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Abstract. A tournament Tn is an orientation of a complete graph on n vertices. A king in a
tournament is a vertex from which every other vertex is reachable by a path of length at most 2. A
sorted sequence of kings in a tournament Tn is an ordered list of its vertices u1, u2, . . . , un such that
ui dominates ui+1 (ui → ui+1) and ui is a king in the subtournament induced by {uj : i ≤ j ≤ n}
for each i = 1, 2, . . . , n−1. In particular, if Tn is transitive, searching for a sorted sequence of kings in
Tn is equivalent to sorting a set of n numbers. In this paper, we try to find a sorted sequence of kings
in a general tournament by asking the following type of binary question: “What is the orientation of
the edge between two specified vertices u, v?” The cost for finding a sorted sequence of kings is the
minimum number of binary questions asked in order to guarantee the finding of a sorted sequence
of kings. Using an adversary argument proposed in this paper, we show that the cost for finding a
sorted sequence of kings in Tn is Θ(n3/2) in the worst case, thus settling the order of magnitude of
this question. We also show that the cost for finding a king in Tn is Ω(n4/3) and O(n3/2) in the
worst case. Finally, we show a connection between a sorted sequence of kings and a median order in
a tournament.
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1. Introduction. A digraph G = (V,E) contains a vertex set V and an edge set
E, where each edge contains a tail u and a head v (and thus the orientation u → v).
For a vertex u in G, the outdegree d+(G, u) of u is the number of edges with tail u,
and the indegree d−(G, u) of u is the number of edges with head u. We will use d+(u)
and d−(u) to denote d+(G, u) and d−(G, u), respectively, if G is specified from the
context. A tournament Tn is an orientation of a complete graph on n vertices; that
is, between any two distinct vertices u, v, there is exactly one edge: either u → v or
v → u (but not both). This concept is used to model a tournament of n players where
every two players compete in a game and player u beats player v if and only if the
vertex u dominates the vertex v (u → v) in Tn. (Suppose no game has a draw.) A
vertex u is called a king in Tn if every other vertex is reachable from u by a path of
length at most 2; that is, for each v �= u, either u → v or u → w → v for some vertex
w dependent of v. It is known [11] that a vertex with the maximum outdegree is
always a king in Tn. A sorted sequence of kings in Tn is an ordered list of its vertices
u1, u2, . . . , un such that ui → ui+1 and ui is a king in the subtournament induced by
{uj : i ≤ j ≤ n} for each i = 1, 2, . . . , n − 1. In particular, if Tn is transitive (that
is, u → v and v → w imply u → w), searching for a sorted sequence of kings in Tn is
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Fig. 1. A sample tournament.

equivalent to sorting a set of n numbers.
The existence of a sorted sequence of kings in any tournament was shown by

Lou, Wu, and Sheng in [7], where an insertion sort algorithm with the worst case
complexity of O(n3) was presented. A modified insertion sort algorithm with the
worst case complexity of O(n2) was given by Wu and Sheng in [12]. It is easy to
prove that a tournament has a unique sorted sequence of kings if and only if it is
transitive. Thus in a general tournament the sorted sequence of kings is not unique.
For example, Figure 1 shows the graph representation of a tournament. One sorted
sequence of kings of the tournament is u2 → u4 → u1 → u5 → u3 → u6, and another
one is u2 → u6 → u4 → u1 → u5 → u3.

In this paper, we try to find a sorted sequence of kings in Tn by asking the following
type of binary question: “What is the orientation of the edge between two specified
vertices u, v?” The cost for finding a sorted sequence of kings is the minimum number
of questions asked in order to guarantee the finding of a sorted sequence of kings. In
particular, if we are told that Tn is transitive, the worst case cost for finding a sorted
sequence of kings in Tn is Θ(n log n), which is the number of comparisons needed to
sort n numbers in the worst case. We set to determine the worst case cost for finding
a sorted sequence of kings in Tn (which may not be transitive).

For a vertex u in a digraph, let Γ+(u) = {v : u → v} be the first out-neighborhood
of u, Γ++(u) = {w : u → v → w for some v} \ Γ+(u) be the second out-neighborhood
of u, and Γ−(u) = {v : v → u} be the first in-neighborhood of u. The following lemma
follows easily from the fact that each vertex in Γ+(u) is reachable from each vertex
in Γ−(u) by a path of length at most 2.

