8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
8. **INTRACTABILITY I**

- *poly-time reductions*
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- **NP-completeness.** \(O(n^k)\) algorithm unlikely.
- **PSPACE-completeness.** \(O(n^k)\) certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

turing machine, word RAM, uniform circuits, ...

| 1953 | von Neumann
| 1955 | Nash
| 1956 | Gödel
| 1964 | Cobham
| 1965 | Edmonds
| 1966 | Rabin

Constants tend to be small, e.g., $3n^2$
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Computational model supplemented by special piece of hardware that solves instances of Y in a single step

![Diagram showing the reduction process](image-url)
Poly-time reductions

Desiderata’. Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_p Y$ with $Y \leq_p X$.
Suppose that $X \leq_p Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Intractability: quiz 2

Which of the following poly-time reductions are known?

A. $\text{FIND-MAX-FLOW} \leq_p \text{FIND-MIN-CUT}$.
B. $\text{FIND-MIN-CUT} \leq_p \text{FIND-MAX-FLOW}$.
C. Both A and B.
D. Neither A nor B.
Poly-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. Intractability 1

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.1
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?

![Graph with independent set of size 6]
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Ex. Is there a vertex cover of size ≤ 4?

Ex. Is there a vertex cover of size ≤ 3?

![Graph with vertex cover and independent set](image)
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).
Vertex cover and independent set reduce to one another

Theorem. \(\text{INDEPENDENT-SET} \equiv_p \text{VERTEX-COVER} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v) \in E \).
- \(S \) independent \(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.
 \[\Rightarrow \text{either} \ u \in V - S, \ \text{or} \ v \in V - S, \ \text{or both}. \]
- Thus, \(V - S \) covers \((u, v) \). \(\Box \)
Vertex cover and independent set reduce to one another

Theorem. Independent-Set \equiv_p Vertex-Cover.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\[\equiv\]

- Let $V - S$ be any vertex cover of size $n - k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- $V - S$ is a vertex cover \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
 \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, S is an independent set. \blacksquare
Set cover

Set-Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_a = \{ 3, 7 \} \quad S_b = \{ 2, 4 \} \\
\underline{S_c = \{ 3, 4, 5, 6 \}} \quad S_d = \{ 5 \} \\
S_e = \{ 1 \} \quad \underline{S_f = \{ 1, 2, 6, 7 \}} \\
k = 2
\]
Given the universe $U = \{ 1, 2, 3, 4, 5, 6, 7 \}$ and the following sets, which is the minimum size of a set cover?

A. 1

B. 2

C. 3

D. None of the above.

$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$

$S_a = \{ 1, 4, 6 \}$

$S_b = \{ 1, 6, 7 \}$

$S_c = \{ 1, 2, 3, 6 \}$

$S_d = \{ 1, 3, 5, 7 \}$

$S_e = \{ 2, 6, 7 \}$

$S_f = \{ 3, 4, 5 \}$
Vertex cover reduces to set cover

Theorem. \(\text{VERTEX-COVER} \leq_p \text{SET-COVER} \).

Pf. Given a \(\text{VERTEX-COVER} \) instance \(G = (V, E) \) and \(k \), we construct a \(\text{SET-COVER} \) instance \((U, S, k)\) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

Construction.

- Universe \(U = E \).
- Include one subset for each node \(v \in V : S_v = \{ e \in E : e \text{ incident to } v \} \).

```
\[ U = \{ 1, 2, 3, 4, 5, 6, 7 \} \]
\[ S_a = \{ 3, 7 \} \quad S_b = \{ 2, 4 \} \]
\[ S_c = \{ 3, 4, 5, 6 \} \quad S_d = \{ 5 \} \]
\[ S_e = \{ 1 \} \quad S_f = \{ 1, 2, 6, 7 \} \]
```

vertex cover instance
(k = 2)

set cover instance
(k = 2)
Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Pf. \Rightarrow Let $X \subseteq V$ be a vertex cover of size k in G.
- Then $Y = \{ S_v : v \in X \}$ is a set cover of size k. ■

```
U = \{ 1, 2, 3, 4, 5, 6, 7 \}
Sa = \{ 3, 7 \}  \quad Sb = \{ 2, 4 \}
Sc = \{ 3, 4, 5, 6 \}  \quad Sd = \{ 5 \}
Se = \{ 1 \}  \quad Sf = \{ 1, 2, 6, 7 \}
```

“yes” instances of **VERTEX-COVER** are solved correctly
Vertex cover reduces to set cover

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S, k)\) contains a set cover of size \(k \).

\[\text{Pf. } \iff \text{ Let } Y \subseteq S \text{ be a set cover of size } k \text{ in } (U, S, k). \]
- Then \(X = \{ v : S_v \in Y \} \) is a vertex cover of size \(k \) in \(G \). "no" instances of VERTEX-COVER are solved correctly

