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Decision problem.
* Problem X is a set of strings.

yes if se X

* Algorithm A solves problem X: A —
2 P (5) no ifsé¢ X

* |nstance s is one string. {
Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in < p(|s|) “steps,” where p() is some polynomial function.

I

length of s

Def. P = set of decision problems for which there exists a poly-time algorithm.

problem PRIMES: {2,3,5,7,11,13,17,19,23,29,31,... }
instance s: 59233574454870285468 1
algorithm: Agrawal-Kayal-Saxena (2002)



Some problems in P

P. Decision problems for which there exists a poly-time algorithm.

poly-time
algorithm

problem description

grade-school

i ?
MULTIPLE Is x a multiple of y division 51, 17 51, 16
REL-PRIME Are x and y relatively prime ?  Euclid’s algorithm 34, 39 34, 51
Agrawal-Kayal-
PRIMES Is x prime ? J S y 53 51
axena

Is the edit distance between niether acgggt
EDIT-DISTANCE cand y less than 5 ? Needleman-Wunsch neither ttttta
_E 0 1 1 4 1 0 0 1
L-SOLVE s ther_ea}vectorxthat Gausts _drr?onds O I Caal
satisfies Ax=b7? elimination o 3 15| |36 o 1 1l It

Is an undirected graph .
U-CONN G connected? depth-first search m Q<2 b@



NP

Def. Algorithm C(s, ) is a certifier for problem X if for every string s :
s € X iff there exists a string 7 such that C(s, 1) = yes.

Def. NP = set of decision problems for which there exists a poly-time certifier.
* C(s,?) is a poly-time algorithm.
* Certificate ris of polynomial size: |¢| < p(|s|) for some polynomial p(»).

\

“certificate” or “witness”

....................................................................................................................................................

problem COMPOSITES: {4,6,8,9,10,12, 14, 15,16, 18,20, ....}
instance s: 437669

certificate t: 54] <«— 437,669=541 x 809

certifier C(s, t): grade-school division



Certifiers and certificates: satisfiability

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in @ has at least one true literal.

.......................................................................................................................................................................

instances @ = (x1 VX, vx3) /\(x1 VX, vx3) /\(x1 VX, vx4)

certificate t x| = tfrue, x2 = true, x3 = false, x4 = false

Conclusions. SAT € NP, 3-SAT € NP.



Certifiers and certificates: Hamilton path

HAMILTON-PATH. Given an undirected graph G =(V, E), does there exist a
simple path P that visits every node?

Certificate. A permutation xt of the n nodes.

Certifier. Check that m contains each node in V exactly once,
and that G contains an edge between each pair of adjacent nodes.

instance s certificate t

Conclusion. HAMILTON-PATH € NP.



Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

description

poly-time
algorithm

L-SOLVE

COMPOSITES

FACTOR

SAT

HAMILTON-
PATH

Is there a vector x
that satisfies Ax =57

Is x composite ?

Does x have a nontrivial factor
less than y?

Given a CNF formula, does it have
a satisfying truth assignment?

Is there a simple path between
u and v that visits every node?

Gauss—-Edmonds
elimination

Agrawal-Kayal-
Saxena
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Intractability: quiz 1

Which of the following graph problems are known to be in NP?

A.

m U O R

Is the length of the longest simple path <k ?
Is the length of the longest simple path > £ ?
Is the length of the longest simple path = k?
Find the length of the longest simple path.

All of the above.

10



Intractability: quiz 2

In complexity theory, the abbreviation NP stands for...

Nope.
No problem.
Not polynomial time.

Not polynomial space.

m o nNn ® »

Nondeterministic polynomial time.

11



Significance of NP

NP. Decision problems for which there exists a poly-time certifier.

“ NP captures vast domains of computational, scientific, and mathematical
endeavors, and seems to roughly delimit what mathematicians and scientists

have been aspiring to compute feasibly.” — Christos Papadimitriou

“In an ideal world it would be renamed P vs VP.” — Clyde Kruskal

12



P, NP, and EXP

P.  Decision prob
NP. Decision prob
EXP. Decision prob

ems for w
ems for w

NiC
NIC

ems for w

Proposition. P C NP.
Pf. Consider any problem X € P.

Nt
Nt

NIiC

nere exists a poly-time algorithm.
nere exists a poly-time certifier.

Nt

* By definition, there exists a poly-time algorithm A(s) that solves X.

* Certificate r=¢, certifier C(s,?) = A(s). =

Proposition. NP C

EXP.

Pf. Consider any problem X & NP.

* By definition, there exists a poly-time certifier C(s, 1) for X,

where certificate r satisfies || < p(|s|) for some polynomial p().

* To solve instance s, run C(s, r) on all strings r with |7] < p(|s|).

* Return yes iff C(s, r) returns yes for any of these potential certificates. =

Fact. P # EXP = either P # NP, or NP = EXP, or both.

nere exists an exponential-time algorithm.