Lemma 1. For a vertex u in Tn, let u1, . . . , ut be a sorted sequence of kings in the
subtournament of Tn induced by Γ−(u), and let ut+2, . . . , un be a sorted sequence of
kings in the subtournament of Tn induced by Γ+(u). Then u1, . . . , ut, u, ut+2, . . . , un

form a sorted sequence of kings in Tn. In particular, u1 is a king in Tn.
One can apply the above lemma recursively to obtain a divide-and-conquer algo-

rithm for the search of a sorted sequence of kings in Tn as follows:
1. Choose a pivot vertex u arbitrarily.
2. Use n − 1 questions to find the edge orientation between u and every other

vertex, and thus obtain Γ−(u) and Γ+(u).
3. Apply the procedure recursively to Γ−(u) and Γ+(u).
4. Chain the outcomes of Γ−(u) and Γ+(u) with u in the way provided by

Lemma 1.
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This divide-and-conquer algorithm performs similarly to quick sort. It is known that
quick sort has an average case performance of Θ(n log n) and the worst case perfor-
mance of Θ(n2). The average cost for finding a sorted sequence of kings by using the
above divide-and-conquer algorithm is satisfactory (Θ(n log n)) since it is equivalent
to applying quick sort to n numbers [2]. On the other hand, the worst case cost by
using this algorithm is n(n− 1)/2 if at each stage of divide-and-conquer either Γ+(u)
or Γ−(u) is the empty set. Similarly, one can also have a divide-and-conquer algo-
rithm to search for a king in Tn with a satisfactory average cost of Θ(n log n) and the
worst case cost of n(n− 1)/2. The motivation of this paper is to provide alternative
algorithms for the search of a king and a sorted sequence of kings, respectively, in the
case that avoiding the above mentioned worst case is crucial. We achieve this goal
with some sacrifice in the average performance.

Let f(n) and g(n) be the cost in the worst case for finding a king and a sorted
sequence of kings, respectively, in Tn. Using an adversary argument proposed in this
paper, we prove that

√
3

3
(n− 1)3/2 − 3

2
n ≤ g(n) ≤ 8

√
2

3
n3/2 + 25n5/4.

Therefore, the worst case asymptotic cost for finding a sorted sequence of kings in Tn

is Θ(n3/2). We also prove that

3 3
√

2

4
(n− 1)4/3 − 3

2
(n− 1) ≤ f(n) ≤ 4

√
2

3
n3/2.

That is, the worst case asymptotic cost for finding a king in Tn is Ω(n4/3) and O(n3/2).
Our proofs for both upper bounds provide algorithms for finding a king and a sorted
sequence of kings, respectively, in Tn both with a complexity of O(n3/2). To prove
the lower bounds for f(n) and g(n), we design a pro-small-outdegree-strategy for
an adversary argument [5]. We prove that if the adversary uses this strategy, no
algorithms can succeed with cost smaller than the above mentioned lower bounds in
the worst case.

The paper is organized as follows. Section 2 introduces the idea of improving
the worst cast performance with the sacrifice of the average performance, presents
a pro-small-outdegree-strategy for the use of an adversary argument, and uses both
ideas to prove an upper bound and a lower bound, respectively, for the worst case
cost for finding a king in Tn. Section 3 is devoted to the proof that the worst case
asymptotic cost for finding a sorted sequence of kings in Tn is Θ(n3/2). Section 4 shows
a connection between a sorted sequence of kings and a median order in a tournament.
Section 5 concludes the paper and raises two open problems.

2. Worst case cost for finding a king. If one uses the divide-and-conquer
algorithm introduced in the previous section to search for a king in Tn, the worst case
happens when Γ+(u) = ∅ at each stage of divide-and-conquer. So in order to avoid
the worst case, one should carefully choose a pivot vertex u with Γ+(u) large enough
at each stage of divide-and-conquer. If we merge this idea into the divide-and-conquer
algorithm, we call it the revised-divide-and-conquer algorithm. For this purpose, we
need the following lemma for the choice of a pivot vertex.