<table>
<thead>
<tr>
<th>Set Cover Instance (k = 2)</th>
<th>Vertex Cover Instance (k = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U = { 1, 2, 3, 4, 5, 6, 7 })</td>
<td>(U = { 1, 2, 3, 4, 5, 6, 7 })</td>
</tr>
<tr>
<td>(S_a = { 3, 7 })</td>
<td>(S_a = { 3, 7 })</td>
</tr>
<tr>
<td>(S_b = { 2, 4 })</td>
<td>(S_b = { 2, 4 })</td>
</tr>
<tr>
<td>(S_c = { 3, 4, 5, 6 })</td>
<td>(S_c = { 3, 4, 5, 6 })</td>
</tr>
<tr>
<td>(S_d = { 5 })</td>
<td>(S_d = { 5 })</td>
</tr>
<tr>
<td>(S_e = { 1 })</td>
<td>(S_e = { 1 })</td>
</tr>
<tr>
<td>(S_f = { 1, 2, 6, 7 })</td>
<td>(S_f = { 1, 2, 6, 7 })</td>
</tr>
</tbody>
</table>
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- *constraint satisfaction* problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.2
Satisfiability

Literal. A Boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

 Conjunctive normal form (CNF). A propositional formula \(\Phi \) that is a conjunction of clauses. \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[
\Phi = \left(\overline{x_1} \lor x_2 \lor x_3 \right) \land \left(x_1 \lor \overline{x_2} \lor x_3 \right) \land \left(\overline{x_1} \lor x_2 \lor x_4 \right)
\]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP. This hypothesis is equivalent to $\mathbf{P} \neq \mathbf{NP}$ conjecture.
3-satisfiability reduces to independent set

Theorem. \textsc{3-Sat} \(\leq_p\) \textsc{Independent-Set}.

Pf. Given an instance \(\Phi\) of \textsc{3-Sat}, we construct an instance \((G, k)\) of \textsc{Independent-Set} that has an independent set of size \(k = |\Phi|\) iff \(\Phi\) is satisfiable.

Construction.

- \(G\) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]

\(k = 3\)
3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \Rightarrow Consider any satisfying assignment for Φ.

- Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$.

"yes" instances of 3-SAT are solved correctly

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3-satisfiability reduces to independent set

Lemma. Φ is satisfiable iff G contains an independent set of size $k = |\Phi|$.

Pf. \iff Let S be independent set of size k.
- S must contain exactly one node in each triangle.
- Set these literals to *true* (and remaining literals consistently).
- All clauses in Φ are satisfied. □

$q = 3$

G

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
Basic reduction strategies.

- Simple equivalence: \(\text{INDEPENDENT-SET} \equiv_{p} \text{VERTEX-COVER} \).
- Special case to general case: \(\text{VERTEX-COVER} \leq_{p} \text{SET-COVER} \).
- Encoding with gadgets: \(3\text{-SAT} \leq_{p} \text{INDEPENDENT-SET} \).

Transitivity. If \(X \leq_{p} Y \) and \(Y \leq_{p} Z \), then \(X \leq_{p} Z \).

Pf idea. Compose the two algorithms.

Ex. \(3\text{-SAT} \leq_{p} \text{INDEPENDENT-SET} \leq_{p} \text{VERTEX-COVER} \leq_{p} \text{SET-COVER} \).
Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
HAMiLTON-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle

Hamilton-Cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

![Diagram of a graph with labeled nodes 1, 2, 3, 4, 5 and node 1' connected to nodes 2, 3, 4, and 5, and node 1 connected to nodes 2, 3, 4, and 5, with no path connecting node 1 to 1']

no
Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED-HAMILTON-CYCLE. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem. DIRECTED-HAMILTON-CYCLE \leq_p HAMILTON-CYCLE.

Pf. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.
Directed Hamilton cycle reduces to Hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order). □

Pf. \Leftarrow

- Suppose G' has an undirected Hamilton cycle Γ'.
- Γ' must visit nodes in G' using one of following two orders:

 ..., black, white, blue, black, white, blue, black, white, blue, ...

 ..., black, blue, white, black, blue, white, black, blue, white, ...

- Black nodes in Γ' comprise either a directed Hamilton cycle Γ in G, or reverse of one. □
3-satisfiability reduces to directed Hamilton cycle

Theorem. 3-SAT \leq_P DIRECTED-HAMILTON-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance G of DIRECTED-HAMILTON-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.
Intractability: quiz 5

Which is truth assignment corresponding to Hamilton cycle below?

A. \(x_1 = true, x_2 = true, x_3 = true \)
B. \(x_1 = true, x_2 = true, x_3 = false \)
C. \(x_1 = false, x_2 = false, x_3 = true \)
D. \(x_1 = false, x_2 = false, x_3 = false \)
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.

- **node for clause j**
 - Connect in this way if x_i appears in clause C_j

- **node for clause k**
 - Connect in this way if $\overline{x_i}$ appears in clause C_k

$x_i = \text{true}$

$x_i = \text{false}$
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause: add a node and 2 edges per literal.

