CIS4526 Written Assignment II Answers

1. (a) For the first step, the Weekend attribute achieves the max information gain:
 Weekend: \(\text{mrH(pr) + mlH(pl)} = 8H(1/2) + 3H(0) = 8 \)
 Weather: \(\text{mrH(pr) + mlH(pl)} = 5H(1/5) + 6H(1/2) \approx 9.6 \)
 Company: \(\text{mrH(pr) + mlH(pl)} = 4H(1/4) + 7H(3/7) \approx 10.1 \)
 Therefore we first split on weekend attribute.

 If weekend = NO: then Go Hiking = NO.

 If weekend = YES, we need to choose second attribute to split on:
 Weather: \(\text{mrH(pr) + mlH(pl)} = 4H(1/4) + 4H(1/4) \approx 6.4 \)
 Company: \(\text{mrH(pr) + mlH(pl)} = 5H(2/5) + 3H(1/3) \approx 7.6 \)
 Therefore the second attribute will be Weather attribute, and third one will be Company attribute. The decision tree will be as follows:

 (b) probability is 0

 (c) probability is 1/3
2. (a) \(p(B|M) = \frac{p(M|B) \cdot p(B)}{p(M)} \); use Bayes rule

 \[= 0.90 \times 0.01 / 0.10899 \]

 \[= 0.0826 \]

 Based on MAP, \(p(B|M) < p(\sim B|M) \), so the decision is no cancer.

 Based on MLE, since the prior probability will not be considered, namely \(p(B) = p(\sim B) \), we will make the opposite decision that there is cancer. The difference lies in whether one takes into account the prior (hence the false positives).

(b) \(p(B|\sim M) = \frac{p(\sim M|B) \cdot p(B)}{p(\sim M)} \); use Bayes rule

\[= 0.10 \times 0.01 / 0.89 \]

\[= 0.0011 \]

(c) given: \(p(B) = 0.01; p(M|B) = 0.90; p(\sim M|\sim B) = 0.899 \)

so: \(p(\sim B) = 0.99; p(\sim M|B) = 0.10, p(M|\sim B) = 0.101 \)

\[p(M) = p(M^B) + p(M^{\sim B}) \]

\[= p(M|B) \cdot p(B) + p(M|\sim B) \cdot p(\sim B) \]

\[= 0.9 \times 0.01 + 0.101 \times 0.99 = 0.10899 \]

Finally the probability of a negative mammography test \(P(\sim M) = 1 - p(M) = 0.89 \)

One can use the following illustration to better your understanding in computing the prior, joint, and conditional probabilities.
(a) \[\alpha P(S\text{ound, Fur, Color } | \text{Class}) P(\text{Class}) \]
\[= \alpha P(S\text{ound } | \text{Class}) P(\text{Fur } | \text{Class}) P(\text{Color } | \text{Class}) P(\text{Class}) \]

(b) answers below

\[
\begin{align*}
P(\text{Dog}) &= \frac{1}{2} \quad P(\text{Cat}) &= \frac{1}{2} \\
P(\text{Sound}=\text{Meow } | \text{Class}=\text{Dog}) &= \frac{1}{4} \quad P(\text{Sound}=\text{Meow } | \text{Class}=\text{Cat}) &= \frac{3}{4} \\
P(\text{Sound}=\text{Bark } | \text{Class}=\text{Dog}) &= \frac{3}{4} \quad P(\text{Sound}=\text{Bark } | \text{Class}=\text{Cat}) &= \frac{1}{4} \\
P(\text{Fur}=\text{Coarse } | \text{Class}=\text{Dog}) &= \frac{3}{4} \quad P(\text{Fur}=\text{Coarse } | \text{Class}=\text{Cat}) &= \frac{1}{4} \\
P(\text{Fur}=\text{Fine } | \text{Class}=\text{Dog}) &= \frac{1}{4} \quad P(\text{Fur}=\text{Fine } | \text{Class}=\text{Cat}) &= \frac{3}{4} \\
P(\text{Color}=\text{Brown } | \text{Class}=\text{Dog}) &= \frac{1}{2} \quad P(\text{Color}=\text{Brown } | \text{Class}=\text{Cat}) &= \frac{1}{2} \\
P(\text{Color}=\text{Black } | \text{Class}=\text{Dog}) &= \frac{1}{2} \quad P(\text{Color}=\text{Black } | \text{Class}=\text{Cat}) &= \frac{1}{2} \\
\end{align*}
\]

(3) \[
P(\text{Class}=\text{Dog } | \text{Sound}=\text{Bark } \land \text{Fur}=\text{Coarse } \land \text{Color}=\text{Brown})
\[= \alpha(3/4)(3/4)(1/2)(1/2) = 9/10 \]
\[
P(\text{Class}=\text{Cat } | \text{Sound}=\text{Bark } \land \text{Fur}=\text{Coarse } \land \text{Color}=\text{Brown})
\[= \alpha(1/4)(1/4)(1/2)(1/2) = 1/10 \]