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Chapter 7

Network Flow
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Soviet Rail Network, 1955

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Two different views:   Russians on max flow,    Americans on min cut
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Maximum Flow and Minimum Cut

Max flow and min cut.
! Two very rich algorithmic problems.
! Cornerstone problems in combinatorial optimization.
! Beautiful mathematical duality.

Nontrivial applications / reductions.
! Data mining.
! Open-pit mining. 
! Project selection.
! Airline scheduling.
! Bipartite matching.
! Baseball elimination.
! Image segmentation.
! Network connectivity.

! Network reliability.
! Distributed computing.
! Egalitarian stable matching.
! Security of statistical data.
! Network intrusion detection.
! Multi-camera scene reconstruction.
! Many many more …



Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate,  visited CIS Temple U. in 2012 
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Flow network.
! Abstraction for material flowing through the edges.
! G = (V, E) = directed graph, no parallel edges.
! Two distinguished nodes:  s = source, t = sink.
! c(e) = capacity of edge e.

Minimum Cut Problem
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Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B) is:

Cuts
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cap( A, B)  =  c(e)
e out of A
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Def.  An s-t cut is a partition (A, B) of V with s Î A and t Î B.

Def. The capacity of a cut (A, B) is:
  

 

cap( A, B)  =  c(e)
e out of A
å

Capacity = 9 + 15 + 8 + 30
= 62
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

Minimum Cut Problem
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= 28
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Def.  An s-t flow is a function that satisfies:
! For each e Î E: [capacity]
! For each v Î V – {s, t}: [conservation]

Def.  The value of a flow f is:       

Flows

4

0

0

0

0 0

0 4 4

0
0

0

Value = 40

  

 

f (e)
e in to v
å = f (e)
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0 £ f (e) £ c(e)
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v( f )  =  f (e)  
e out of s
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Def.  An s-t flow is a function that satisfies:
! For each e Î E: [capacity]
! For each v Î V – {s, t}: [conservation]

Def.  The value of a flow f is:       

Flows
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Max flow problem.  Find s-t flow of maximum value.

Maximum Flow Problem
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Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts

10

6

6

11

1 10

3 8 8

0
0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

 

f (e)
e out of A
å - f (e)

e in to A
å  =  v( f )

4

A



13

Flow value lemma.  Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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å  =  v( f )

Value = 6 + 0 + 8 - 1 + 11
= 24

4

11

A



14

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  
Then, the net flow sent across the cut is equal to the amount leaving s.

Flows and Cuts
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f (e)
e out of A
å - f (e)

e in to A
å  =  v( f )
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Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut.  Then

Pf.   

  

 

f (e)
e out of A
å - f (e) = v( f )

e in to A
å .

 

v( f ) = f (e)
e out of s
å

=
v ÎA
å f (e)

e out of v
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e in to v
å

æ 
è 
ç 

ö 
ø 
÷ 

= f (e)
e out of A
å  - f (e).

e in to A
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by flow conservation, all terms
except v = s are 0



16

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut.  Then the 
value of the flow is at most the capacity of the cut.

Cut capacity = 30   Þ Flow value £ 30 
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Weak duality. Let f be any flow.  Then, for any s-t cut (A, B) we have
v(f) £ cap(A, B).

Pf.

▪

Flows and Cuts
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Certificate of Optimality

Corollary.  Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity  = 28   Þ Flow value £ 28
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Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.
! Start with f(e) = 0 for all edge e Î E.
! Find an s-t path P where each edge has f(e) < c(e).
! Augment flow along path P.
! Repeat until you get stuck.
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Residual Graph

Original edge:  e = (u, v)  Î E.
! Flow f(e), capacity c(e).

Residual edge.
! "Undo" flow sent.
! e = (u, v) and eR = (v, u).
! Residual capacity:

Residual graph:  Gf = (V, Ef ).
! Residual edges with positive residual capacity.
! Ef = {e : f(e) < c(e)}  È {eR : f(e) > 0}.
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c f (e) =
c(e)- f (e) if  e Î E
f (e) if  eR Î E
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Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity



24

Augmenting Path Algorithm

Augment(f, c, P) {
b ¬ bottleneck(P) 
foreach e Î P {

if (e Î E) f(e) ¬ f(e) + b
else f(eR)¬ f(eR) - b

}
return f

}

Ford-Fulkerson(G, s, t, c) {
foreach e Î E  f(e) ¬ 0
Gf ¬ residual graph

while (there exists augmenting path P) {
f ¬ Augment(f, c, P)
update Gf

}
return f

}

forward edge
reverse edge
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no 
augmenting paths. 

