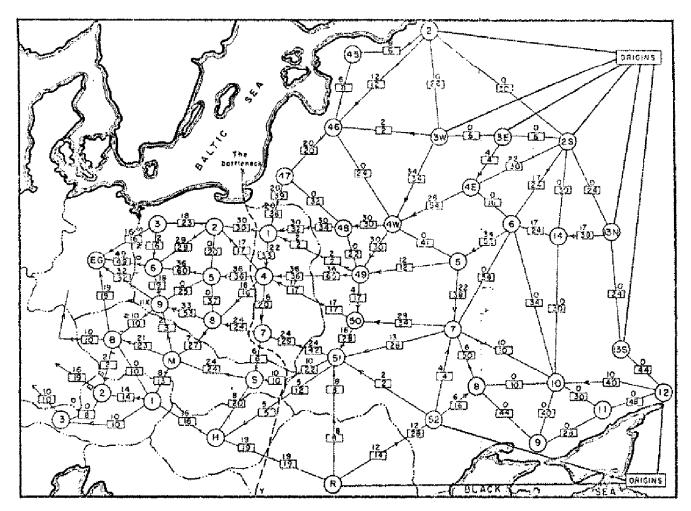


Chapter 7

Network Flow

Soviet Rail Network, 1955

Two different views: Russians on max flow, Americans on min cut



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

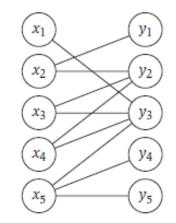
Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

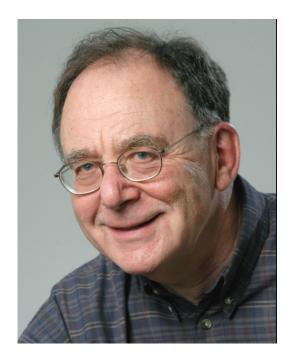
Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.



- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Efficient Implementation of Max-Flow: Edmonds-Karp 1972

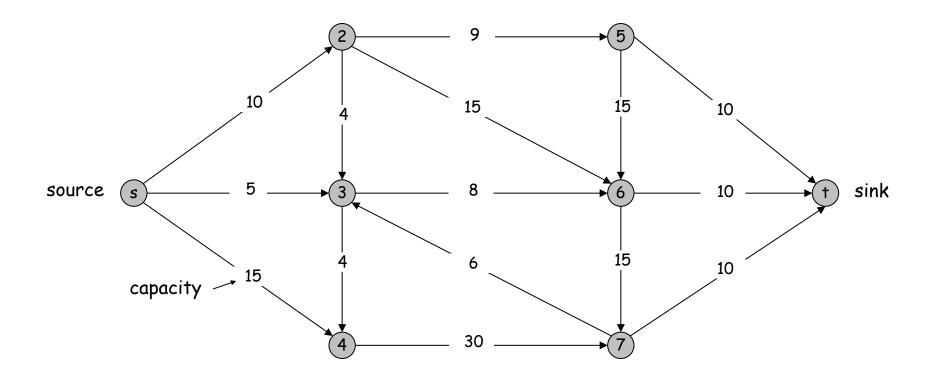


Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012

Minimum Cut Problem

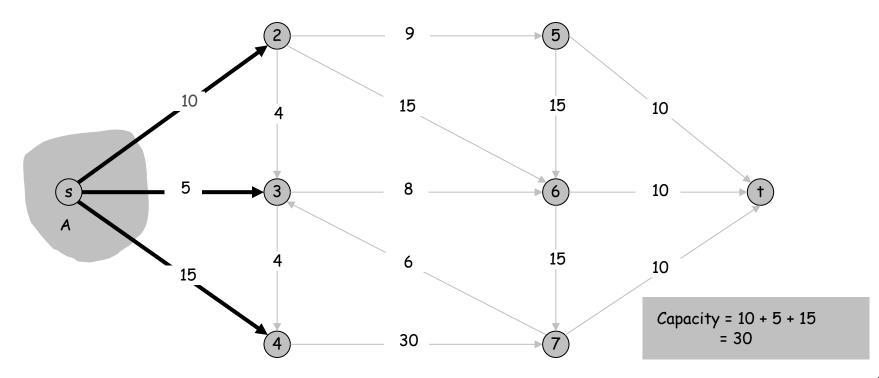
Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.