13



The main question: P vs. NP

Q. How to solve an instance of 3-SAT with »n variables?
A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

_ J
Y

“intractable”

C.onsra"’ulafions, A
it only took you
65299 seconds /

14



The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
Is the decision problem as easy as the certification problem?

NP

o

If P=NP If P+ NP

If yes... Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR, ...

If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER, ...

Consensus opinion. Probably no.

15



Reductions: quiz 3

Suppose P # NP. Which of the following are still possible?

O(n?) algorithm for factoring n-bit integers.
0O(1.657") time algorithm for HAMILTON-CYCLE.

O(n'egloglogmy glgorithm for 3-SAT.

o N w »

All of the above.

16



Intractability: quiz 4

Does P =NP?

A. Yes.
B. No.

C. None of the above.

17
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NP-complete

NP-complete. A problem Y & NP with the property that for every
problem X & NP, X<,7.

Proposition. Suppose Y & NP-complete. Then, Y € P iff P = NP.
Pf. < If P = NP, then Y& P because Y & NP.
Pf. = Suppose Y € P.
* Consider any problem X € NP. Since X<pY, we have X € P.
* This implies NP C P.
* We already know P C NP. Thus P = NP. =

Fundamental question. Are there any “natural” NP-complete problems?

28



The “first” NP-complete problem

The Complexity of Theorem-Proving Procedures

Stephen A. Cook

University of Toronto

Summary

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here "reduced'" means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

Throughout this paper, a set of
strings means a set of strings on
some fixed, large, finite alphabet .
This alphabet is large enough to in-
clude symbols for all sets described
here. All Turing machines are deter-
ministic recognition devices, unless
the contrary is explicitly stated.

1. Tautologies and Polynomial Re-

Reducibility.

Let us fix a formalism for
the propositional calculus in
which formulas are written as
strings on . Since we will re-
quire infinitely many proposition
symbols (atoms), each such symbol
will consist of a member of I
followed by a number in binary
notation to distinguish that
symbol. Thus.a formula of length
n can only have about n/logn
distinct function and predicate
symbols. The logical connectives
are § (and), v (or), and 1 (not).

The set of tautologies
(denoted by { tautologies}) is a

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle') then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [1].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguisged states called
the query state, yes state, and no
state, respectively. If M 1is a
query machine and T is a set of
strings, then a T-computation of M
is a computation of M in which
initially M 1is in the initial
state and has an input string w on
its input tape, and each time M
assumes the query state there is a
string u on the query tape, and
the next state M assumes is the
yes state if wueT and the no state
if ufT. We think of an "oracle",

which knows T, placing M in the
yes state or no state.

Definition

A set S of strings is P-redu-
cible (P for polynomial) to a set
T of strings iff there is some
query machine M and a polynomial
Q(n) such that for each input string
w, the T-computation of M with in-
put w halts within Q(|w]) steps
(|w] is the length of w),and ends
in an accepting state iff) weS.

It is not hard to see that
P-reducibility is a transitive re-
lation. - Thus the relation E on

Theorem. [Cook 1971, Levin 1973] SAT € NP-complete.

OPOBJEMBI HNEPENJAYN NHOOPMAIINN

Tom IX 1973 Bovin. 3

KPATRHE COOBITEH HA

VAR 519.14
YHUBEPCAJIBHBIE 3A/IAYN TEPEBOPA
J. A. Jesun

B crartse paccMaTpuBaeTCAd HECKOJbKO M3BECTHBIX MAaCCOBBIX 3334
«11epe60pH0r0 THOA» U JOKa3bIBAe€TCsd, YTO ITHU 3384y MO;KHO pemaTrh JHUIIb
3a Taxroe BpeMsd, 3a KOTOpO€ MOKHO pelmaTrb B006I.U,e n10061e 3ala4u yHKasaH-
HOI0 THIIA.

