Solve the linear system

\[(K + \alpha I_n)w = y\]

\[\text{to find } w \in \mathbb{R}^n.\]

• Solution: \(w^* = (K + \alpha I_n)^{-1}y \)

• It costs
 • \(O(n^3) \) time
 • \(O(n^2) \) memory.
Motivation 2: Matrix Inversion

• Solve the linear system

\[(K + \alpha I_n)w = y\]

to find \(w \in \mathbb{R}^n\).

• Solution: \(w^* = (K + \alpha I_n)^{-1}y\)

• It costs
 • \(O(n^3)\) time
 • \(O(n^2)\) memory.

• Performed by
 • Kernel ridge regression
 • Least squares kernel SVM
Motivation 3: Eigenvalue Decomposition

• Find the top $k \ll n$ eigenvectors of K.
• It costs
 • $\tilde{O}(n^2k)$ time
 • $O(n^2)$ memory.
Motivation 3: Eigenvalue Decomposition

- Find the top k ($\ll n$) eigenvectors of \mathbf{K}.
- It costs
 - $\tilde{O}(n^2k)$ time
 - $O(n^2)$ memory.
- Performed by
 - Kernel PCA (k is the target rank)
 - Manifold learning (k is the target rank)
Computational Challenges

• Time costs
 • Computing kernel matrix: $O(n^2d)$
 • Matrix inversion: $O(n^3)$
 • Rank k eigenvalue decomposition: $O(n^2k)$
Computational Challenges

• Time costs
 • Computing kernel matrix: $O(n^2d)$
 • Matrix inversion: $O(n^3)$
 • Rank k eigenvalue decomposition: $O(n^2k)$

At least quadratic time!
Computational Challenges

• Time costs
 • Computing kernel matrix: $O(n^2d)$
 • Matrix inversion: $O(n^3)$
 • Rank k eigenvalue decomposition: $O(n^2k)$

• Memory costs
 • Inversion and eigenvalue decomposition: $O(n^2)$
Computational Challenges

• Time costs
 • Computing kernel matrix: $O(n^2d)$
 • Matrix inversion: $O(n^3)$
 • Rank k eigenvalue decomposition: $O(n^2k)$

• Memory costs
 • Inversion and eigenvalue decomposition: $O(n^2)$
 • Because
 • the numerical algorithms are pass-inefficient
 • form K and keep it in memory
Computational Challenges

• Time costs
 • Computing kernel matrix: $O(n^2d)$
 • Matrix inversion: $O(n^3)$
 • Rank k eigenvalue decomposition: $O(n^2k)$

• Memory costs
 • Inversion and eigenvalue decomposition: $O(n^2)$
 • Because
 • the numerical algorithms are pass-inefficient
 • \Rightarrow form K and keep it in memory

When $n = 10^5$, the $n \times n$ matrix costs 80GB memory!
How to Speedup?

• Efficiently form the low-rank approximation

\[K \approx C \ U \ C^T \]
How to Speedup?

- Efficiently form the low-rank approximation
 \[\mathbf{K} \approx \mathbf{C} \mathbf{U} \mathbf{C}^\top \]

- Equivalent \(\mathbf{K} \approx \mathbf{L} \mathbf{L}^\top \)
Efficient Matrix Inversion

• Solve the linear system \((K + \alpha I_n)w = y:\)

\[w^* = (K + \alpha I_n)^{-1}y \]
Efficient Matrix Inversion

• Approximately solve the linear system \((K + \alpha I_n)w = y\):

 • Replace \(K\) by \(LL^T\): \(w^* = (K + \alpha I_n)^{-1}y \approx (LL^T + \alpha I_n)^{-1}y\)
Efficient Matrix Inversion

• Approximately solve the linear system \((K + \alpha I_n)w = y \)

 • Replace \(K \) by \(LL^T \): \(w^* = (K + \alpha I_n)^{-1}y \approx (LL^T + \alpha I_n)^{-1}y \)

 • Expand the inversion by the Woodbury identity
Efficient Matrix Inversion

• Approximately solve the linear system \((K + \alpha I_n)w = y\)