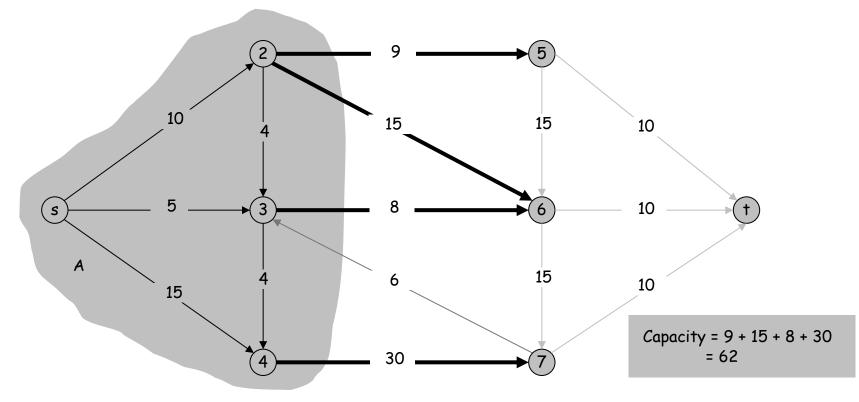
Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



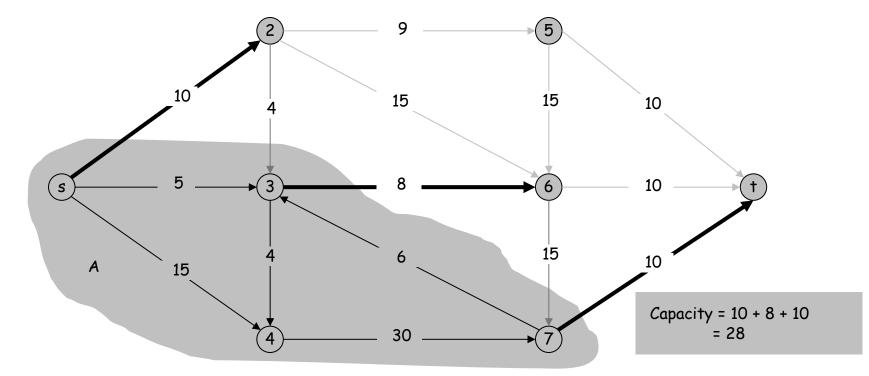
Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.



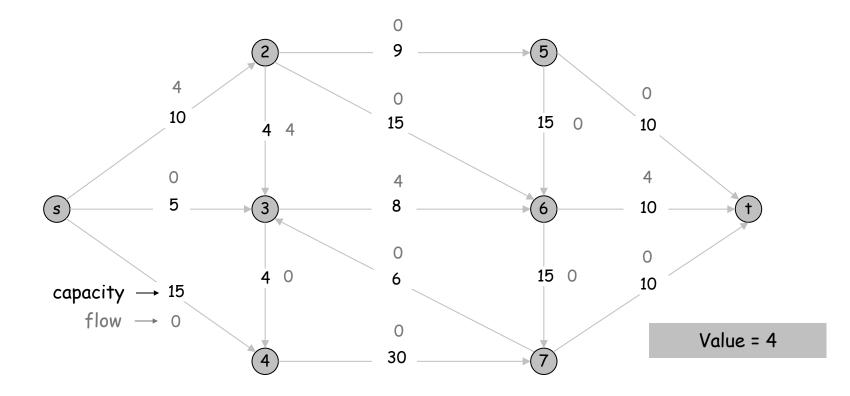
Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.