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]

clause node 1

\[C_2 = \overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \]

clause node 2

$3k + 3$
3-satisfiability reduces to directed Hamilton cycle

Lemma. φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇒

- Suppose 3-SAT instance φ has satisfying assignment x^*.
- Then, define Hamilton cycle Γ in G as follows:
 - if $x^*_i = true$, traverse row i from left to right
 - if $x^*_i = false$, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in “correct” direction to splice clause node C_j into cycle (and we splice in C_j exactly once) ▪
Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Leftarrow \)

- Suppose \(G \) has a Hamilton cycle \(\Gamma \).
- If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 - nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)
 - removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G - \{ C_j \} \)
- Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G - \{ C_1, C_2, \ldots, C_k \} \).
- Set \(x_i^* = true \) if \(\Gamma' \) traverses row \(i \) left-to-right; otherwise, set \(x_i^* = false \).
- traversed in “correct” direction, and each clause is satisfied. \(\blacksquare \)
Poly-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

DIR-HAM-CYCLE

3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

KNAPSACK

packing and covering

sequencing

partitioning

numerical
8. **Intractability I**

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
My hobby

My Hobby:
Embedding NP-Complete Problems in Restaurant Orders

Chotchkie's Restaurant

Appetizers
- Mixed Fruit: 2.15
- French Fries: 2.75
- Side Salad: 3.35
- Hot Wings: 3.55
- Mozzarella Sticks: 4.20
- Sampler Plate: 5.80

Sandwiches
- Barbecue: 6.55

We'd like exactly $15.05
worth of appetizers, please.

...Exactly? Uhh...

Here, these papers on the Knapsack
problem might help you out.

Listen, I have six other
tables to get to—

As fast as possible, of course. Want
something on Traveling Salesman?

NP-Complete by Randall Munro
http://xkcd.com/287
Creative Commons Attribution–NonCommercial 2.5
Subset sum

SUBSET-SUM. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in **binary** encoding.
Subset sum

Theorem. 3-SAT \leq_p SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:
- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>4</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>100,010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>100,101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td>10,100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>10,011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>1,110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>1,001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dummies to get clause columns to sum to 4

3-SAT instance

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>$\neg x_1$</td>
<td>v</td>
</tr>
<tr>
<td>C_1</td>
<td>C_2</td>
<td>C_3</td>
</tr>
</tbody>
</table>

Subset-Sum instance

111,444
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\implies \) Suppose 3-SAT instance \(\Phi \) has satisfying assignment \(x^* \).

- If \(x_i^* = \text{true} \), select integer in row \(x_i \); otherwise, select integer in row \(\neg x_i \).
- Each \(x_i \) digit sums to 1.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) and \(\neg x_i \) rows.
- Select dummy integers to make \(C_j \) digits sum to 4. □

\[
C_1 = \neg x_1 \lor x_2 \lor x_3 \\
C_2 = x_1 \lor \neg x_2 \lor x_3 \\
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

3-SAT instance
dummies to get clause columns to sum to 4

\[
\begin{array}{ccccccc}
& x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
x_1 & 1 & 0 & 0 & 0 & 1 & 0 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 \\
x_3 & 0 & 0 & 1 & 1 & 0 & 1 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
& x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
0 & 0 & 0 & 1 & 0 & 0 & 100 \\
0 & 0 & 0 & 2 & 0 & 0 & 200 \\
0 & 0 & 0 & 0 & 1 & 0 & 10 \\
0 & 0 & 0 & 0 & 2 & 0 & 20 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 \\
W & 1 & 1 & 1 & 4 & 4 & 4 \\
\end{array}
\]

Subset-Sum instance

\[111,444\]
3-satisfiability reduces to subset sum

Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Leftarrow \) Suppose there exists a subset \(S^* \) that sums to \(W \).

- Digit \(x_i \) forces subset \(S^* \) to select either row \(x_i \) or row \(\neg x_i \) (but not both).
- If row \(x_i \) selected, assign \(x_i^* = true \); otherwise, assign \(x_i^* = false \).

Digit \(C_j \) forces subset \(S^* \) to select at least one literal in clause.

\[
\begin{align*}
C_1 &= \neg x_1 \lor x_2 \lor x_3 \\
C_2 &= x_1 \lor \neg x_2 \lor x_3 \\
C_3 &= \neg x_1 \lor \neg x_2 \lor \neg x_3
\end{align*}
\]

3-SAT instance

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

\(W \)

\[
\begin{pmatrix}
1 & 1 & 1 & 4 & 4 & 4 \\
\end{pmatrix}
\]

\(\text{subset-sum instance} \)
Subset Sum reduces to Knapsack

Subset-Sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Knapsack. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(n U)$ dynamic programming algorithm for Knapsack.

Challenge. Prove Subset-Sum \(\leq_P\) Knapsack.

Pf. Given instance (w_1, \ldots, w_n, W) of Subset-Sum, create Knapsack instance:
Poly-time reductions

3-Sat poly-time reduces to Independent-Set

constraint satisfaction

3-Sat

Independent-Set

Directed-Ham-Cycle

3-Color

Subset-Sum

Vertex-Cover

Ham-Cycle

Knapsack

packing and covering

sequencing

partitioning

numerical
Karp's 20 poly-time reductions from satisfiability

FIGURE 1 - Complete Problems