8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- **NP-completeness.** $O(n^k)$ algorithm unlikely.
- **PSPACE-completeness.** $O(n^k)$ certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

Turing machine, word RAM, uniform circuits, ...

constants tend to be small, e.g., $3n^2$
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece of hardware that solves instances of Y in a single step
Poly-time reductions

Desiderata'. Suppose we could solve problem \(Y \) in polynomial time. What else could we solve in polynomial time?

Reduction. Problem \(X \) polynomial-time (Cook) reduces to problem \(Y \) if arbitrary instances of problem \(X \) can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem \(Y \).

Notation. \(X \leq_p Y \).

Note. We pay for time to write down instances of \(Y \) sent to oracle \(\Rightarrow \) instances of \(Y \) must be of polynomial size.

Novice mistake. Confusing \(X \leq_p Y \) with \(Y \leq_p X \).
Polynomial transformations

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a *yes* instance of X iff y is a *yes* instance of Y.

We require $|y|$ to be of size polynomial in $|x|$.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

We abuse notation \leq_p and blur distinction.
Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Intractability: quiz 2

Which of the following poly-time reductions are known?

A. $\text{FIND-MAX-FLOW} \leq_p \text{FIND-MIN-CUT}.$

B. $\text{FIND-MIN-CUT} \leq_p \text{FIND-MAX-FLOW}.$

C. Both A and B.

D. Neither A nor B.
Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

- **Vertex cover of size 4**
- **Independent set of size 6**
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set} $\equiv_p \textsc{Vertex-Cover}$.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.
Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_p Vertex-Cover.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let S be any independent set of size k.
- $V - S$ is of size $n - k$.
- Consider an arbitrary edge $(u, v) \in E$.
- S independent \Rightarrow either $u \notin S$, or $v \notin S$, or both.
 \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
- Thus, $V - S$ covers (u, v). \blacksquare
Vertex cover and independent set reduce to one another

Theorem. \textsc{Independent-Set \equiv_p Vertex-Cover.}

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\[\iff\]

- Let $V - S$ be any vertex cover of size $n - k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- $V - S$ is a vertex cover \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
 \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, S is an independent set. \blacksquare
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a = \{ 3, 7 \} \\
\underline{S_c} = \{ 3, 4, 5, 6 \} \\
S_b = \{ 2, 4 \} \\
S_e = \{ 1 \} \\
S_d = \{ 5 \} \\
\underline{S_f} = \{ 1, 2, 6, 7 \} \\
k = 2
\]

a set cover instance
Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

Let's calculate:

- $U = \{1, 2, 3, 4, 5, 6, 7\}$
- $S_a = \{1, 4, 6\}$
- $S_b = \{1, 6, 7\}$
- $S_c = \{1, 2, 3, 6\}$
- $S_d = \{1, 3, 5, 7\}$
- $S_e = \{2, 6, 7\}$
- $S_f = \{3, 4, 5\}$
Vertex cover reduces to set cover

Theorem. \textsc{Vertex-Cover} $\leq_p \textsc{Set-Cover}$.

Pf. Given a \textsc{Vertex-Cover} instance $G = (V, E)$ and k, we construct a \textsc{Set-Cover} instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e$ incident to $v\}$.

Example:

- Universe $U = \{1, 2, 3, 4, 5, 6, 7\}$
- Set covers:
 - $S_a = \{3, 7\}$
 - $S_b = \{2, 4\}$
 - $S_c = \{3, 4, 5, 6\}$
 - $S_d = \{5\}$
 - $S_e = \{1\}$
 - $S_f = \{1, 2, 6, 7\}$

- **Vertex cover instance** ($k = 2$):
 - Nodes: a, b, c, d, e, f
 - Edges: e_1, e_2, e_3, e_4, e_5, e_6, e_7

- **Set cover instance** ($k = 2$):
 - Sets: S_a, S_b, S_c, S_d, S_e, S_f

21
Vertex cover reduces to set cover

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).

Pf. \(\Rightarrow \) Let \(X \subseteq V \) be a vertex cover of size \(k \) in \(G \).
- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \).

\[U = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
\[S_a = \{ 3, 7 \} \]
\[S_b = \{ 2, 4 \} \]
\[\boxed{S_c = \{ 3, 4, 5, 6 \}} \]
\[S_d = \{ 5 \} \]
\[S_e = \{ 1 \} \]
\[\boxed{S_f = \{ 1, 2, 6, 7 \}} \]
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \iff Let $Y \subseteq S$ be a set cover of size k in (U, S, k).

- Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. □

"no" instances of VERTEX-COVER are solved correctly
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- **constraint satisfaction problems**
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x}_i \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x}_2 \lor x_3 \)

Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[
\Phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4)
\]

Yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to \(P \neq NP \) conjecture.

https://www.facebook.com/pg/npcompleteteens
P vs. NP

P: the existence of an algorithm *solving* the task in polynomial time

NP: an answer to the task that can be verified in polynomial time

N = NP? Is there a problem harder to compute than to verify: could not be solved in polynomial time, but the answer could be verified in polynomial time?

NP complete: any NP problem can be transformed into an NP-complete problem.

First NP complete problem: *Boolean Satisfication Problem* (Cook-Levin)
3-satisfiability reduces to independent set

Theorem. 3-SAT \(\leq_P \) INDEPENDENT-SET.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of INDEPENDENT-SET that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

Construction.
- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\Rightarrow \) Consider any satisfying assignment for \(\Phi \).

- Select one true literal from each clause/triangle.
- This is an independent set of size \(k = |\Phi| \).

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]
3-satisfiability reduces to independent set

Lemma. \(\Phi \) is satisfiable iff \(G \) contains an independent set of size \(k = |\Phi| \).

Pf. \(\iff \) Let \(S \) be independent set of size \(k \).

- \(S \) must contain exactly one node in each triangle.
- Set these literals to \(true \) (and remaining literals consistently).
- All clauses in \(\Phi \) are satisfied.

\[k = 3 \]

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]
Basic reduction strategies.

- Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).
- Special case to general case: \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
- Encoding with gadgets: \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \).

Transitivity. If \(X \leq_p Y \) and \(Y \leq_p Z \), then \(X \leq_p Z \).

Pf idea. Compose the two algorithms.

Ex. \(3\text{-SAT} \leq_p \text{INDEPENDENT-SET} \leq_p \text{VERTEX-COVER} \leq_p \text{SET-COVER} \).
Decision problem. Does there exist a vertex cover of size \(\leq k \) ?
Search problem. Find a vertex cover of size \(\leq k \).
Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

![Diagram of a graph with labeled nodes 1, 1', 2, 2', 3, 3', 4, 4', 5 with edges connecting them in a way that creates cycles involving 1, 2, 2', 3, 3', 4, 4', 5 without forming a simple cycle that visits each node exactly once. The text indicates there is no such cycle.]
Directed Hamilton cycle reduces to Hamilton cycle

Directed-Hamilton-Cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. $\text{DIRECTED-HAMILTON-CYCLE} \leq_p \text{HAMILTON-CYCLE}.$

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. \(G \) has a directed Hamilton cycle iff \(G' \) has a Hamilton cycle.

Pf. \(\Rightarrow \)
- Suppose \(G \) has a directed Hamilton cycle \(\Gamma \).
- Then \(G' \) has an undirected Hamilton cycle (same order).

Pf. \(\Leftarrow \)
- Suppose \(G' \) has an undirected Hamilton cycle \(\Gamma' \).
- \(\Gamma' \) must visit nodes in \(G' \) using one of following two orders:
 - \(\ldots, black, white, blue, black, white, blue, black, white, blue, \ldots \)
 - \(\ldots, black, blue, white, black, blue, white, black, blue, white, \ldots \)
- Black nodes in \(\Gamma' \) comprise either a directed Hamilton cycle \(\Gamma \) in \(G \), or reverse of one.
3-satisfiability reduces to directed Hamilton cycle

Theorem. $\text{3-SAT} \leq_p \text{DIRECTED-HAMILTON-CYCLE}.$

Pf. Given an instance Φ of 3-SAT, we construct an instance G of $\text{DIRECTED-HAMILTON-CYCLE}$ that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.
Which is truth assignment corresponding to Hamilton cycle below?

A. \(x_1 = true, x_2 = true, x_3 = true \)

B. \(x_1 = true, x_2 = true, x_3 = false \)

C. \(x_1 = false, x_2 = false, x_3 = true \)

D. \(x_1 = false, x_2 = false, x_3 = false \)
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.

$C_1 = x_1 \lor \overline{x_2} \lor x_3$ \hspace{2cm} clause node 1

$C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3}$ \hspace{2cm} clause node 2
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

- Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).
- Then, define Hamilton cycle \(\Gamma \) in \(G \) as follows:
 - if \(x_i^* = true \), traverse row \(i \) from left to right
 - if \(x_i^* = false \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in “correct” direction to splice clause node \(C_j \) into cycle
 (and we splice in \(C_j \) exactly once) □
3-satisfiability reduces to directed Hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\iff \)

• Suppose \(G \) has a Hamilton cycle \(\Gamma \).