 • Replace \(K\) by \(LL^T\): \(w^* = (K + \alpha I_n)^{-1}y \approx (LL^T + \alpha I_n)^{-1}y\)

 • Expand the inversion by the Woodbury identity

\[
(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}
\]
Efficient Matrix Inversion

• Approximately solve the linear system $(K + \alpha I_n)w = y$

 • Replace K by LL^T: \[w^* = (K + \alpha I_n)^{-1}y \approx (LL^T + \alpha I_n)^{-1}y \]

 • Expand the inversion by the Woodbury identity
 \[w^* \approx \alpha^{-1}y + \alpha^{-1}L(\alpha I + L^T L)^{-1}L^Ty \]
Efficient Matrix Inversion

• Approximately solve the linear system \((K + \alpha I_n)w = y\)

 • Replace \(K\) by \(LL^T\): \(w^* = (K + \alpha I_n)^{-1}y \approx (LL^T + \alpha I_n)^{-1}y\)

 • Expand the inversion by the Woodbury identity
 \[w^* \approx \alpha^{-1}y + \alpha^{-1}L(\alpha I + L^TL)^{-1}L^Ty \]

• Time cost: \(O(n^c^2)\)

Linear in \(n\), much better than \(O(n^3)\)
Efficient Eigenvalue Decomposition

• Approximately compute the k-eigenvalue decomposition of K
 • SVD: $L = U_L \Sigma_L V_L$
 • $K \approx LL^T = U_L \Sigma_L^2 U_L^T$
Efficient Eigenvalue Decomposition

• Approximately compute the k-eigenvalue decomposition of K
 • $\text{SVD: } L = U_L \Sigma_L V_L$
 • $K \approx LL^T = U_L \Sigma^2_L U_L^T$
 • Approximate k-eigenvalue decomposition of K
 • eigenvectors: the first k vectors in U_L

• Time cost: $O(nc^2)$
Efficient Eigenvalue Decomposition

- Approximately compute the \(k \)-eigenvalue decomposition of \(K \)
 - SVD: \(L = U_L \Sigma_L V_L \)
 - \(K \approx LL^T = U_L \Sigma^2_L U_L^T \)
 - Approximate \(k \)-eigenvalue decomposition of \(K \)
 - eigenvectors: the first \(k \) vectors in \(U_L \)

- Time cost: \(O(nc^2) \)
 - Much lower than \(\tilde{O}(n^2k) \)
Sketching Based Models

• How to find such an approximation?

\[K \approx C U C^T \]
Sketching Based Models

• How to find such an approximation?

\[\mathbf{K} \approx \mathbf{C} \mathbf{U} \mathbf{C}^T \]

• Sketching based Methods: \(\mathbf{C} = \mathbf{K} \mathbf{S} \in \mathbb{R}^{n \times c} \) is a sketch of \(\mathbf{K} \).
 • \(\mathbf{S} \in \mathbb{R}^{n \times c} \) can be column selection or random projection matrix.
Sketching Based Models

• How to find such an approximation?

\[K \approx C U C^T \]

• Sketching based Methods: \(C = KS \in \mathbb{R}^{n \times c} \) is a sketch of \(K \).
 • \(S \in \mathbb{R}^{n \times c} \) can be column selection or random projection matrix

• Three methods:
 • The prototype model [HMT11, WZ13, WLZ16]
 • The fast model [WZZ15]
 • The Nyström method [WS15, GM13]
The Prototype Model

• Objective: $K \approx CUC^T$

• Minimize the approximation error by

$$U^* = \arg\min_U \left\| K - CUC^T \right\|_F^2 = C^+K(C^+)^T.$$
The Prototype Model

- Objective: \(K \approx CUC^T \)
- Minimize the approximation error by
 \[U^* = \arg\min_U \|K - CUC^T\|_F^2 = C^\dagger K(C^\dagger)^T. \]

Extension of the random SVD to SPSD matrix [HMT11]
The Prototype Model

• Objective: $K \approx CUC^T$

• Minimize the approximation error by

$$U^* = \arg\min_U \left\| K - CUC^T \right\|_F^2 = C^\dagger K (C^\dagger)^T.$$

• Time: $O(n^2c)$

• The time complexity is nearly the same to the k-eigenvalue decomposition.
• It is much faster than the k-eigenvalue decomposition in practice.
The Prototype Model