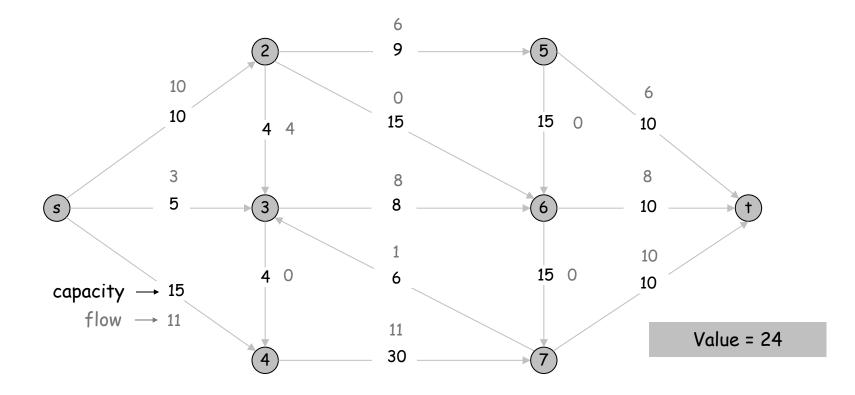
Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

[capacity] [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.



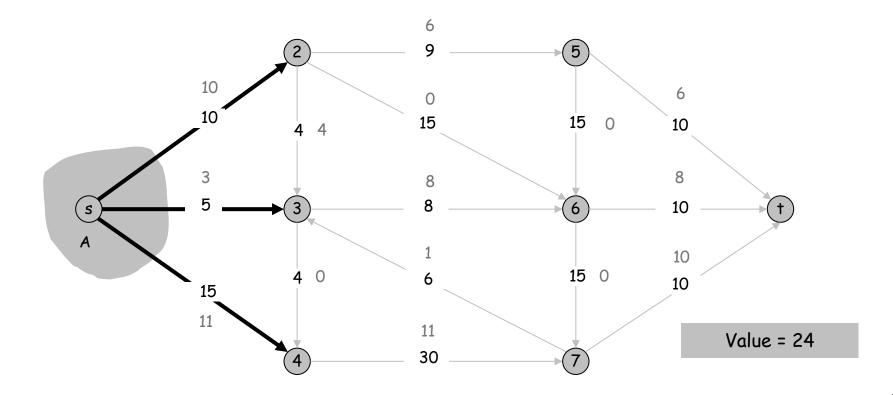
Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.



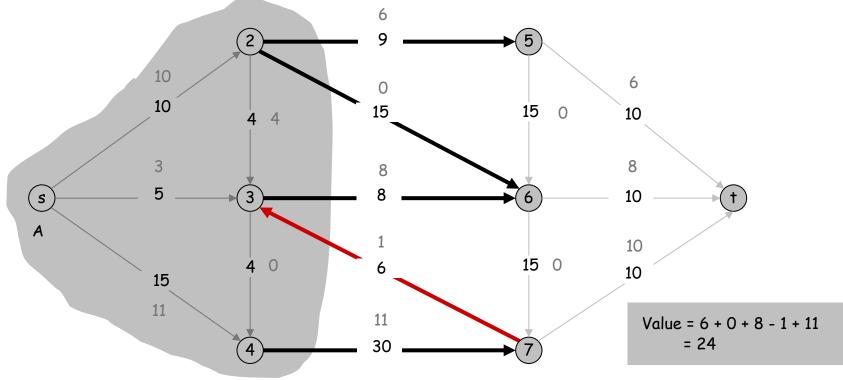
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$



