Introduction to Systems Programming & Operating Systems
CIS 3207 / CIS 5012
Spring, 2014

Professor: Dr. Eugene Kwatny

Office: Room 1014 Wachman (10th Floor)
Phone: 215-204-1679
EMAIL: gkwatny@temple.edu

Course Meeting Times:
Tuesday & Thursday 12:30 PM - 1:50 PM [Tuttleman room 401A]
Laboratory Wednesday 10:00 AM - 11:50 AM [Wachman 200]

Office Hours: [appointments are encouraged]
Tuesday 11:00AM - 12:00 PM
Thursday 2:30 PM - 4:30 PM
(other times available by appointment)

Teaching Assistant:
Dawei Li
Office: 108 Wachman (1st floor)
Email: dawei.li@temple.edu
Office Hours: Monday & Wednesday 3PM – 4PM

Student Assistant:
Sophia Salvatore
Email: sophia.salvatore@temple.edu

Prerequisites:
Grade of C or better in: C+IN SC 1166 or Math 2196, C+IN SC 2107, and C+IN SC 2168.
(if any of these courses was taken in Spring 2012 or later, a grade of C- or better is required)

- The ‘C’ programming language will be used for laboratory experiments, and students are expected to have some elementary experience with programming in C. [Online resources for programming in C are available through the class Blackboard site]

Required Textbooks:
(The 8e edition ISBN: 978-0-470-12872-5, or the Update to the 8e published in July, 2011 ISBN is 978-1118112731 are only missing some materials and could be used if supplemented by reviewing another students 9e)

"Computer Systems - a Programmer's Perspective",2e, Bryant & O'Hallaron, 2011, Prentice Hall [same textbook used in 2107, the 2003 edition is OK]

(Microsoft Windows Internals will be supplied electronically in class)

Grading:

Course grade will be determined by :

Final Exam (30%) [the final exam will be comprehensive, covering all course material]
Midterm Exam (25%) [covers all materials up to the date of the midterm]
Laboratory Projects (25%)
Quizzes, homework, class participation (20%) (quizzes will generally not be announced in advance and there will be a quiz every 7 to 10 days).
Unexcused absences will result in a decrease in the course grade. There is no makeup for missed quizzes and the grade for a missed quiz is 0. The lowest quiz grade will be dropped.

Aim of Course

To introduce the basic concepts of operating systems; with a focus on understanding and evaluating operating systems and the most important computer architectural issues impacting operating system design and implementation. The laboratory portion of the course will be based on experiments and assignments implementing and applying operating system mechanisms and components. There will be some work with the code of the Windows Server 2003 (and Windows XP 64 bit) kernel and the Linux 2.6 kernel.

Introduction to the Course

CIS 3207 is a course about Systems Programming and about Operating Systems. These are two very related topics. One, operating systems, is concerned with the internal software that transforms or manages the devices and resources that comprise the computer system. The other topic, systems programming, is concerned with writing programs that interact with the operating system services.

This semester we will explore the main features and principles of operating systems. In order to do that, we will also concern ourselves with computer architecture. We must understand the architecture and devices that make up the computer system in order to understand software at the level of controlling a computer system,.
We will apply these concepts, in particular, to the study of two operating systems that are widely used: Microsoft Windows (actually the Windows NT family) and Linux. In the process, we will study the systems APIs (application programming interfaces) for the two OS's.

The 'C' (or C++) programming language will be used for laboratory experiments and students will have to enhance their own C programming capability (beyond the C programming introduced in CIS 2107. The Blackboard ‘course’ includes many C programming references and training materials).

Course Topics
- Overview of operating systems
- Operating system principles and computer architecture
- Operating system kernels
- Processes and threads
- CPU Scheduling and dispatching
- Concurrency
- Memory management and virtual memory
- Device management
- File systems

Content
- Reading and lecture material from Silbershatz ('Operating Systems') Chapters 1 - 13, 21, 22.
- Reading and lecture material from Bryant & O'Hallaron ('Computer Systems') Chapters 6, 10, 13.
- Material from 'Microsoft Windows Internals' will be used throughout our discussions and will be used as part of the laboratory exercises. (Electronic access to the text will be provided.)

Lecture materials and supplemental documents and texts are available through Blackboard.

DATES of IMPORTANCE:

First class: Tuesday, January 21
Last day to drop (tuition refund available): Monday, February 3.
Spring Recess: March 2 – March 9
Last day to withdraw (no refund): Tuesday, March 25.
Last Class: Thursday, April 30.
Study Days: Tuesday, May 6 and Wednesday, May 7.
Final Exam: Thursday May 8, 10:30 AM - 12:30 AM.