Lemma 2 (Landau [6]). Suppose d+
1 ≤ d+

2 ≤ · · · ≤ d+
n is the outdegree sequence

of Tn. Then, for each i,

i− 1

2
≤ d+

i ≤ n + i− 2

2
.
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A simple idea to use a revised-divide-and-conquer algorithm to prove f(n) =
O(n3/2) is as follows. First, we can use n questions to obtain the orientation of all
edges in a subtournament of roughly

√
2n vertices. (Note that this part is the sacrifice

of the average performance.) We choose a vertex with the maximum outdegree in
this subtournament as the pivot vertex to apply Lemma 1. Then, at each stage
of divide-and-conquer, at least

√
2n/2 vertices are eliminated with a total cost of(√

2n
2

)
+ n −√

2n < 2n. Once the size of remaining vertices is sufficiently small, say√
2n/2, use the direct method to find a king. Thus eliminating n− 1 vertices with a

king remaining costs at most 2n ·n/ (√2n/2
)

= 2
√

2n3/2. We use a recursive relation

to prove an improved coefficient for n3/2 in the next theorem.
Theorem 1. One can find a king in Tn with cost at most (4

√
2)n3/2/3; that is,

f(n) ≤ 4
√

2

3
n3/2.

Proof. Let S be a subset of vertices in Tn with |S| =
⌈√

2n
⌉
. Let TS be the

subtournament of Tn induced by S. Then we can obtain the orientation of all edges

in TS with cost
(�√2n�

2

)
. Let u be a vertex with the maximum outdegree within the

subtournament TS . By Lemma 2, the outdegree of u within TS is

d+(TS , u) ≥ |S| − 1

2
=

⌈√
2n
⌉− 1

2
.

Next we can obtain the orientation of the edge between u and each v ∈ V (Tn) \ S
with cost n− ⌈√2n

⌉
. Then

|Γ−(u)| = n− 1 − |Γ+(u)| ≤ n− 1 − d+(TS , u) ≤ n−
√

2n

2
.

To find a king in Tn, by Lemma 1, it suffices to find a king in the subtournament of
Tn induced by Γ−(u) with cost at most f(|Γ−(u)|). Thus

f(n) ≤ f(|Γ−(u)|) +

(⌈√
2n
⌉

2

)
+ n−

⌈√
2n
⌉
≤ f

(
n−

√
2n

2

)
+ 2n−

√
2n

2
.

Now we use induction to prove f(n) ≤ 4
√

2n3/2/3 for all n ≥ 1. It holds for n = 1
trivially. Suppose it holds for all cases less than n. Then

f(n) ≤ f
(
n−

√
2n
2

)
+ 2n−

√
2n
2

≤ 4
√

2
3

(
n−

√
2n
2

)3/2

+ 2n−
√

2n
2

≤ 4
√

2
3

(
n−

√
2n
2

)(√
n−

√
2

4

)
+ 2n−

√
2n
2

< 4
√

2
3 n3/2.

Remark 1. In the actual implementation of the revised-divide-and-conquer algo-
rithm given in Theorem 1, an extra number of Θ(|S|) comparisons in determining the
vertex with the maximum outdegree in Ts will be introduced at each recursive call in
selecting a pivot vertex. However, since the total number of extra comparisons needed
is O(n), the algorithm will have a complexity of at most 4

√
2n3/2/3 + O(n).
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Remark 2. We note that if only
√

2n/2 vertices are eliminated in the first stage of
divide-and-conquer, a complete subtournament of

√
2n/2 vertices remains. Then we

can take advantage of having known all edges within this remaining subtournament to

obtain a second complete subtournament of
√

2n vertices with a cost of only
(√

2n
2

)−(√
2n/2
2

) ≈ 3n/4 for the second stage of divide-and-conquer. This shows that either

more than
√

2n/2 vertices can be eliminated in the first stage of divide-and-conquer
or the second stage of divide-and-conquer can be performed with cost less than 2n. If
this is taken into consideration recursively, a much longer and tedious estimate shows
that f(n) ≤ 2

√
6n3/2/3 + o(n3/2).

In order to prove a lower bound for the worst case cost for finding a king in Tn,
we use an adversary argument. Our idea is to design a strategy for the adversary
to answer each question. The adversary chooses his/her answers to try to force the
algorithm to work hard. Suppose e1, e2, . . . , el, where l = f(n) is a sequence of edges

that we ask the adversary about regarding their orientation. Let
→
e 1,

→
e 2, . . . ,

→
e l be

the answers of the adversary. We define a sequence of digraphs G0, G1, . . . , Gl as
follows:

1. Let G0 be the empty digraph with the same vertex set as Tn.

2. Let Gi = Gi−1+
→
e i for each i = 1, 2, . . . , l; that is, Gi is obtained by adding

the edge
→
e i to Gi−1.