Ilocme yTOYHEHHMS NOHATHSA AJrOPHTMA OBLIA AOKA3aHA AATOPATMHYECKas Hepaspe-
AMUMOCTH Psfla KIACCMYeCKUX MacCOBBIX mpo0ieM (HampuMmep, ImpoGieM TOKAECTBA dile-
MEHTOB TPYII, FOMeOMOP(HOCTH MHOro00pa3uil, paspeliuMocTi AU0(PaHTOBLIX ypPaBHEHMIT
u apyrux). Tem caMpiM OBl CHAT BOIPOC 0 HAXOMKJCHUM IPAKTHYECKOro clocoba uX pe-
menysi. OJQHAKO CYI[ecTBOBaHHME AJrOPUTMOB /I PeHIeHUs JPYTHX 33/a4 He CHUMaer
JUIS HUX aHAQJOTMYHOIO BOIPOCA M3-3a (PAHTACTUYECKYU 00JbIIOro ofG’beMa padoThI, mMpeAuil-
CBIBAE€MOI0 BTHMU aaropurMaMu. TakoBa cUTyanls ¢ TAK Ha3bIBaeMBIMH IIepe0ODHBIMU 3a-
AadgaMi: MUHAMH3AUMU OyiaeBLIX QYHKIUL, IOMCKA /0KA3aTeJbCTB OPAHWYEHHOR IIHHBI,
BbIsACHeHUs n30MopdHocTH rpadhoB U ApyruMu. Bee 3TH 3afayl PelIalOTCA TPHBHAILHBIME
QITOPUTMAaMHU, COCTOAINUMU B nepeGope BceX BO3MOKHOCTeH. OJJHAKO BTH aJrOPUTMBI TPe-
OYIOT SKCHOHEHIMAaJbHOTO BPeMEeHH! PaboThl M y MaTeMaTHKOB CIOKIIOCH yOexaeHue, 4To
6oJiee IPOCTbIe AJTOPUTMBI [JIsI HUX HEBO3MOJKHBL BBLI IOJy4YeH PsAJ CepPbe3HBIX apryMeH-
TOB B HOJb3Y ero cupaBefiuBocT (cM.[' 2]), ogHAKO JIOKa3aTh TO yTBePKAeHHE HE YAA-
Jocy puRoMy. (Hampumep, o cHX mOp He ZOKA3aHO, YTO A HAXOKAEHHA MaTeMaTHiecKuX
JIOKa3aTeIbCTB HYKHO 00JbIIe BPeMEHNU, YeM JJIsI UX IPOBEPKU.)

OpHaKO eci IPeAod0KUTh, YTO BOOOINE CyIecTBYeT Kakad-HUGYRb (X0Ta OBl HCKYyC-
CTBCHHO I[OCTPOEGHHAs) MaccoBas 3ajada epe0OPHOro THIA, HepaspellMMasg IPOCTHIMU
(B cMbIcide o0beMa BBIYMCJIEHUII) ajJropuTMaMH, TO MOMKHO HOKAas3aTh, YTO ATHM rKe CBOIM-
CTBOM 00JIQ/{al0T M MHOTHE «KJACCHYecKHe» Imepefopubic 3ajadd (B TOM 4ucile 3agada MH-
HEMH3alNY, 3ajada MOUCKA JOKa3aTeldbCTB M JAP.). B 9TOM M COCTOAT OCHOBHBIE Pe3yib-
TaThl CTATHH.

Qyuruuu f(rn) n g(n) GygeM Ha3bIBATL CPAaBHHMBIME, €CJIM IPH HEKOTOPOM K

f(n) < (g(n) +2)* m g(n) < (f(n) +2)%
AHnanoruaHo Gy/ieM IOHNMATh TePMUH «MEHBLIEe M CPABHEMO).

OnpepedeHnue. 3agadeil nmepeGOPHOro THmA (MM IPOCTO IepeGOPHOI 3ajadeii)
OyjeM HasbIBAaThL 337ady BH/JA (II0 JAHHOMY & HalTH Kakoe-HHOYAb y [JVIMHBI, CDABHIMON
¢ JJUHOI z, Takoe, 4To BeImoJHseTcs: A(z, y)», rae A(z, y) — Kakoe-HUOYAL CBOMCTBO,
IpoBepsAeMoe aJrOPUTMOM, BpeMs paboThl KOTOPOTO cpaBHEMO ¢ juuHoit z. (Iloxg aaro-
PUTMOM 3Jech MOKHO IIOHHMATh, HampuMep, aaropuTMsel KoiMoropoBa — VcmeHcKoro uid
ManiuBEbl ThIOpHHra, HMaM HOpMajbHBle AJTOPUTMBI; z, y — ABOMYHBIe cJ0Ba). KBasuie-
peGopHoii 3ajadeit OyaeM Has3bIBaTh 3a/auy BBIACHEHUS, CYLICCTBYET JH TaKoe Y.

Mul paccMOTPHM IIECTh 3afady STHX THIOB, PaccMaTpuBaeMbie B HHX OOBEKTHI KOJH-
PYIOTCA eCTeCTBeHHBIM 00pa3oM B BHJE JBOMYHBIX CJ0B. Ilpu sTOM BBIGOD ecTeCTBEHHOI
KOJUPOBKHM He CyIIecTBeH, TaK KaK Bce OHH JalOT CPaBHUMBIe MJIMHBI KOIOB.

dadaua 1. 3a@aHBI COMCKOM KOHEYHOE MHOJKECTBO M IOKpbITHE ero 500-5ieMeHTHHIMA
noaMHoKecTBaMu. HaliTu HOJUOKpHITHE 3a[jaHHOIl MOIMHOCTH (COOTBETCTBEHHO BBIACHUTH
CYIIeCTBYeT JH OHO).

3adaua 2. TabamuHO 3ajjaHa yacrTHdHas Oyiesa QyHkuusa. Haiitm 3agaHHOrO pasmepa
JH3BIOHKTHBHYI0 HOPMAJbHYI0 (OpMYy, PealiM3yoINylo 5Ty (DYHKIMIO B 00JacTH ompefe-
JieHMs1 (COOTBETCTBEHHO BBISICHHTDH CYIIECTBYET JIU OHA).