Max-flow min-cut theorem.  [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

The value of the max flow is equal to the value of the min cut.

Pf.  We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i)  Þ (ii)  This was the corollary to weak duality lemma.

(ii)  Þ (iii)  We show contrapositive.
! Let f be a flow. If there exists an augmenting path, then we can 

improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)  Þ (i)
! Let f be a flow with no augmenting paths.
! Let A be set of vertices reachable from s in residual graph.
! By definition of A, s Î A.
! By definition of f, t Ï A.

 

v( f ) = f (e)
e out of A
å - f (e)

e in to A
å

= c(e)
e out of A
å

= cap(A,B)
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacity cf (e) 
remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most v(f*) £ mC iterations, 
where m is the number of edges.
Pf.  Each augmentation increase value by at least 1.   ▪

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there exists a 
max flow f for which every flow value f(e) is an integer.
Pf.  Since algorithm terminates, theorem follows from invariant.   ▪



7.3  Choosing Good Augmenting Paths
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Ford-Fulkerson: Large Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.  
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Ford-Fulkerson:  Large Number of Augmentations

C=100
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
! Some choices lead to exponential algorithms.
! Clever choices lead to polynomial algorithms.
! If capacities are irrational, algorithm not guaranteed to terminate!

Goal:  choose augmenting paths so that:
! Can find augmenting paths efficiently.
! Few iterations.

Choose augmenting paths with:  
! Both are strongly polynomial algorithms: O(mn)
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Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount.
! Don't worry about finding exact highest bottleneck path.
! Maintain scaling parameter D.
! Let Gf (D) be the subgraph of the residual graph consisting of only 

arcs with capacity at least D.
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e Î E  f(e) ¬ 0
D ¬ smallest power of 2 greater than or equal to C
Gf ¬ residual graph

while (D ³ 1) {
Gf(D) ¬ D-residual graph
while (there exists augmenting path P in Gf(D)) {

f ¬ augment(f, c, P)
update Gf(D)

}
D ¬ D / 2

}
return f

}
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C. 

Integrality invariant.  All flow and residual capacity values are integral.

Correctness.  If the algorithm terminates, then f is a max flow.
Pf.
! By integrality invariant, when D = 1  Þ Gf(D) = Gf.
! Upon termination of D = 1 phase, there are no augmenting paths.  ▪
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Capacity Scaling:  Running Time

Lemma 1.  The outer while loop repeats 1 + élog2 Cù times.
Pf.  Initially C £ D < 2C.  D decreases by a factor of 2 each iteration. ▪

Lemma 2.  Let f be the flow at the end of a D-scaling phase. Then the value 
of the maximum flow is at most v(f) + m D.

Lemma 3.  There are at most 2m augmentations per scaling phase.
! Let f be the flow at the end of the previous scaling phase.
! L2  Þ v(f*)  £ v(f) + m (2D).
! Each augmentation in a D-phase increases v(f) by at least D.  ▪

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log C) 
augmentations.  It can be implemented to run in O(m2 log C) time.  

Still pseudo polynormal ! The followings are strongly polynormal and O(mn)
! Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
! Preflow-push maximum-flow (notion of node height) [Goldberg 1986].

proof on next slide
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Capacity Scaling:  Running Time

Lemma 2.  Let f be the flow at the end of a D-scaling phase. Then value 
of the maximum flow is at most v(f) + m D.
Pf.   (almost identical to proof of max-flow min-cut theorem)
! We show that at the end of a D-phase, there exists a cut (A, B) 

such that cap(A, B)  £ v(f) + m D.
! Choose A to be the set of nodes reachable from s in Gf(D).
! By definition of A, s Î A.
! By definition of f, t Ï A.
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