Suppose vi and wi are the two vertices incident to ei. We design the following strategy
for the adversary to determine his/her answer to the question about the orientation
of ei:

1. Let vi → wi if d+(Gi−1, vi) < d+(Gi−1, wi).
2. Let wi → vi if d+(Gi−1, vi) > d+(Gi−1, wi).
3. Orientate ei arbitrarily if d+(Gi−1, vi) = d+(Gi−1, wi).

We call the above strategy the pro-small-outdegree-strategy and call Gl the digraph
constructed by using the pro-small-outdegree-strategy. From now on we use d(v) to
denote d+(Gl, v) if there is no confusion from the context.

Lemma 3. Suppose v is a vertex in Gl constructed by using the pro-small-
outdegree-strategy. Then, for any S ⊆ Γ+(v),

∑
w∈S

d(w) ≥
(|S|

2

)
.

Proof. We may order the vertices of Γ+(v) = {wi : 1 ≤ i ≤ d(v)} according to the
ordering of the questions whose answers are of the type “v → w.” Then d(wi) ≥ i− 1
by the pro-small-outdegree-strategy. Thus

∑
w∈S

d(w) ≥
∑

1≤i≤|S|
(i− 1) =

(|S|
2

)
.

Lemma 4. Suppose v is a vertex in Gl constructed by using the pro-small-
outdegree-strategy. Then, for any S ⊆ Γ++(v),

∑
w∈S

d(w) ≥ d(v) ·
(|S|/d(v)

2

)
.

Proof. Let Γ+(v) = {wi : 1 ≤ i ≤ d(v)}. Since S ⊆ Γ++(v), we can partition S
into pairwise disjoint sets as follows:
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1. S = ∪d(v)
i=1 Si. (It is possible that some Si may be empty.)

2. Si ⊆ Γ+(wi) for each i, 1 ≤ i ≤ d(v).
(Note that such a partition of S may not be unique since a vertex in S could be
dominated by more than one vertex in Γ+(v).) By Lemma 3,

∑
w∈S

d(w) =

d(v)∑
i=1

∑
w∈Si

d(w) ≥
d(v)∑
i=1

(|Si|
2

)
≥ d(v) ·

(∑ |Si|/d(v)
2

)
= d(v) ·

(|S|/d(v)
2

)
,

where the last inequality holds since the function
(
x
2

)
is concave upward.

Theorem 2. No algorithm can find a king in Tn with cost less than 3 3
√

2(n −
1)4/3/4 − 3(n− 1)/2 in the worst case.

Proof. Suppose Gl (l = f(n)) is the digraph constructed by using the pro-small-
outdegree-strategy. Let v be a king in Gl. Then V (Gl) = {v} ∪ Γ+(v) ∪ Γ++(v), and
so |Γ++(v)| = n− d(v) − 1. By Lemmas 3 and 4,

f(n) = l = |E(Gl)| = d(v) +
∑

w∈Γ+(v)

d(w) +
∑

w∈Γ++(v)

d(w)

≥ d(v) +

(
d(v)

2

)
+ d(v) ·

(
(n− d(v) − 1)/d(v)

2

)

> 1
2

(
(n−1)2

d(v) + (d(v))2 − 3n + 3
)

≥ 3
4

3
√

2(n− 1)4/3 − 3
2 (n− 1),

where the last inequality follows from minimizing the function (n− 1)2/x + x2.
By combining Theorems 1 and 2, we conclude that the worst case asymptotic cost

for finding a king in Tn is Ω(n4/3) and O(n3/2).

3. Worst case cost for finding a sorted sequence of kings. If one uses the
divide-and-conquer algorithm introduced in section 1 to search for a sorted sequence
of kings in Tn, the worst case happens when either Γ+(u) = ∅ or Γ−(u) = ∅ at each
stage of divide-and-conquer. Therefore, in order to avoid the worst case, one should
carefully choose a pivot vertex u with both Γ+(u) and Γ−(u) large enough at each
stage of divide-and-conquer. Similar to the proof of Theorem 1, we can first use n
questions to obtain the orientation of all edges in a subtournament of roughly

√
2n

vertices. (Again note that this part is the sacrifice of the average performance.) We
choose a vertex with the median outdegree in this subtournament as the pivot vertex
u to apply Lemma 1. Then, by Lemma 2, each of Γ+(u) and Γ−(u) contains at least√