Sadava 3. BEISCHATH, BBIBOJMIMA MM ONPOBEP:KMMa JAaHHAs (OpPMyiia MCYMCICHHsI BbI-
craspiBannii. (Mam, 4To To jKe caMoe, paBHA JIM KOICTaHTe AaHHas OyieBa ¢opmyia.)

Jadaua 4. [lansl xBa rpada. Haiitu romoMopdusM OJHOTO Ha APYroit (BBIACHUTH €ro

.CyHIeCTBOBAHMUE) .

Sadaua 5. [amsr gBa rpaga. Haiitu m3omopdusm ofHOro B Apyroit (Ha ero 9acrsb).

Sadaua 6. PaccMaTpuBaoTCsa MAaTPUIEL M3 IeJbIX dncena or 1 mo 100 u HeKoTopoe ycio-
BHE O TOM, KaKHe 4MCJa B HUX MOTYT COCeJCTBOBATH II0 BEPTHKAIM M KaKWe IO T'OPH30H-
Tanm. 3ajaHbl YHCAA HA TPaHMIe M Tpebyercs IPOZO/IKATH HX HAa BCIO MATPHIY C CO-
‘DaoenneM yclaoBys.

29



Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem,
others fall like dominoes.

Recipe. To prove that Y € NP-complete:
« Step 1. Show that Y & NP.
* Step 2. Choose an NP-complete problem X.
- Step 3. Prove that X<,7.

Proposition. If X € NP-complete, Y€ NP, and X<, Y, then Y €& NP-complete.
Pf. Consider any problem W& NP. Then, both W<, X and X<,Y.
« By transitivity, W=<,Y. T T

by definition of by assumption
NP-complete

* Hence Y & NP-complete. =

30



Reductions: quiz 4 N

Suppose that X € NP-ComPLETE, Y € NP, and X <, Y. Which can you infer?

A. Y is NP-complete.
B. If Y&P, then P = NP.

C. If P = NP, then neither X nor Y is in P.

D. All of the above.

31



Implications of Karp

INDEPENDENT-SET

VERTEX-COVER

SET-COVER

DIR-HAM-CYCLE

HAM-CYCLE

3-COLOR SUBSET-SUM

KNAPSACK

SAT poly-time reduces to all of

these problems (and many, many more)

32



Implications of Cook-Levin

X
$,‘-§5\&s
K <
ORI S
& @\e@\«" , 3-SAT\
N ¥
Q” <O
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems (and many, many more)
SET-COVER

poly-time reduce to SAT.

33



Implications of Karp + Cook-Levin

S
oY 3-SAT

INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM

VERTEX-COVER HAM-CYCLE KNAPSACK

All of these problems are NP-complete; they are
SET-COVER

manifestations of the same really hard problem.

34



’D TELL YOU ANOTHER
NP-COMPLETE JOKE,
BUT ONCE YOU’VE HEARD ONE,

YOU’VE HEARD THEM ALL.



Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.
- Packing/covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.
Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.
Sequencing problems: HAMILTON-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are known to be in either P or NP-complete.

NP-intermediate? FACTOR, DISCRETE-LOG, GRAPH-ISOMORPHISM, ....

Theorem. [Ladner 1975] Unless P = NP, there exist problems in NP that
are in neither P nor NP-complete.

On the Structure of Polynomial Time Reducibility

RICHARD E. LADNER

Unwversity of Washington, Seattle, Washington

36



More hard computational problems

Garey and Johnson. Computers and Intractability.

* Appendix includes over 300 NP-complete problems.

« Most cited reference in computer science literature.

10.

Most Cited Computer Science Citations

This list is generated from documents in the CiteSeer* database as of January 17, 2013. This list is automatically generated and may contain errors. The list is generated in batch

mode and citation counts may differ from those currently in the CiteSeer* database, since the database is continuously updated.
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 ] 2011 | 2012 | 2013

. M R Garey, D S Johnson

Computers and Intractability. A Guide to the Theory of NP-Completeness 1979
8665

T Cormen, C E Leiserson, R Rivest

Introduction to Algorithms 1990

7210

V N Vapnik

The nature of statistical learning theory 1998 COMPUTERS AND INTRACTABILITY

6580 A Guide to the Theory of NP-Completeness
A P Dempster, N M Laird, D B Rubin

Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977
6082

T Cover, J Thomas

Elements of Information Theory 1991

6075

D E Goldberg

Genetic Algorithms in Search, Optimization, and Machine Learning, 1989

5998

J Pearl

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988
5582

E Gamma, R Helm, R Johnson, J Vlissides

Design Patterns: Elements of Reusable Object-Oriented Software 1995

4614

C E Shannon

A mathematical theory of communication Bell Syst. Tech. J, 1948

4118

J R Quinlan

C4.5: Programs for Machine Learning 1993

4018

Michael R. Garey / David S. Johnson

37



More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer ay, ..., a,, COMpute /0 cos(a16) x cos(azf) x - - - x cos(anf) df

Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.

