
1

Chapter 7

Network Flow

2

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Two different views: Russians on max flow, Americans on min cut

3

Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Data mining.
! Open-pit mining.
! Project selection.
! Airline scheduling.
! Bipartite matching.
! Baseball elimination.
! Image segmentation.
! Network connectivity.

! Network reliability.
! Distributed computing.
! Egalitarian stable matching.
! Security of statistical data.
! Network intrusion detection.
! Multi-camera scene reconstruction.
! Many many more …

Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012

5

Flow network.
! Abstraction for material flowing through the edges.
! G = (V, E) = directed graph, no parallel edges.
! Two distinguished nodes: s = source, t = sink.
! c(e) = capacity of edge e.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

6

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
= 30

A

cap(A, B) = c(e)
e out of A
å

7

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Def. An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B) is:

cap(A, B) = c(e)
e out of A
å

Capacity = 9 + 15 + 8 + 30
= 62

8

Min s-t cut problem. Find an s-t cut of minimum capacity.

Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4A

Capacity = 10 + 8 + 10
= 28

9

Def. An s-t flow is a function that satisfies:
! For each e Î E: [capacity]
! For each v Î V – {s, t}: [conservation]

Def. The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0
0

0

Value = 40

f (e)
e in to v
å = f (e)

e out of v
å

0 £ f (e) £ c(e)

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

v(f) = f (e)
e out of s
å .

4

10

Def. An s-t flow is a function that satisfies:
! For each e Î E: [capacity]
! For each v Î V – {s, t}: [conservation]

Def. The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0
0

0

11

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

f (e)
e in to v
å = f (e)

e out of v
å

0 £ f (e) £ c(e)

v(f) = f (e)
e out of s
å .

4

11

Max flow problem. Find s-t flow of maximum value.

Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity
flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

12

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

f (e)
e out of A
å - f (e)

e in to A
å = v(f)

4

A

13

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

f (e)
e out of A
å - f (e)

e in to A
å = v(f)

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A

14

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

f (e)
e out of A
å - f (e)

e in to A
å = v(f)

Value = 10 - 4 + 8 - 0 + 10
= 24

4

A

15

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

Pf.

f (e)
e out of A
å - f (e) = v(f)

e in to A
å .

v(f) = f (e)
e out of s
å

=
v ÎA
å f (e)

e out of v
å - f (e)

e in to v
å

æ
è
ç

ö
ø
÷

= f (e)
e out of A
å - f (e).

e in to A
å

by flow conservation, all terms
except v = s are 0

16

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the
value of the flow is at most the capacity of the cut.

Cut capacity = 30 Þ Flow value £ 30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

17

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) £ cap(A, B).

Pf.

▪

Flows and Cuts

v(f) = f (e)
e out of A
å - f (e)

e in to A
å

£ f (e)
e out of A
å

£ c(e)
e out of A
å

= cap(A,B)
s

t

A B

7

6

8
4

18

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 Þ Flow value £ 28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

19

Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

20

Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

21

Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality Þ global optimality

22

Residual Graph

Original edge: e = (u, v) Î E.
! Flow f(e), capacity c(e).

Residual edge.
! "Undo" flow sent.
! e = (u, v) and eR = (v, u).
! Residual capacity:

Residual graph: Gf = (V, Ef).
! Residual edges with positive residual capacity.
! Ef = {e : f(e) < c(e)} È {eR : f(e) > 0}.

u v30

20

capacity

u v10

residual capacity

20
residual capacity

flow

c f (e) =
c(e)- f (e) if e Î E
f (e) if eR Î E

ì
í
î

23

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

24

Augmenting Path Algorithm

Augment(f, c, P) {
b ¬ bottleneck(P)
foreach e Î P {

if (e Î E) f(e) ¬ f(e) + b
else f(eR)¬ f(eR) - b

}
return f

}

Ford-Fulkerson(G, s, t, c) {
foreach e Î E f(e) ¬ 0
Gf ¬ residual graph

while (there exists augmenting path P) {
f ¬ Augment(f, c, P)
update Gf

}
return f

}

forward edge
reverse edge

25

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) Þ (ii) This was the corollary to weak duality lemma.

(ii) Þ (iii) We show contrapositive.
! Let f be a flow. If there exists an augmenting path, then we can

improve f by sending flow along path.

26

Proof of Max-Flow Min-Cut Theorem

(iii) Þ (i)
! Let f be a flow with no augmenting paths.
! Let A be set of vertices reachable from s in residual graph.
! By definition of A, s Î A.
! By definition of f, t Ï A.

v(f) = f (e)
e out of A
å - f (e)

e in to A
å

= c(e)
e out of A
å

= cap(A,B)

original network

s

t

A B

27

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf (e)
remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) £ mC iterations,
where m is the number of edges.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there exists a
max flow f for which every flow value f(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. ▪

7.3 Choosing Good Augmenting Paths

29

Ford-Fulkerson: Large Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0 0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m (# of edges), n (# of nodes), and log C

Ford-Fulkerson: Large Number of Augmentations

C=100

31

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
! Some choices lead to exponential algorithms.
! Clever choices lead to polynomial algorithms.
! If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
! Can find augmenting paths efficiently.
! Few iterations.

Choose augmenting paths with:
! Both are strongly polynomial algorithms: O(mn)

32

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
! Don't worry about finding exact highest bottleneck path.
! Maintain scaling parameter D.
! Let Gf (D) be the subgraph of the residual graph consisting of only

arcs with capacity at least D.

110

s

4

2

t1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

33

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e Î E f(e) ¬ 0
D ¬ smallest power of 2 greater than or equal to C
Gf ¬ residual graph

while (D ³ 1) {
Gf(D) ¬ D-residual graph
while (there exists augmenting path P in Gf(D)) {

f ¬ augment(f, c, P)
update Gf(D)

}
D ¬ D / 2

}
return f

}

34

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
! By integrality invariant, when D = 1 Þ Gf(D) = Gf.
! Upon termination of D = 1 phase, there are no augmenting paths. ▪

35

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + élog2 Cù times.
Pf. Initially C £ D < 2C. D decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a D-scaling phase. Then the value
of the maximum flow is at most v(f) + m D.

Lemma 3. There are at most 2m augmentations per scaling phase.
! Let f be the flow at the end of the previous scaling phase.
! L2 Þ v(f*) £ v(f) + m (2D).
! Each augmentation in a D-phase increases v(f) by at least D. ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m2 log C) time.

Still pseudo polynormal ! The followings are strongly polynormal and O(mn)
! Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
! Preflow-push maximum-flow (notion of node height) [Goldberg 1986].

proof on next slide

36

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a D-scaling phase. Then value
of the maximum flow is at most v(f) + m D.
Pf. (almost identical to proof of max-flow min-cut theorem)
! We show that at the end of a D-phase, there exists a cut (A, B)

such that cap(A, B) £ v(f) + m D.
! Choose A to be the set of nodes reachable from s in Gf(D).
! By definition of A, s Î A.
! By definition of f, t Ï A.

v(f) = f (e)
e out of A
å - f (e)

e in to A
å

³ (c(e)
e out of A
å -D) - D

e in to A
å

= c(e)
e out of A
å - D

e out of A
å - D

e in to A
å

³ cap(A, B) - mD
original network

s

t

A B