- Objective: $K \approx CUC^T$
- Minimize the approximation error by
 \[
 U^* = \arg\min\limits_U \|K - CUC^T\|^2_F = C^+K(C^+)^T.
 \]
- Time: $O(n^2c)$
- #Passes: one
The Prototype Model

• Objective: $K \approx \text{CUC}^T$

• Minimize the approximation error by

$$U^* = \arg\min_U \|K - \text{CUC}^T\|_F^2 = C^\dagger K(C^\dagger)^T.$$

• Time: $O(n^2c)$

• #Passes: one

• Memory: $O(nc)$

 • Put k_{ij} in memory only when it is visited

 • Keep C^\dagger in memory
The Prototype Model

• Error Bound
 • $k \ll n$ is arbitrary integer
 • P samples $c = O\left(\frac{k}{\epsilon}\right)$ columns by adaptive sampling
 • $\mathbb{E} \left\| K - CU^*C^T \right\|_F^2 \leq (1 + \epsilon) \left\| K - K_k \right\|_F^2$
The Prototype Model

• Limitations
 • $\mathbf{u}^* = \mathbf{c}^\dagger \mathbf{K} (\mathbf{c}^\dagger)^T$
 • Time cost is $O(n^2 c)$
 • Requires observing the whole of \mathbf{K}
The Prototype Model

- Prototype model: $K \approx C U^* C^T$, where

 $$U^* = \underset{U}{\text{argmin}} \|K - CUC^T\|_F^2.$$
The Fast Model

• Column/row selection
 • Form P^TKP and P^TC
The Fast Model

- Column/row selection
 - Form $P^T_K P$ and P^T_C

![Diagram showing matrix operations and dimensions]
The Fast Model

• $K \approx C \tilde{U} C^T$, where

$$\tilde{U} = \arg\min_U \left\| P^T(K - CUC^T)P \right\|_F^2.$$
The Fast Model

- Prototype model: $\mathbf{U}^* = \arg\min_{\mathbf{U}} \left\| \mathbf{K} - \mathbf{CUC}^T \right\|_F^2 = \mathbf{C}^\dagger \mathbf{K} (\mathbf{C}^\dagger)^T$

- Fast model: $\tilde{\mathbf{U}} = \arg\min_{\mathbf{U}} \left\| \mathbf{P}^T (\mathbf{K} - \mathbf{CUC}^T) \mathbf{P} \right\|_F^2 = (\mathbf{P}^T \mathbf{C})^\dagger (\mathbf{P}^T \mathbf{K} \mathbf{P}) (\mathbf{C}^T \mathbf{P})^\dagger$.
The Fast Model

- Prototype model: $U^* = \arg\min_U \|K - CU_C^T\|^2_F = C^T K (C^T)^T$

- Fast model: $\bar{U} = \arg\min_U \|P^T (K - CU_C^T) P\|^2_F = (P^T C)^\dagger (P^T K P) (C^T P)^\dagger$.

- Theory
 - $p = O \left(\sqrt{\frac{nc}{\epsilon}} \right)$
 - P is column selection matrix (according to the row leverage scores of C)
 - Then $\|K - C\bar{U}C^T\|^2_F \leq (1 + \epsilon) \|K - U^*C^T\|^2_F$

The faster model is nearly as good as the prototype model!
The Fast Model

• Prototype model: $U^* = \arg\min_U \left\| K - CUC^T \right\|_F^2 = C^\dagger K(C^\dagger)^T$

• Fast model: $\tilde{U} = \arg\min_U \left\| P^T(K - CUC^T)P \right\|_F^2 = (P^TC)^\dagger (P^TKP)(C^TP)^\dagger$.