Statistics. Optimal experimental design.

38
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 1. SAT vs. UN-SAT.
« Can prove a CNF formula is satisfiable by specifying an assignment.
 How could we prove that a formula is not satisfiable?

[SAT. Given a CNF formula @, is there a satisfying truth assignment? j

[ UN-SAT. Given a CNF formula @, is there no satisfying truth assignment? ]

42



Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Ex 2. HAMILTON-CYCLE vs. NO-HAMILTON-CYCLE.
« Can prove a graph is Hamiltonian by specifying a permutation.
 How could we prove that a graph is not Hamiltonian?

HAMILTON-CYCLE. Given a graph G =(V, E), is there a simple
cycle T" that contains every node in V?

NO-HAMILTON-CYCLE. Given a graph G =(V, E), is there no
simple cycle I" that contains every node in V?

(" )

\_ Wy,

(" )
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify UN-SAT and NO-HAMILTON-CYCLE ?
* SAT € NP-complete and SAT =p UN-SAT.
* HAMILTON-CYCLE € NP-complete and HAMILTON-CYCLE =p NO-HAMILTON-CYCLE.
* But neither UN-SAT nor NO-HAMILTON-CYCLE are known to be in NP.

44



NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAMILTON-CYCLE, and COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem
with the yes and no answers reversed.

Ex. X=1{4,6,8,9,10,12,14,15,... } anore 0 and 1
?:{2 3,5,7,11,13,17,23,29, ... } (neither prime nor composite)

co-NP. Complements of decision problems in NP.
Ex. UN-SAT, NO-HAMILTON-CYCLE, and PRIMES.

45



NP = co-NP ¢

Fundamental open question. Does NP = co-NP?
* Do yes instances have succinct certificates iff no instances do?
« Consensus opinion: no.

Theorem. If NP = co-NP, then P = NP.
Pf idea.
* Pis closed under complementation.
* |f P= NP, then NP is closed under complementation.
* In other words, NP = co-NP.
« This is the contrapositive of the theorem.

46



Good characterizations

Good characterization. [Edmonds 1965] NP M co-NP.
* |f problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
« Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching?
* |If yes, can exhibit a perfect matching.

* If no, can exhibit a set of nodes S such that | neighbors(S)| < |1SI.

JOURNAL OF RESEARCH of the National Bureau of Standards—B. Mathematics and Mathematical Physics
Vol. 69B, Nos. 1 and 2, January-June 1965

Minimum Partition of a Matroid Into Independent
Subsets'

Jack Edmonds

(December 1, 1964)

set M of elements with a family of subsets, called independent, such that

a
an independent set is independent, and (2) for every subset 4 of M, all maximal
I

ev
independent subsets of 4 have the same cardinality, called the rank rn(4) of 4. It is provec | that a
atroid can be partitioned into as few as k sets, each independent, if and only if every subset 4 has

cardinality at most & - r(4).
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Good characterizations

Observation. PC NP N co-NP.
* Proof of max-flow min-cut theorem led to stronger result that max-flow
and min-cut are in P.
« Sometimes finding a good characterization seems easier than finding an
efficient algorithm.

Fundamental open question. Does P= NP N co-NP?
- Mixed opinions.
« Many examples where problem found to have a nontrivial good
characterization, but only years later discovered to be in P.
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Linear programming is in NP N co-NP

LINEAR-PROGRAMMING. Given A€ R™" be R", ce N, and a € N, does there
exist xeN” such that Ax<bh, x=0 and cTx=a ?

Theorem. [Gale-Kuhn-Tucker 1948] LINEAR-PROGRAMMING & NP M co-NP.
Pf sketch. If (P) and (D) are nonempty, then max = min.

(P) maxc' x (D) miny'b
s.t. Ax

X

IA
S

s.t. Ay = ¢
Y

vV
-

\

CuarreEr X1X

LINEAR PROGRAMMING AND THE THEORY OF GAMES!

By Davip GaLg, HaroLp W. Kunun, AND ALBERT W. TUCKER ?

The basic “scalar” problem of linear programming is 10 maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantzig, IT]. A more general “vector’” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, I11]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the “‘scalar” and “vector”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.



Linear programming is in NP N co-NP

LINEAR-PROGRAMMING. Given A€ R™" be R", ce N, and a € N, does there
exist xeN” such that Ax<bh, x=0 and cTx=a ?

Theorem. [Khachiyan 1979] LINEAR-PROGRAMMING & P.

' KYPHAJL : ,
BBIYUCIATEIBHON MATEMATHKIA U MATEMATIYECKON ®U3AKHI

Tom 20 AuBaps 1980 ®espaan , N1

{
YK 519.852

INOJIMHOMMAJILHBIE AJII’(/)PI/ITMI).EI B JUHENHOM
IIPOTPAMMUPOBAHMIA

A.T.XATHAH
(Mocxrea)

IlocTpoeHE! TOYHEIE AJTOPHTME] JIMHEHHOr0 MPOTPAMMHAPOBAHEA, TPY/IOEM-
KOCTh KOTODHIX OrpaHW4eHa HOJMHOMOM OT JJIUHEI [JBOMYHOMA 3alHCH 3afavud.
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Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP N co-NP.