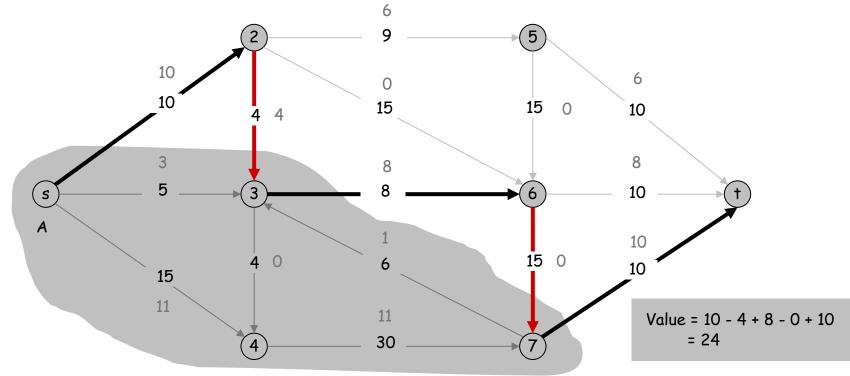
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$



Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$



Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

 $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$

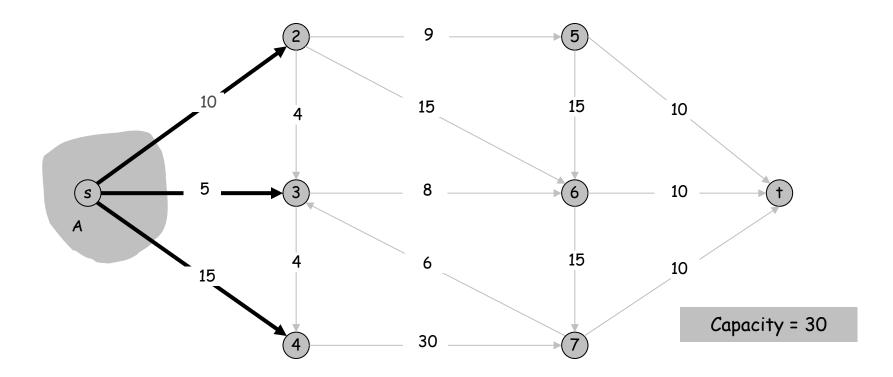
Pf.
$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms
$$\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \implies Flow value \leq 30



Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq cap(A, B)$.

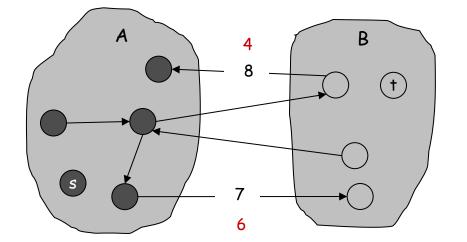
Pf.

$$v(f) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} f(e)$$

$$\leq \sum_{\substack{e \text{ out of } A}} c(e)$$

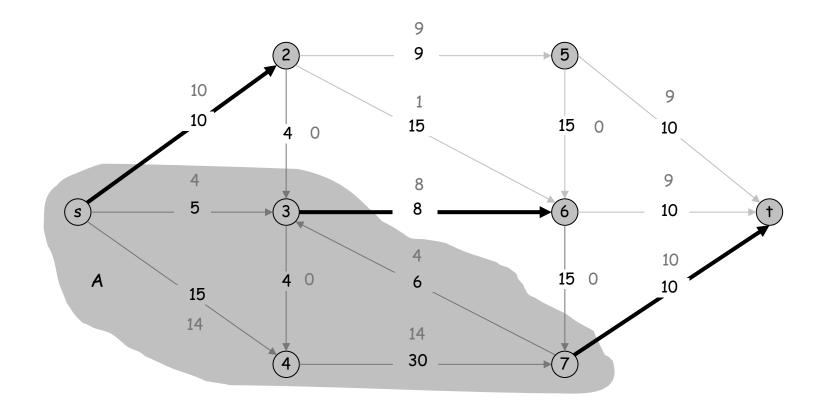
$$= \operatorname{cap}(A, B) \quad \bullet$$



Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

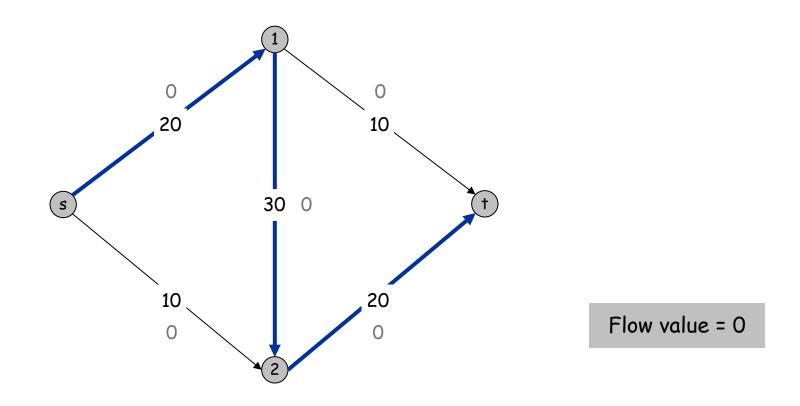
> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28



Towards a Max Flow Algorithm

Greedy algorithm.

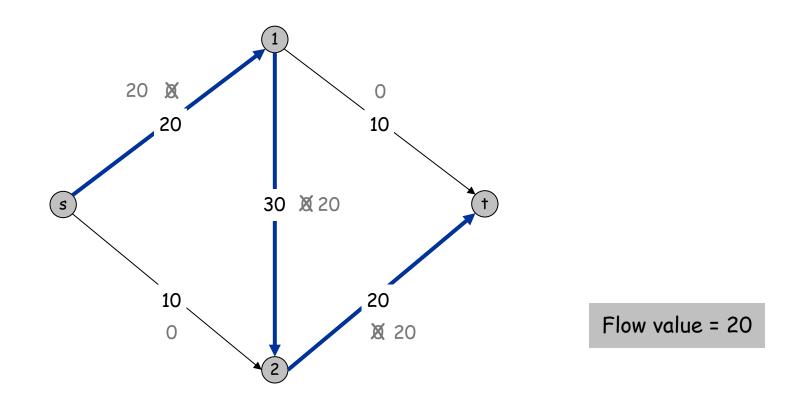
- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.



Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

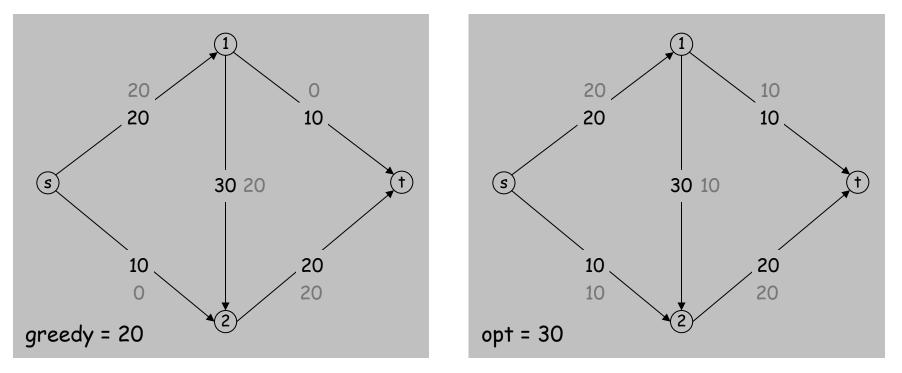


Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

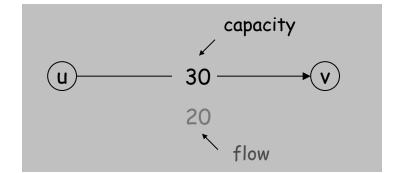
 $^{\checkmark}$ locally optimality \Rightarrow global optimality



Residual Graph

Original edge: $e = (u, v) \in E$.