• Theory
 • $p = O\left(\sqrt{\frac{nc}{\epsilon}}\right)$
 • P is column selection matrix (according to the row leverage scores of C)
 • Then $\left\| K - C\tilde{U}C^T \right\|_F^2 \leq (1 + \epsilon) \left\| K - CU^*C^T \right\|_F^2$

• Overall time cost: $O(p^2c + nc^2) = O(nc^3/\epsilon)$
 linear in n
The Nyström Method

\[S(n \times c) : \text{column selection matrix} \]

\[C = K S(n \times c), \quad W = S J K S = S J C(c \times c) \]

The Nyström method:

\[K \approx C W^7 C J K \]
The Nyström Method

- $S (n \times c)$: column selection matrix
- $C = KS (n \times c)$
The Nyström Method

- $S (n \times c)$: column selection matrix
- $C = KS (n \times c)$, $W = S^T KS = S^T C (c \times c)$
The Nyström Method

- $\mathbf{S} (n \times c)$: column selection matrix
- $\mathbf{C} = \mathbf{KS} (n \times c)$, $\mathbf{W} = \mathbf{S}^T \mathbf{KS} = \mathbf{S}^T \mathbf{C} (c \times c)$
- The Nyström method: $\mathbf{K} \approx \mathbf{CW}^\dagger \mathbf{C}^T$
The Nyström Method

• $S (n \times c)$: column selection matrix
• $C = KS (n \times c)$, $W = S^T KS = S^T C (c \times c)$
• The Nyström method: $K \approx C W^+ C^T$
• New explanation:
 • Recall the fast model: $\tilde{X} = \arg\min_X \left\| P^T (K - XC^T) P \right\|_F^2$
The Nyström Method

- \(S (n \times c) \): column selection matrix
- \(C = KS (n \times c) \), \(W = S^T KS = S^T C (c \times c) \)
- The Nyström method: \(K \approx C W^\dagger C^T \)
- New explanation:
 - Recall the fast model: \(\tilde{X} = \arg\min_X \|P^T(K - CXC^T)P\|_F^2 \)
 - Setting \(P = S \), then
 \[
 \tilde{X} = \arg\min_X \|S^T(K - CXC^T)S\|_F^2
 \]
The Nyström Method

- \(S (n \times c) \): column selection matrix
- \(C = KS (n \times c) \), \(W = S^T KS = S^T C (c \times c) \)
- The Nyström method: \(K \approx C W^\dagger C^T \)

New explanation:
- Recall the fast model: \(\tilde{X} = \arg\min_X \|P^T(K - CXC^T)P\|_F^2 \)
- Setting \(P = S \), then

\[
\tilde{X} = \arg\min_X \|S^T(K - CXC^T)S\|_F^2 \\
= (S^T C)^\dagger (S^T KS)(C^T S)^\dagger
\]
The Nyström Method

- \(S (n \times c) \): column selection matrix
- \(C = KS (n \times c), W = S^T KS = S^T C (c \times c) \)
- The Nyström method: \(K \approx CW^+ C^T \)
- New explanation:
 - Recall the fast model: \(\tilde{X} = \text{argmin}_X \| P^T (K - CXC^T) P \|_F^2 \)
 - Setting \(P = S \), then
 \[
 \tilde{X} = \text{argmin}_X \| S^T (K - CXC^T) S \|_F^2
 = (S^T C)^+ (S^T KS) (C^T S)^+
 = W^+ W W^+.
 \]
The Nyström Method

• \(S (n \times c) \): column selection matrix

• \(C = KS (n \times c) \), \(W = S^T KS = S^T C (c \times c) \)

• The Nyström method: \(K \approx CW^\dagger C^T \)

• New explanation:

 • Recall the fast model: \(\tilde{X} = \arg\min_X \left\| P^T (K - XC^T)P \right\|_F^2 \)

 • Setting \(P = S \), then

\[
\tilde{X} = \arg\min_X \left\| S^T (K - XC^T)S \right\|_F^2
\]

\[
= (S^T C)^\dagger (S^T KS)(C^T S)^\dagger
\]

\[
= W^\dagger WW^\dagger = W^\dagger
\]
The Nyström Method

• \(S (n \times c) \): column selection matrix
• \(C = KS (n \times c), W = S^T KS = S^T C (c \times c) \)
• The Nyström method: \(K \approx C W^\dagger C^T \)