SIAM J. CompurT.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*

VAUGHAN R. PRATTY

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log} n operations of a Turing machine
for any fixed a.

The proof system used for certifying primes is as follows.

AXIOM. (x, y, 1).

INFERENCE RULES.

R,: (p,x,a),q+ (p,x,qa) provided x*~ 14 = 1 (mod p) and q|(p — 1).
R,: (p,x,p— 1)~ p provided x*?~! =1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem > p has a proof of [4 log, p] lines.

52



Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP M co-NP.
Pf sketch. An odd integer s is prime iff there exists an integer 1 < r < s s.t.

5! = 1 (modys)
(VP 1 (mods)

for all prime divisors p of s-1

instances 437677 CERTIFIER ()
certificatet 17, 22x 3 x 36473 I

CHECK s—1=2x2x3x36473.

T CHECK 1751 =1 (mod s).
prime factorization of s—1
also need a recursive certificate CHECK 176-D72 = 437676 (mod s).

to assert that 3 and 36,473 are prime

CHECK 176-D/3 =329415 (mod s).
CHECK 176-D736473 = 305452 (mod s).

use repeated squaring
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Primality testing is in P

Theorem. [Agrawal-Kayal-Saxena 2004] PRIMES € P.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

Abstract

We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACTOR. Given two integers x and y, does x have a nontrivial factor <y ?

Theorem. FACTOR =p FACTORIZE.
Pf.
« <, trivial.
- >, binary search to find a factor; divide out the factor and repeat. =

Theorem. FACTOR € NP M co-NP.
Pf.
 Certificate: a factor p of x that is less than y.
* Disqualifier: the prime factorization of x (where each prime factor is
less than y), along with a Pratt certificate that each factor is prime. =
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Is factoring in P 2

Fundamental question. Is FACTOR € P ?

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589

43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)
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Exploiting intractability

Modern cryptography.
« Ex. Send your credit card to Amazon.

- Ex. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.
* To use: generate two random n-bit primes and multiply.
* To break: suffices to factor a 2»-bit integer.

P £ & PRINE
Ne=PQ

£D = | moD (P-D@-h F

C= AN ANOD N

M= C° fNOD N

of implementing public key I { S A

The RSA algorithm is the
cryptography and has been

P § @ Prane

N=PQ
£D s [ a0 (P-Ia-D
C» M MODN

most widely used method
deployed in more than one
billion applications
worldwide.

RSA sold
RSA algorithm for $2.1 billion or design a t-shirt .



Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n’) steps
on a “‘quantum computer.”

SIAM REVIEW (© 1999 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 303-332

Polynomial-Time Algorithms for
Prime Factorization and
Discrete Logarithms on a
Quantum Computer”*

Peter W. Shor'

Abstract. A digital computer is generally believed to be an efficient universal computing device; that
is, it is believed to be able to simulate any physical computing device with an increase in
computation time by at most a polynomial factor. This may not be true when quantum
mechanics is taken into consideration. This paper considers factoring integers and finding
discrete logarithms, two problems that are generally thought to be hard on classical com-
puters and that have been used as the basis of several proposed cryptosystems. Efficient
randomized algorithms are given for these two problems on a hypothetical quantum com-
puter. These algorithms take a number of steps polynomial in the input size, for example,
the number of digits of the integer to be factored.

2001. Factored 15 =3 x5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x7.

Fundamental question. Does P = BQP ?

\ quantum analog of P
(bounded error quantum polynomial time)
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Quantum Factorizations: D-Wave Quantum Computer

. < EurekAlert! | mvaaas
A long way to go: Universal quantum computers g SR owcs forscencz e

EEEEEEEEEEEEE : 3-APR-2019

A new hope of quantum computers for

-John Martinis & Matthias Troyer: it would be years before achieving |22 zations of RSAwIth a thousand:

some practical applications, including the code-crackingl,2.

