

Chapter 7

Network Flow

Soviet Rail Network, 1955

Two different views: Russians on max flow, Americans on min cut

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- $G=(V, E)=$ directed graph, no parallel edges.
- Two distinguished nodes: $s=$ source, $t=$ sink.
- $c(e)=$ capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B) is: $\quad \operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.
Def. The capacity of a cut (A, B) is: $\quad \operatorname{cap}(A, B)=\sum_{e \text { out of } A} c(e)$

Minimum Cut Problem

Min s- \dagger cut problem. Find an $s-\dagger$ cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in \mathrm{E}: \quad 0 \leq f(e) \leq c(e) \quad$ [capacity]
- For each $v \in \mathrm{~V}-\{\mathbf{s}, \dagger\}: \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [conservation]

Def. The value of a flow f is: $v(f)=\sum_{e \text { out of } s} f(e)$.

Flows

Def. An $s-\dagger$ flow is a function that satisfies:

- For each $e \in \mathrm{E}: \quad 0 \leq f(e) \leq c(e) \quad$ [capacity]
- For each $v \in \mathrm{~V}-\{\mathrm{s}, \dagger\}: \sum_{e \text { in to } v} f(e)=\sum_{e \text { out of } v} f(e) \quad$ [conservation]

Def. The value of a flow f is: $v(f)=\sum_{e \text { out of } s} f(e)$.

Maximum Flow Problem

Max flow problem. Find $s-\dagger$ flow of maximum value.

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any $s-t$ cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e)=v(f)
$$

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any $s-t$ cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f)
$$

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any $s-t$ cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e)=v(f)
$$

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$
\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e)=v(f) .
$$

Pf.

$$
v(f)=\sum_{e \text { out of } s} f(e)
$$

$$
\begin{aligned}
\begin{array}{l}
\text { by flow conservation, all terms } \\
\text { except } v=s \text { are } 0
\end{array} & =\sum_{v \in A}\left(\sum_{e \text { out of } v} f(e)-\sum_{e \text { in to } \mathrm{v}} f(e)\right) \\
& =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e) .
\end{aligned}
$$

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$
\text { Cut capacity }=30 \Rightarrow \text { Flow value } \leq 30
$$

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \operatorname{cap}(A, B)$.

Pf.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& \leq \sum_{e \text { out of } A} f(e) \\
& \leq \sum_{e \text { out of } A} c(e) \\
& =\operatorname{cap}(A, B)
\end{aligned}
$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If $v(f)=\operatorname{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

```
Value of flow =28
Cut capacity = 28 F Flow value }\leq2
```


Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value $=0$

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value $=20$

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e)=0$ for all edge $e \in E$.
- Find an s - \dagger path P where each edge has $f(e)<c(e)$.
- Augment flow along path P.
- Repeat until you get stuck. locally optimality \nRightarrow global optimality

Residual Graph

Original edge: $e=(u, v) \in E$.

- Flow f(e), capacity c(e).

Residual edge.
. "Undo" flow sent.

- $e=(u, v)$ and $e^{R}=(v, u)$.
- Residual capacity:

$$
c_{f}(e)= \begin{cases}c(e)-f(e) & \text { if } e \in E \\ f(e) & \text { if } e^{R} \in E\end{cases}
$$

Residual graph: $G_{f}=\left(V, E_{f}\right)$.

- Residual edges with positive residual capacity.
- $E_{f}=\{e: f(e)<c(e)\} \cup\left\{e^{R}: f(e)>0\right\}$.

Ford-Fulkerson Algorithm

Augmenting Path Algorithm

```
Augment (f, \(\mathrm{C}, \mathrm{P}\) ) \{
    \(\mathrm{b} \leftarrow\) bottleneck ( P )
    foreach e \(\in\) P \{
        if \((e \in E) f(e) \leftarrow f(e)+b\)
        else \(\quad f\left(e^{R}\right) \leftarrow f\left(e^{R}\right)-b\)
    \}
    return \(\mathbf{f}\)
\}
```

 forward edge
 reverse edge
    ```
Ford-Fulkerson(G, s, t, c) {
    foreach e \in E f(e) \leftarrow0
    Gf}\leftarrow\leftarrow\mathrm{ residual graph
    while (there exists augmenting path P) {
        f \leftarrow Augment(f, c, P)
        update GG
    }
    return f
}
```


Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that $v(f)=\operatorname{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.
(i) \Rightarrow (ii) This was the corollary to weak duality lemma.
(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, \dagger \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to A }} f(e) \\
& =\sum^{\sum c(e)} \\
& =\operatorname{cout}(A, B)
\end{aligned}
$$

Running Time

Assumption. All capacities are integers between 1 and C.
Invariant. Every flow value $f(e)$ and every residual capacity $c_{f}(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v\left(f^{\star}\right) \leq m C$ iterations, where m is the number of edges.
Pf. Each augmentation increase value by at least 1. -
Corollary. If $C=1$, Ford-Fulkerson runs in $O(m n)$ time.
Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. -

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Large Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

$$
m \text { (\# of edges), } n \text { (\# of nodes), and } \log C
$$

A. No. If max capacity is C, then algorithm can take C iterations.

Ford-Fulkerson: Large Number of Augmentations

$C=100$

(a)

(c)

(b)

(d)

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with:

- Both are strongly polynomial algorithms: $O(m n)$

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_{f}(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

G_{f}

$G_{f}(100)$

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    \Delta}\leftarrow\mathrm{ smallest power of 2 greater than or equal to C
    Gf}\leftarrow\leftarrowresidual graph
    while ( }\Delta\geq1) 
        G
        while (there exists augmenting path P in G}\mp@subsup{G}{f}{}(\Delta)) 
            f \leftarrow augment(f, c, P)
            update GG(\Delta)
        }
        \Delta\leftarrow\Delta/2
    }
    return f
}
```


Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta=1 \Rightarrow G_{f}(\Delta)=G_{f}$.
- Upon termination of $\Delta=1$ phase, there are no augmenting paths. .

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1+\left\lceil\log _{2} C\right\rceil$ times.
Pf. Initially $C \leq \Delta<2 C$. Δ decreases by a factor of 2 each iteration. -

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f)+m \Delta$.
\leftarrow proof on next slide
Lemma 3. There are at most 2 m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- $\mathrm{L} 2 \Rightarrow \mathrm{v}\left(\mathrm{f}^{\star}\right) \leq \mathrm{v}(\mathrm{f})+\mathrm{m}(2 \Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. .

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O\left(m^{2} \log C\right)$ time.

Still pseudo polynormal! The followings are strongly polynormal and $O(\mathrm{mn})$

- Aug. path with fewest \# of edges [Edmonds-Karp 1972, Dinitz 1970].
- Preflow-push maximum-flow (notion of node height) [Goldberg 1986].

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f)+m \Delta$.
Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\operatorname{cap}(A, B) \leq v(f)+m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_{f}(\Delta)$.
- By definition of $A, s \in A$.
- By definition of $f, \dagger \notin A$.

$$
\begin{aligned}
v(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& \geq \sum_{e \text { out of } A}(c(e)-\Delta)-\sum_{e \text { in to } A} \Delta \\
& =\sum_{e \text { out of } A} c(e)-\sum_{e \text { out of } A} \Delta-\sum_{e \text { in to } A} \Delta \\
& \geq \operatorname{cap}(A, B)-m \Delta
\end{aligned}
$$

