MIDTERM EXAM

CIS 5515 Design and Analysis of Algorithms (Spring 2022)

Note: For answer to each question, please explain your answer in plain English first. There are a total of 100 pts plus 10 bonus points. It is your responsibility to make sure that you have all the pages!

NAME:
(Problem 1. 20 points, 4 points each) True or False?
For each of the statements below, determine whether it is True or False. Briefly explain your answer or provide a counterexample for each of them.
(a) Given $T(n)=3 n^{3}+2 n^{2} \lg n+n+2$
(a) $T(n)=O\left(n^{4}\right)$
(b) $T(n)=\Omega\left(n^{2} \lg n\right)$
(c) $T(n)=\Theta\left(n^{3}\right)$
(d) $T(n)=O\left(n^{3}\right)$
(b) If $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right)$ then $T(n)=\Theta\left(n^{2} \lg n\right)$.
(c) Let G be an undirected graph on n nodes. G has $n-1$ edges if (1) G is connected and (2) G does not contain a cycle.
(d) In stable marriage, if w is ranked last in m 's preference list and m is ranked last in w 's list, then (m, w) will not appear in any stable matching.
(e) In HW2 assignment, the golden ratio search can always beat Peter's proposed approach for a given quadratic quality function and a given search range.
(Problem 2. 20 points) Given n girls and $2 n$ boys, each with her/his private preference orders,

1. (5 points) Design a girl-initiated extended G-S algorithm such that it is female-optimal.
2. (5 points) Briefly show that your algorithm is still stable.
3. (5 points) Suppose each girl can marry exactly two boys, define a new concept of stability.
4. (5 points) Design an extended G-S algorithm for 3. that terminates and all matches are stable.
(Problem 3. 20 points) Extend the Weighted Interval Scheduling as following: each schedule can only include up to k out of total n jobs. The objective is still to find a compatible subset with the maximum total value.
5. (15 points) Provide a recursive solution in plain English first, followed by pseudo code and complexity analysis.
6. (5 points) Use the example in the class notes to illustrate your algorithm with a solution (i.e., selected jobs) for $k=2$. The weight distribution from job a to job h is $2,8,7,10,3$, 9,13 , and 11 , respectively.
(Problem 4. 20 points) Extend question 5.7 to a 3-D $n \times n \times n$ grid graph. Two nodes (i, j, k) and $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$ are neighbors if and only if $\left|i-i^{\prime}\right|+\left|j-j^{\prime}\right|+\left|k-k^{\prime}\right|=1$, i.e., each node has up to six neighbors. A node is local minimum if it has a minimum value among its 1-hop neighborhood. Provide a high-level solution in plain English, followed by pseudo code and complexity analysis.

- (5 points) Find a simple $\Theta\left(n^{3}\right)$ algorithm that finds a local minimum.
- (15 points) Enhance the simple algorithm so that the complexity of the enhanced algorithm is less than $\Theta\left(n^{3}\right)$. Provide a proof of algorithm complexity.
(Problem 5. 20 points) Given a 2-D grid graph (like the graph in question 5.7), the distance of two adjacent nodes is 1 .

1. (5 points) Find a recursive solution that determines the number of shortest paths from (0, $0)$ to (m, n).
2. (5 points) Determine the number of shortest paths in terms of m and n. Use $m=3$ and $n=2$ as an example to illustrate.
3. (5 points) Provide an iterative solution for the same problem.
4. (5 points) Show and prove the complexity of two solutions.

(Bonus problem, 10 pts), Suppose C is a given set of currency denominations $C=\left\{1, p, 2 p^{2}\right.$, $\left.3 p^{3}, \ldots, n p^{n}\right\}$, where $p>1$ and $n \geq 0$ are integer.
5. (2 points) Show how does the greedy algorithm described in the class notes make changes for 80 when $p=2$ and $n=4$.
6. (8 points) Show that the greedy algorithm discussed in the class always finds an optimal solution in terms of minimizing the number of coins for changes.