-Factor n bit integers require about 2n qubits3. P=@AP 1P P,
-Jan. 8 2019, IBM released IBM Q System One™ with 20 qubits that cang=(l9, ,q, ,---q1),
factor up to 10-bit integers in theory. N=pxq = min{(n— pg)’}

A new way for factorization*: Quantum Annealing in D-Wave

— - Near absolute zero (15 mK).
- Quantum tunneling effects.
- As thermal fluctuations turn
sA off, quantum fluctuations work.
/ - Develop over 100 applications. - C. Wang et al. shows the
s Quantum Computing Model potentials of QA and DWave
. o - potentials for factorizations: annealer for deciphering the

Classical RSA CF‘YPTOSYSTem ln fUTUI"e

anneaing Y H(t)= > ht)o! +> 3, (t)o'o; - DWave 2000Q System can
i ij solve the factorizations on 20

Quantum |
Q\J \/\/ \/\/ bit integers, a thousand-fold

surpassing the IBM version.
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A note on terminology

SIGACT News 12 January 1974

A TERMINOLOGICAL PROPOSAL
D. F. Knuth

While preparing a book on combinatorial algorithms, I felt a strong
need for a new technical term, a word which is essentially a one-sided
version of polynomial complete. A great many problems of practical interest
have the property that they are at least as difficult to solve in polynomial
time as those of the Cook-Karp class NP. I needed an adjective to convey
such a degree of difficulty, both formally and informally; and since the

range of practical applications is so broad, I felt it would be best to
establish such a term as soon as possible.

The goal is to find an adjective x that sounds good in sentences
like this:

The covering problem is x .

It is x to decide whether a given graph has a Hamiltonian circuit.
It is unknown whether or not primality testing is an x problem.

Note. The term x does not necessarily imply that a problem is in NP,
just that every problem in NP poly-time reduces to x.
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A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time

reduces to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A problem such that every problem in NP poly-time reduces to it.

One final criticism (which applies to all the terms suggested) was
stated nicely by Vaughan Pratt: "If the Martians know that P = NP for
Turing Machines and they kidnap me, I would lose face calling these
problems !'formidable'." Yes; if P = NP , there's no need for any term
at all. But I'm willing to risk such an embarrassment, and in fact I'm
willing to give a prize of one live turkey to the first person who proves

that P = NP .
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PSPACE

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. P C PSPACE.

!

poly-time algorithm
can consume
only polynomial space



PSPACE

Binary counter. Count from 0 to 27— 1 in binary.
Algorithm. Use n bit odometer.

Claim. 3-sAT € PSPACE.

Pf.
* Enumerate all 27 possible truth assignments using counter.
* Check each assignment to see if it satisfies all clauses. =

Theorem. NP C PSPACE.
Pf. Consider arbitrary problem Y & NP.
« Since Y <, 3-SAT, there exists algorithm that solves Y in poly-time plus
polynomial number of calls to 3-SAT black box.
* Can implement black box in poly-space. =



Quantified satisfiability

QSAT. Let ®(x,, ..., x,) be a boolean CNF formula. Is the following
propositional formula true?

dx, Vx, dx; Vx, ... Vx,_, dx, P(x,...,x,)

1

assume n is odd

Intuition. Amy picks truth value for x,, then Bob for x,, then Amy for x;,
and so on. Can Amy satisfy ® no matter what Bob does?

EX. (x5, v X)) A (X, V X3) A (X, V X, V X3)
Yes. Amy sets x, true; Bob sets x,; Amy sets x; to be same as x,.

Ex. (X, VX)) A(X, VX3)A(X; V X, V X3)

No. If Amy sets x, false; Bob sets x, false; Amy loses;
if Amy sets x, true; Bob sets x, true; Amy loses.



Quantified satisfiability is in PSPACE

Theorem. Q-SAT € PSPACE.
Pf. Recursively try all possibilities.
* Only need one bit of information from each subproblem.
« Amount of space is proportional to depth of function call stack.

return true iff both
subproblems are true

/

X]=]

return true iff either
subproblem is true

/

®(0, 0, 0) ®(0,0,1) @0,1,00 @O,1,1) ®(1,0,0 o(,0,1) @(1,1,0 &,1,1)



Planning problem: 8-puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. C

i l < i, ] < O, «— (;meanstileiisin square j
Inltlal State. CO — { Cll’ C22, ey C66’ C78’ C87, C99}.

GOa| state. c* = {Cll’ C22, 500 C66’ C77, C88’ C99}.

Operators.

« Precondition to apply O, = {C,,,C,,, ..., Cgs, Cg, Cg7, Coo}.

- After invoking O,, conditions C,, and Cy, become true.
- After invoking O,, conditions C,; and C,, become false.

Solution. No solution to 8-puzzle or 15-puzzle!

2 | 3
51 6
/|9
¢Oi
2 | 3
51 6
9 | 7

12



Competitive facility location

Input. Graph G = (V, E) with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to
select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units

of profit?

10 ] 5 15 5 ] 5 ] 15 10
O—0—0—0—0—0—0—0—0—0
N N N N

yes if B = 20;

no if B = 25

20



PSPACE-complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete. Problem Y & PSPACE-complete if (i) Y € PSPACE and
(ii) for every problem X € PSPACE, X< ,Y.

Theorem. [Stockmeyer—-Meyer 1973] QSAT & PSPACE-complete.

Theorem. PSPACE C EXPTIME.
Pf. Previous algorithm solves QSAT in exponential time; and
QSAT is PSPACE-complete. =

Summary. P € NP C PSPACE C EXPTIME.

