1. SVD Decomposition. Given an \(m \times n \) matrix \(A \) and its SVD decomposition \(A = U \Sigma V' \) where \(U \) and \(V \) are left and right singular vector matrices, and \(\Sigma \) is the diagonal singular value matrix. Here, \(U = [u_1 \ u_2 \ ... \ u_k] \), \(V = [v_1 \ v_2 \ ... \ v_k] \) where \(u_i \)'s and \(v_i \)'s are the paired left and right singular vectors (columns), and \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_k) \). \([20 \text{ points}]

I. Please write down the reconstruction of \(A \) using the top-2 left and right singular-vectors and the singular values. What is the rank of this reconstructed matrix? \([7 \text{ points}]

II. Let \(m = 1000 \), and \(n = 500 \). How many left and right singular vectors should one use in order to best reconstruct \(A \) with (at most) half of the memory needed to store the original matrix \(A \)? \([5 \text{ points}]

III. In practice, the singular values \(\sigma_i \)'s are sorted in a descending order, which is called the spectrum of \(A \). What kind of spectrum makes \(A \) easier to compress by SVD? What kind of matrices will have such kind of spectrum? \([8 \text{ points}]

2. Linear Regression. The mean squared error loss function (MSE) can be written as \(\|Xw-Y\|^2 \) where \(X \) is the data matrix and \(Y \) is the label. \([25 \text{ points}]

I. Compute the gradient of the loss with regard to model parameter vector \(w \), set it to zero, and obtain a closed form solution of \(w \). \([15 \text{ points}]

II. Suppose we add an L2-norm regularization term \(\lambda \|w\|^2 \) to the loss function. In this case, if we follow the same procedure as in I, can we still obtain a closed-form solution? \([10 \text{ points}]

3. Decision function. \([20 \text{ points}]

I. For a binary classification problem illustrated below, write down the decision function, that can correctly predict the labels of samples (+ for positive class, - for negative class) \([10 \text{ points}]

Hint: use the line that passes through (0,0) and (-2,1) as the boundary of the two classes.
II. Predict the label of the two new points A and B, using the decision function you just provided. How certain are you in making the predictions and why? [10]

4. Loss function and Regularization. [35 points]
 I. Given training data \(\{x_1, x_2, \ldots, x_n\} \) and label \(\{y_1, y_2, \ldots, y_n\} \). Write down the exponential loss for linear classification model defined on this data set. [5]
 II. Derive the gradient update rule for the exponential loss, and compare it with the update rule of the Perceptron learning algorithm and explain which might be better? [20]
 III. If we add a regularization term using the L1-norm of model parameter, what will the gradient update rule look like? [5]
 IV. What is the specific advantage using L1-norm regularization? [5]