2n/4 vertices.
Theorem 3. One can find a sorted sequence of kings in Tn with cost at most

(8
√

2)n3/2/3 + O(n5/4); that is,

g(n) ≤ 8
√

2

3
n3/2 + cn5/4

for some constant c; for example, one may choose c = 25.
Proof. Let S be a subset of vertices in Tn with |S| =

⌈√
2n
⌉

+ 2. Let TS be the
subtournament of Tn induced by S. Then we can obtain the orientation of all edges

in TS with cost
(�√2n�+2

2

)
. Let d+

1 (TS) ≤ d+
2 (TS) ≤ · · · ≤ d+

|S|(TS) be the outdegree

sequence of vertices within TS . Let u be a vertex in TS such that d+(TS , u) = d+
t (TS),
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where t =
⌈⌈√

2n
⌉
/2
⌉

+ 1. (That is, u is a vertex with the median outdegree in TS .)
By Lemma 2, we have

d+(TS , u) ≥ t− 1

2
≥

√
2n

4

and

d−(TS , u) = |S| − 1 − d+(TS , u) ≥ |S| − 1 − |S| + t− 2

2
≥

√
2n

4
.

Next we can obtain the orientation of the edge between u and each v ∈ V (Tn) \ S
with cost n− 2 − ⌈√2n

⌉
. Then

√
2n

4
≤ d+(TS , u) ≤ |Γ+(u)| ≤ n− 1 − d−(TS , u) ≤ n−

√
2n

4

and, similarly,

√
2n

4
≤ |Γ−(u)| ≤ n−

√
2n

4
.

To find a sorted sequence of kings in Tn, by Lemma 1, it suffices to find sorted
sequences of kings in both subtournaments of Tn induced by Γ+(u) and by Γ−(u),
respectively, with total cost at most g(|Γ+(u)|) + g(|Γ−(u)|). Thus

g(n) ≤ g(|Γ+(u)|) + g(|Γ−(u)|) +

(⌈√
2n
⌉

+ 2
2

)
+ n− 2 − ⌈√2n

⌉
≤ g(|Γ+(u)|) + g(|Γ−(u)|) + 2n + 3

√
2n

2 .

Now we use induction to prove g(n) ≤ h(n), where h(n) = 8
√

2n3/2/3 + 25n5/4, for
all n ≥ 1. It holds for n = 1 trivially. Suppose it holds for all cases less than n. Then

g(|Γ+(u)|) + g(|Γ−(u)|) ≤ h(|Γ+(u)|) + h(|Γ−(u)|) ≤ h

(√
2n

4

)
+ h

(
n−

√
2n

4

)
,

where the last inequality holds since the function h(x) = 8
√

2x3/2/3+25x5/4 is concave
upward. Thus

g(n) ≤ h
(√

2n
4

)
+ h

(
n−

√
2n
4

)
+ 2n + 3

√
2n

2

≤ 8
√

2
3

(√
2n
4

)3/2

+ 25
(√

2n
4

)5/4

+ 8
√

2
3

(
n−

√
2n
4

)(√
n−

√
2

8

)
+ 25

(
n−

√
2n
4

)(
4
√
n−

√
2

16 4
√
n

)
+ 2n + 3

√
2n

2

< 8
√

2
3 n3/2 + 25n5/4.

Remark 3. In the actual implementation of the revised-divide-and-conquer algo-
rithm given in Theorem 3, an extra number of Θ(|S|) comparisons will be introduced
at each recursive call to select a median. The median can be determined using a
linear selection algorithm [2]. It is still unknown exactly how many comparisons are
needed to determine the median. Dor and Zwick [3] showed that the upper bound is
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slightly less than 2.95|S| and the lower bound is slightly more than 2|S|. Again, since
the total number of extra comparisons needed is O(n), the revised-divide-and-conquer
algorithm will have a complexity of at most 8

√
2n3/2/3 + 25n5/4 + O(n).

Theorem 4. No algorithm can find a sorted sequence of kings in Tn with cost
less than

√
3(n− 1)3/2/3 − 3n/2 in the worst case.