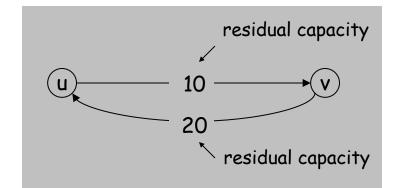
Flow f(e), capacity c(e).



Residual edge.

- "Undo" flow sent.
- e = (u, v) and e^R = (v, u).
- Residual capacity:

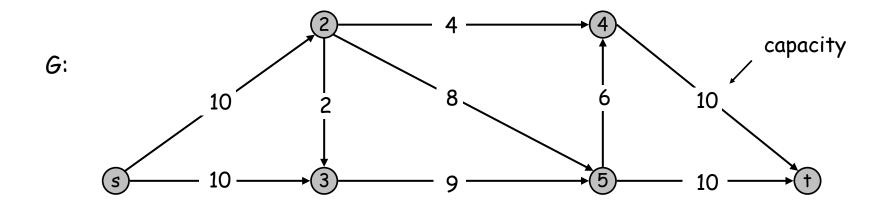
$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$



Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Ford-Fulkerson Algorithm



Augmenting Path Algorithm

```
Augment(f, c, P) {

b \leftarrow bottleneck(P)

foreach e \in P {

if (e \in E) f(e) \leftarrow f(e) + b formation formation
```

forward edge reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
   G<sub>f</sub> \leftarrow residual graph
   while (there exists augmenting path P) {
      f \leftarrow Augment(f, c, P)
      update G<sub>f</sub>
   }
   return f
}
```

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

- (i) There exists a cut (A, B) such that v(f) = cap(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.

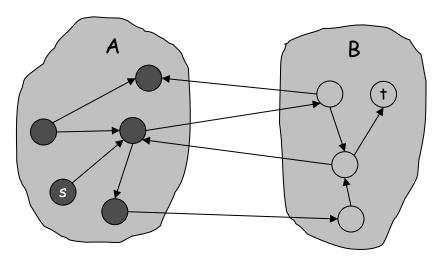
 Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$v(f) = \sum_{\substack{e \text{ out of } A}} f(e) - \sum_{\substack{e \text{ in to } A}} f(e)$$
$$= \sum_{\substack{e \text{ out of } A}} c(e)$$
$$= cap(A, B) \bullet$$



original network

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \le mC$ iterations, where m is the number of edges.

Pf. Each augmentation increase value by at least 1.

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

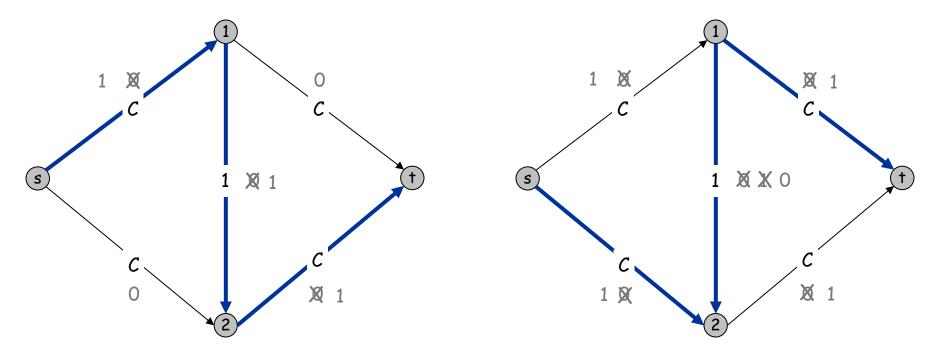
Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant.

7.3 Choosing Good Augmenting Paths

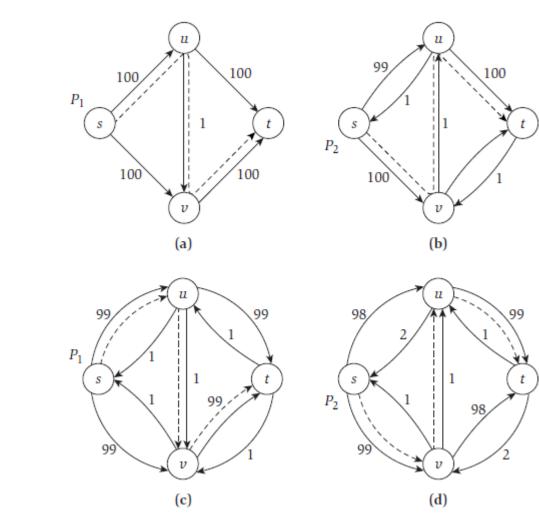
Ford-Fulkerson: Large Number of Augmentations

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size? m (# of edges), n (# of nodes), and log C
- A. No. If max capacity is C, then algorithm can take C iterations.



Ford-Fulkerson: Large Number of Augmentations

C=100



Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

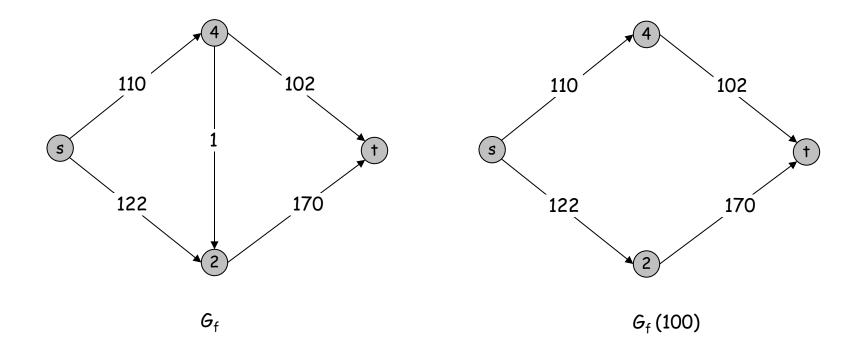
Choose augmenting paths with:

Both are strongly polynomial algorithms: O(mn)

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ .



Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
   \Delta \leftarrow smallest power of 2 greater than or equal to C
   G_f \leftarrow residual graph
   while (\Delta \ge 1) {
        G_{f}(\Delta) \leftarrow \Delta-residual graph
        while (there exists augmenting path P in G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
            update G_f(\Delta)
       \Delta \leftarrow \Delta / 2
    }
    return f
}
```