Student Responsibilities
Student's are responsible for reading all assigned text materials, handouts, and referenced sources. Students are responsible for participating in classroom discussions and discussions carried out electronically though Blackboard or other class facilities.
The CIS laboratory computer systems are available for use in homework and laboratory exercises. Access to the computer systems in CIS labs is through Temple University AccessNet username and password. Wachman laboratories 104, 200, 207, and 209 have dual boot Windows and Linux systems. We will be using the computer systems in room 200 for laboratory assignments. These systems will have access to both Linux and Windows source code for laboratory work. You are responsible for performing and completing all of the laboratory exercises. This includes becoming familiar with, and being able to use, all of the tools and software that are to be used in these exercises.

Much of the source code work in the course will require you to have familiarity with (or become familiar with) the C language and development environments for compiling and building C programs in both Windows and Linux. Reference material for the C Language is available via the CIS3207 Blackboard site.

Students are responsible for taking all quizzes and exams in the course. All work turned in for grading or review by the instructors of the course must be the students own work. The objectives of the course can only be met by your doing all of the work and presenting only your work for grading. Presenting work that is not your own will result in disciplinary action.

Student attendance to each class and each laboratory is Mandatory.

Students who miss the final exam and do not make alternative arrangements with me before I turn in grades, will receive a grade of F.

Student and Faculty Academic Rights and Responsibilities
Freedom to teach and freedom to learn are inseparable facets of academic freedom. The University has a policy on Student and Faculty and Academic Rights and Responsibilities (Policy #03.70.02) which can be accessed through the following http://policies.temple.edu/PDF/99.pdf.

Accommodations for Students with Disabilities. The Temple University provides upon request appropriate academic adjustments for qualified students with disabilities. For more information, contact Disability Resources and Services (http://www.temple.edu/studentaffairs/disability/accommodations/).

Collaboration and Cheating Policy
We encourage you to discuss the problem sets and programming assignments with your colleagues. We welcome discussions of possible interpretations of questions, solution approaches, and points of confusion. You are also welcome to use existing public libraries in your programming assignments (such as public classes for queues, trees, etc.) You may also look at operating systems code for public domain software such as Linux. Such activities qualify under approved collaboration practices and you are welcome to take advantage of them.

You may not look at any course project material relating to any project similar to this course's class projects. For example, you may not look at the work done by a student in past years' courses, and you may not look at similar course projects at other universities. If you are unsure
about whether a particular source of external information is permitted, contact the instructor before looking at it.

Note that cooperation is not the same thing as cheating. You must understand and generate the solution, and you must not copy all or part of someone else's solution. The project assignments and exams must be the work of the student turning them in. Students who violate University rules on scholastic dishonesty are subject to disciplinary penalties, including the possibility of failure in the course and/or dismissal from the University. Because such dishonesty harms the individual, all students, and the integrity of the University, policies on scholastic dishonesty will be strictly enforced.

It is generally OK to verbally discuss the concepts needed to do projects assignments. These discussions should focus on overall approach and understanding, not the detailed answer to the specific problem. These guidelines will help you keep on the right side of the line:

First, other than the TA and instructor, it is never OK to look at the written work of another person or show another person your written work until after all grading on an assignment is completed. This includes looking at paper print-outs, sketching solutions on a white board or napkin, or looking at a screen to help debugging. It should go without saying that copying other people’s code or solution sets is strictly prohibited.

Second, everyone in the class is expected to take appropriate measures for protecting one's work. For example, you should protect your files and printouts from unauthorized access.

Note that these guidelines are necessarily generalizations and cannot account for all circumstances. Intellectual dishonesty can end your career, and it is your responsibility to stay on the right side of the line. If you are not sure about something, ask.

For the in-lab parts of laboratory projects completed in teams, both team members should contribute equally and will be graded individually. The write-ups and out-of-class portions of labs must be completed independently.

In summary, when you are turning in an assignment with your name on it; what you turn in must be your work, and yours alone. Cheating will not be tolerated.

Resources

We will use the Blackboard course management system in this course, http://blackboard.temple.edu or access through the TUPortal (http://tuportal.temple.edu). In order to access Blackboard you must have an Temple AccessNet account (all Temple students have one). Registered students will be automatically enrolled in the CIS 3207 Blackboard course. But this can only happen if you have an AccessNet account and are registered for the course. Until you are registered for the course and have such an account, you cannot access the course materials in Blackboard.

Your AccessNet account also gives you login capability for Astro (astro.temple.edu). All materials for the course will be available from Blackboard. This includes a threaded discussion list, class
notes and lecture slides. Students will be required to interact with themselves, and the instructor via this discussion list or other tools (e.g., a wiki) provided for the course. Blackboard and the discussion lists are accessed through a web browser.

Announcements for the course will be provided via Blackboard. You are expected to visit the Blackboard course for CIS 3207 on a regular basis for updates to lecture notes, slides and other course information.

Project and homework assignments are to be submitted through Blackboard in electronic form.

Office visits, Voice Mail and EMAIL are encouraged for communication with the instructor.

Last Modified: 14 January 2014