New explanation:

• Recall the fast model: \(\tilde{X} = \arg\min_X \| P^T (K - CXC^T) P \|^2_F \)
• Setting \(P = S \), then

\[
\tilde{X} = \arg\min_X \| S^T (K - CXC^T) S \|^2_F = (S^T C)^\dagger (S^T KS) (C^T S)^\dagger = W^\dagger WW^\dagger = W^\dagger
\]

• The Nyström method is special instance of the fast model.
The Nyström Method

• $S (n \times c)$: column selection matrix

• $C = KS (n \times c)$, $W = S^T KS = S^T C (c \times c)$

• The Nyström method: $K \approx CW^\dagger CT$

• New explanation:

 • Recall the fast model: $\tilde{X} = \arg\min_X \left\|P^T(K - CXC^T)P\right\|_F^2$

 • Setting $P = S$, then

 $\tilde{X} = \arg\min_X \left\|S^T(K - CXC^T)S\right\|_F^2$

 $= (S^TC)^\dagger (S^T KS)(C^T S)^\dagger$

 $= WW^\dagger = W^\dagger$

• The Nyström method is a special instance of the fast model.
• It is an approximate solution to the prototype model.
The Nyström Method

• Cost
 • Time: $O(nc^2)$
 • Memory: $O(nc)$
The Nyström Method

• Cost
 • Time: $O(nc^2)$
 • Memory: $O(nc)$

Very efficient!
The Nyström Method

• Cost
 • Time: $O(nc^2)$
 • Memory: $O(nc)$

• Error bound: weak

Very efficient!
Comparisons

\[C = KS \in \mathbb{R}^{n \times c}, \quad W = S^T KS = S^T C \in \mathbb{R}^{c \times c} \]

- SPSD matrix approximation: \(K \approx CUC^T \)
 - The prototype model: \(U = C^\dagger K (C^\dagger)^T \)
 - The fast model: \(U = (P^T C)^\dagger (P^T KP)(C^T P)^\dagger \)
 - The Nyström method: \(U = W^\dagger \)
Comparisons

- \(\mathbf{C} = \mathbf{KS} \in \mathbb{R}^{n \times c}, \mathbf{W} = \mathbf{S}^T \mathbf{KS} = \mathbf{S}^T \mathbf{C} \in \mathbb{R}^{c \times c} \)
- SPSD matrix approximation: \(\mathbf{K} \approx \mathbf{CUC}^T \)
 - The prototype model: \(\mathbf{U} = \mathbf{C}^\dagger \mathbf{K} (\mathbf{C}^\dagger)^T \)
 - The fast model: \(\mathbf{U} = (\mathbf{P}^T \mathbf{C})^\dagger (\mathbf{P}^T \mathbf{KP})(\mathbf{C}^T \mathbf{P})^\dagger \)
 - The Nyström method: \(\mathbf{U} = \mathbf{W}^\dagger \)

When \(\mathbf{P} = \mathbf{I}_n \), the prototype model \(\Leftrightarrow \) the fast model
Comparisons

• $C = KS \in \mathbb{R}^{n \times c}$, $W = S^T KS = S^T C \in \mathbb{R}^{c \times c}$

• SPSD matrix approximation: $K \approx CUC^T$

 • The prototype model: $U = C^T K (C^T)^T$
 • The fast model: $U = (P^T C)^T (P^T KP) (C^T P)^T$
 • The Nyström method: $U = W^T$

When $P = S$, the Nyström method \Leftrightarrow the fast model
Comparisons

- $c = 150$, $n = 100c$, vary p from $2c$ to $40c$

\[
\frac{\left\| K - \text{UCU}^T \right\|^2_F}{\left\| K \right\|^2_F}
\]

The Nyström Method
$O(nc^2)$ time

The Fast Model
$O(nc^2 + p^2c)$ time

The Prototype Model
$O(n^2c)$ time
Conclusions

• Motivations
 • Avoid forming the kernel matrix
 • Avoid inversion/decomposition

• Prototype model, fast model, Nystrom
 • They have connections
 • The fast model and Nystrom are practical