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow. Pf.

- By integrality invariant, when $\Delta = 1 \implies G_f(\Delta) = G_f$.
- Upon termination of Δ = 1 phase, there are no augmenting paths. •

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times. Pf. Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 each iteration.

Lemma 2. Let f be the flow at the end of a \triangle -scaling phase. Then the value of the maximum flow is at most v(f) + m \triangle .

Lemma 3. There are at most 2m augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- L2 \Rightarrow v(f*) \leq v(f) + m (2 Δ).
- Each augmentation in a $\Delta\text{-phase}$ increases v(f) by at least Δ . -

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Still pseudo polynormal ! The followings are strongly polynormal and O(mn)

- Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
- Preflow-push maximum-flow (notion of node height) [Goldberg 1986].

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then value of the maximum flow is at most v(f) + m Δ .

Pf. (almost identical to proof of max-flow min-cut theorem)

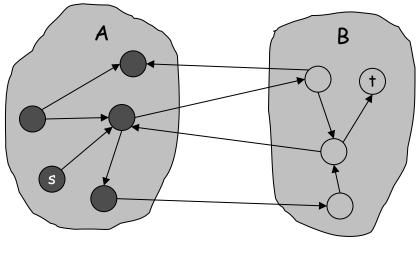
- We show that at the end of a Δ -phase, there exists a cut (A, B) such that cap(A, B) $\leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_{f}(\Delta)$.
- By definition of $A, s \in A$.
- By definition of $f, t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq cap(A, B) - m\Delta \quad \bullet$$



original network