Proof. Suppose Gl (l = g(n)) is the digraph constructed by using the pro-small-
outdegree-strategy. Suppose u1, u2, . . . , un form a sorted sequence of kings in Gl.
Since g(n) = l = |E(Gl)|, it suffices to prove |E(Gl)| ≥

√
3(n − 1)3/2/3 − 3n/2. The

proof is split into two cases.
Case 1. Suppose d(ui) ≥

√
3(n− i)/2 for all i, 1 ≤ i ≤ n. Then

|E(Gl)| =

n∑
i=1

d(ui) ≥ 1

2

n∑
i=1

√
3(n− i) ≥ 1

2

∫ n−1

0

√
3x dx =

√
3

3
(n− 1)3/2.

Case 2. Suppose d(ui) <
√

3(n− i)/2 for some i, 1 ≤ i ≤ n. Let t be the

smallest i satisfying d(ui) <
√

3(n− i)/2. Let S1 = Γ+(ut) ∩ {ui : i ≥ t + 1} and
S2 = Γ++(ut) ∩ {ui : i ≥ t + 1}. By the definition of a sorted sequence of kings,
we know that S1 and S2 form a disjoint partition of {ui : i ≥ t + 1} and, hence,
|S2| = n− t− |S1|. Since |S1| ≤ d(ut) <

√
3(n− t)/2, by Lemma 4,

n∑
i=t+1

d(ui) ≥
∑

ui∈S2

d(ui)

≥ d(ut) ·
(

(n− t− |S1|)/d(ut)
2

)

≥ 1
2

(
(n−t)2

d(ut)
− 2n|S1|

d(ut)
− n

)

≥ 1
2

(
2(n−t)2√

3(n−t)
− 3n

)

=
√

3
3 (n− t)3/2 − 3

2n.

Thus

|E(Gl)| ≥
t−1∑
i=1

d(ui) +

n∑
i=t+1

d(ui)

≥ 1
2

t−1∑
i=1

√
3(n− i) +

√
3

3 (n− t)3/2 − 3
2n

≥
√

3
2

∫ n−1

n−t

√
x dx +

√
3

3 (n− t)3/2 − 3
2n

=
√

3
3 (n− 1)3/2 − 3

2n.

By combining Theorems 3 and 4, we conclude that the worst case asymptotic cost
for finding a sorted sequence of kings in Tn is Θ(n3/2).

4. Connection with median order. A sorted sequence of kings may also be
viewed as a weak approximation for ranking players in a tournament. In general, the
tournament ranking problem [8] is a difficult one without applausive solution. Suppose
u1, u2, . . . , un is a ranking of players such that ui is ranked in the ith place. For any
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pair of players ui, uj with i < j, a happiness is an outcome that ui beats uj , while
an upset is an outcome that uj beats ui. A ranking strategy introduced in [10] is to
minimize the number of total upsets. A median order of a tournament is defined as
a ranking of players with the minimum number of total upsets. Similarly, a median
order of a digraph can be defined as an ordered list of vertices which induces an
acyclic digraph with the maximum number of edges. It is known that determining a
median order of a digraph is NP-complete and that the complexity for determining a
median order for a tournament is still unknown [1]. Now suppose u1, u2, . . . , un form
a median order for Tn. Havet and Thomassé [4] showed that u1 is a king for Tn. By
the definition of a median order, it is easy to see that ui, ui+1, . . . , un form a median
order for the subtournament induced by {uj : i ≤ j ≤ n} for each i ≤ n. These
facts reveal the following connection between a median order and a sorted sequence
of kings in a tournament.

Theorem 5. Any median order in a tournament is a sorted sequence of kings.
Theorem 5 suggests that one does not have to check all n! possible orderings of

vertices in order to find a median order of Tn. Instead, one may narrow the search
within all sorted sequences of kings.

5. Conclusion. In this paper, we have shown that the worst case asymptotic
cost for finding a sorted sequence of kings in Tn is Θ(n3/2). We have also shown that
the worst case asymptotic cost for finding a king in Tn is Ω(n4/3) and O(n3/2). The
lower bounds are derived by using an adversary argument called pro-small-outdegree-
strategy proposed in this paper. In addition, we have provided a revised-divide-and-
conquer algorithm that finds a sorted sequence of kings (including a king) with a cost
of Θ(n3/2) in the worst case. It is still an open problem on exactly how many binary
questions are needed in the worst case to determine a sorted sequence of kings in a
tournament. Also it would be interesting to know the worst case asymptotic cost for
finding a king in a tournament.
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