T T

it is known that P = EXPTIME,

but unknown which inclusion is strict;
conjectured that all are

18



Competitive Facility Allocation: Card Game

Card game
Two players alternatively pick cards from a pile of n cards.
The first player can picki: 1, 2, ... n-1 cards.
At each round, a player can select j: 1, 2, ..., 2i cards, where i is the
pick of the other player in the previous round.
Whoever picks the last card wins the game.

Can the first player always win for a given n cards? If so, how?

’1.2<5>4@1
P>

P, P, P, (win




Competitive Facility Allocation: Fighting for Lava (April 2019, cAcm)

last byte

Dennis Shasha

DOIL:

Upstart Puzzles
Fighting for Lava

.11145/3314071

Another 2-player game on 1-D and 2-D

“First player gets to claim up to
one kilometer, the second up to two, the
ﬁmwbmmwmwlvyhgo

THE VAST UNDERGROUND lava fields in
the western U.S, feature a photogenic
geyser called Old Faithful. Eruptions
send approximately 15,000 liters of
steaming water 50 meters into the
air approximately every hour. Unfor-
tunately, what is underground is not
nearly as appealing. If the lava fields
erupted in a major way, they could
cause ferocious firestorms that would
destroy a large portion of the western
U.S. and Canada and substantially
cool the planet.

Now imagine a pair of tunnel-
boring energy-extraction companies
are competing to cool the lava, make
some money, and provide carbon-free
energy besides. The idea is to tunnel
from a power plant outside the lava
fields to near the lava, but not too
close, to avoid accidental eruptions. A
pipeline could in theory then take cool
water from the power plant to the end
of the tunnel where the water would
be heated into steam and the steam
would power the turbines of the power
plant. The whole system could be de-
signed to recycle the steam back into
water in a closed loop.

In this scenario, the federal gov-
ernment, which owns the land, steps

protocol, whereby each company
(player) takes turns to acquire non-
overlapping sections of a full seg-
ment. The first player may take up

Imagine a pair

of tunnel-boring
energy-extraction
companies are

first or second in order to maximize
my access to the lava fields.”

to one kilometer in the first turn, the
second player then takes up to two
kilometers, the first player then gets
up to three kilometers, the second
then gets up to four kilometers, and
soon.

Warm-up. Suppose the line seg-
ment is five kilometers long from a
stake at kilometer 0 to a stake at ki-
lometer 5. Suppose the first player
takes between 0 and 1 kilometer.
Which player would get more of the
line segment, assuming each plays
optimally?

Answer to warm-up. Player 2. Player
1 takes kilometer 0 to 1. Player 2 then
takes kilometers 2 to 4. The first play-
er then takes one of the two remain-
ing kilometers—1 to 2 or 4 to 5—and
the second player then takes the oth-
er remaining kilometer. The second

player ends up with lease rights to

of the  (CONTINUED ON p. 143]

e

2 to 3,
then the second player could take
kilometers 0 to 2, but then the first
player would take kilometers 3 to 5.
The first player would thus get three
of the five kilometers.

Question 2. Is there a minimal

the middle kilometer, then the first
thel’hyaﬂllnes(:r1»LI7.)to(zr+ 2+L/2)on

tight of the middle. The net effect
is the first player can always guaran-
tee to capture at least as much terri-
tt'ny as the second player on the two
sides of that middle kilometer. The
first player wins by at least the kilo-
meter of the first move.

Upstart 1. Characterize situations
in which the first player can guaran-
tee to win by more than one kilome-
ter or prove it cannot be done.

amount by which one player can win
regardless of the length L of the seg-
ment?

Answer. Yes. The first player can
win by at least one kilometer every
time by going in the middle, meaning
the halfway point of the first player's
kilometer is at position L/2. After
that, the first player would mirror the
So if the sec-

P
adirect g

1ast pyte

Upstart 3. Suppose the government
leased out vertical cross-sectional
squares belowground. Each player
would thus take squares, with the side
length of each square increasing by
one kilometer with each move. The
first player takes one kilometer
squared. The second player then gets
two kilometers squared. The first play-
er then gets three kilometers squared,
and so on, again without overlap. Does
either player have a winning strategy if
the area available to lease could be an
arbitrary rectangular cross-section be-
lowground? How would this general-

game; the first player may take one
kilometer, the second player two, the
third player three, ... the k™ player &,
the first player then takes k+1 ... and
so on, all without overlap. Is there
some length L and some number of
players k whereby a player other than
the first player can guarantee to cap-
ture more of the line segment than

ond player takes x to x+2 to the left of

anyone else?

Upstart 2. Suppose the line seg- | ize to more players?
ment is of length L, but there are now
1 i d All are invited to submit their solutions to
S ercraaatonof feerignd | HE Bt mE He
g faculty/shasha/papers/cacmpuzzles html

Dennis Shasha (dennisshasha@yahoo.com) is a professor
of computer science in the Computer Science Department
of the Courant Institute at New York University, New
York, USA, as well as the chronicler of his good friend the
omniheurist Dr. Ecco.
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