 • If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.

 - nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)

 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G - \{ C_j \} \)

 • Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G - \{ C_1 , C_2 , \ldots , C_k \} \).

• Set \(x_i^* = true \) if \(\Gamma' \) traverses row \(i \) left-to-right; otherwise, set \(x_i^* = false \).

• traversed in “correct” direction, and each clause is satisfied. \(\blacksquare \)
Poly-time reductions

3-Sat poly-time reduces to Independent-Set

3-Sat

Independent-Set

Vertex-Cover

Set-Cover

Direct-Ham-Cycle

Ham-Cycle

3-Color

Subset-Sum

Knapsack

Constraint satisfaction

Packing and covering

Sequencing

Partitioning

Numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- **numerical problems**
My hobby

My HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

APPETIZERS

MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 3.35
HOT WINGS 3.55
MOZZARELLA STICKS 4.20
SAMPLER PLATE 5.80

SANDWICHES

BARBECUE 6.55

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

...EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO —

— AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?
Subset sum

Subset-Sum. Given \(n \) natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Ex. \{ 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 \}, \(W = 1505 \).

Yes. \(215 + 355 + 355 + 580 = 1505 \).

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Subset sum

Theorem. 3-SAT \leq_p SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:

- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1;
 - sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

$$
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
$$

3-SAT instance

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

W = 1,1,1,4,4,4

$$
\begin{align*}
0 & 0 & 0 & 1 & 0 & 0 & 100,010 \\
0 & 0 & 0 & 2 & 0 & 0 & 100,101 \\
0 & 0 & 0 & 0 & 1 & 0 & 10,100 \\
0 & 0 & 0 & 0 & 2 & 0 & 10,011 \\
0 & 0 & 0 & 0 & 0 & 1 & 1,110 \\
0 & 0 & 0 & 0 & 0 & 2 & 1,001 \\
\end{align*}
$$

subset-sum instance
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. ⇒ Suppose 3-SAT instance Φ has satisfying assignment x^*.

- If $x^*_i = true$, select integer in row x_i;
 otherwise, select integer in row $\neg x_i$.
- Each x_i digit sums to 1.
- Since Φ is satisfiable, each C_j digit sums to at least 1 from x_i and $\neg x_i$ rows.
- Select dummy integers to make C_j digits sum to 4.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>W</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

999,999 100,000 100,001 100,100 100,101 101,001 111,444 111,444 111,444 111,444

\[
\begin{align*}
\text{dummies to get clause columns to sum to 4}
\end{align*}
\]

\[
\begin{align*}
\text{SUBSET–SUM instance}
\end{align*}
\]
Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \Leftarrow Suppose there exists a subset S^* that sums to W.
- Digit x_i forces subset S^* to select either row x_i or row $\neg x_i$ (but not both).
- If row x_i selected, assign $x_i^* = \text{true}$; otherwise, assign $x_i^* = \text{false}$.

Digit C_j forces subset S^* to select at least one literal in clause.

$$C_1 = \neg x_1 \lor x_2 \lor x_3$$

$$C_2 = x_1 \lor \neg x_2 \lor x_3$$

$$C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$$

3-SAT instance

dummies to get clause columns to sum to 4

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

	0	0	0	1	0	0	100
	0	0	0	0	0	0	200
	0	0	0	0	1	0	10
	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
	0	0	0	0	0	2	2

W | 1 | 1 | 1 | 4 | 4 | 4 | 111,444 | Subset-Sum instance
SUBSET SUM REDUCES TO KNAPSACK

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

KNAPSACK. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(n U)$ dynamic programming algorithm for KNAPSACK.

Challenge. Prove SUBSET-SUM \leq_P KNAPSACK.

Pf. Given instance (w_1, \ldots, w_n, W) of SUBSET-SUM, create KNAPSACK instance:
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

DIR-HAM-CYCLE

HAM-CYCLE

3-COLOR

SUBSET-SUM

KNAPSACK

packing and covering

sequencing

partitioning

numerical
Karp's 20 poly-time reductions from satisfiability

Dick Karp (1972)
1985 Turing Award

FIGURE 1 - Complete Problems