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Chapter 6

Dynamic Programming
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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing some 
local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve each 
sub-problem independently, and combine solution to sub-problems to 
form solution to original problem. 

Dynamic programming. Break up a problem into a series of overlapping 
sub-problems, and build up solutions to larger and larger sub-problems.
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Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
■ Dynamic programming = planning over time.
■ Secretary of Defense was hostile to mathematical research.
■ Bellman sought an impressive name to avoid confrontation.

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"
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Dynamic Programming Applications

Areas. 
■ Bioinformatics.
■ Control theory.
■ Information theory.
■ Operations research.
■ Computer science:  theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms. 
■ Unix diff for comparing two files.
■ Viterbi for hidden Markov models.
■ Smith-Waterman for genetic sequence alignment.
■ Bellman-Ford for shortest path routing in networks.
■ Cocke-Kasami-Younger for parsing context free grammars.



6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight or value vj . 
■ Two jobs compatible if they don't overlap.
■ Goal:  find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.
■ Consider jobs in ascending order of finish time.
■ Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1  £ f2  £ . . . £ fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 
of job requests 1, 2, ..., j.

■ Case 1:  OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

■ Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

  

 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j -1){ } otherwise
ì 
í 
î 

optimal substructure
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems  Þ exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence.
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;
lookup as needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
■ Sort by finish time:  O(n log n).
■ Computing p(×) :  O(n log n) via sorting by start time.

■ M-Compute-Opt(j):  each invocation takes O(1) time and either
– (i)  returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

■ Progress measure F = # nonempty entries of M[].
– initially F = 0,  throughout F £ n. 
– (ii) increases F by 1  Þ at most 2n recursive calls.

■ Overall running time of M-Compute-Opt(n) is O(n).   �

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A.  Do some post-processing.

■ # of recursive calls £ n  Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}



6.3  Segmented Least Squares
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Segmented Least Squares

Least squares.
■ Foundational problem in statistic and numerical analysis.
■ Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).
■ Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus  Þ min error is achieved when

  

 

SSE = (yi - axi -b)2
i=1

n
å

  

 

a =
n xi yi - ( xi )iå ( yi )iåiå

n xi
2 - ( xi )

2
iåiå

, b =
yi - a xiiåiå

n

x

y
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Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony?

x

y

goodness of fit

number of lines
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Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment
– the number of lines L

■ Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Parsimony theory

Principle of parsimony 
• A theory should provide the simplest possible explanation for a 

phenomenon.

Occam’s razor
■ The simplest of two competing theories is to be preferred.

The KISS principle
■ Keep in Simple, Stupid!

Good theory
■ Exhibits an aesthetic quality, that a good theory is beautiful or 

natural.
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Dynamic Programming:  Multiway Choice

Notation.
■ OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
■ e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
■ Last segment uses points pi, pi+1 , . . . , pj for some i.
■ Cost = e(i, j) + c + OPT(i-1).

  

 

OPT( j) =
0 if  j = 0

min
1£ i £ j

e(i, j) + c + OPT(i -1){ } otherwise
ì 
í 
ï 

î ï 
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Segmented Least Squares:  Algorithm

Running time.  O(n3).
■ Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = j down to 1
compute the least square error eij for
the segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (eij + c + M[i-1])

return M[n]
}

can be improved to O(n2) by pre-computing various statistics



6.4  Knapsack Problem
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Knapsack Problem

Knapsack problem.
■ Given n objects and a "knapsack."
■ Item i weighs wi  > 0 kilograms and has value vi > 0.
■ Knapsack has capacity of W kilograms.
■ Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35  Þ greedy not optimal.
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

■ Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } 

■ Case 2:  OPT selects item i.
– accepting item i does not immediately imply that we will have to 

reject other items
– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

■ Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

■ Case 2:  OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

 

OPT(i, w) =
0 if  i = 0

OPT(i -1, w) if  wi > w
max OPT(i -1, w), vi + OPT(i -1, w-wi ){ } otherwise

ì 

í 
ï 

î ï 



27

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.



28

Knapsack Algorithm

n + 1

1
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10

0
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11

0

7
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40

1
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W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  Q(n W).
■ Not polynomial in input size!
■ "Pseudo-polynomial."
■ Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a poly-time algorithm 
that produces a feasible solution that has value within 0.01% of 
optimum.  [Section 11.8]



6.5  RNA Secondary Structure
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RNA Secondary Structure

RNA.  String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure.  RNA is single-stranded so it tends to loop back 
and form base pairs with itself. This structure is essential for 
understanding behavior of molecule.
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Ex:  GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs:  A-U, C-G



32

RNA Secondary Structure

Secondary structure.  A set of pairs S = { (bi, bj) } that satisfy:
■ [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.
■ [No sharp turns.] The ends of each pair are separated by at least 4 

intervening bases.  If (bi, bj) Î S, then i < j - 4.
■ [Non-crossing.] If (bi, bj)  and (bk, bl) are two pairs in S, then we 

cannot have i < k < j < l.

Free energy.  Usual hypothesis is that an RNA molecule will form the 
secondary structure with the optimum total free energy.

Goal.  Given an RNA molecule B = b1b2…bn, find a secondary structure S 
that maximizes the number of base pairs.

approximate by number of base pairs
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RNA Secondary Structure:  Examples

Examples.
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base pair
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RNA Secondary Structure:  Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary 
structure of the substring  b1b2…bj.

Difficulty. Results in two sub-problems.
■ Finding secondary structure in: b1b2…bt-1.
■ Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems



35

Dynamic Programming Over Intervals

Notation.  OPT(i, j) = maximum number of base pairs in a secondary 
structure of the substring  bibi+1…bj.

■ Case 1.  If i ³ j - 4.
– OPT(i, j) = 0 by no-sharp turns condition.

■ Case 2.  Base bj is not involved in a pair.
– OPT(i, j) = OPT(i, j-1)

■ Case 3.  Base bj pairs with bt for some i £ t < j - 4.
– non-crossing constraint decouples resulting sub-problems
– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark.  Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i £ t < j-4 and
bt and bj are Watson-Crick complements
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Bottom Up Dynamic Programming Over Intervals

Q.  What order to solve the sub-problems?
A.  Do shortest intervals first.

Running time.  O(n3).

RNA(b1,…,bn) {
for k = 5, 6, …, n-1

for i = 1, 2, …, n-k
j = i + k
Compute M[i, j]

return M[1, n]
}

using recurrence

0 0 0
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Dynamic Programming Summary

Recipe.
■ Characterize structure of problem.
■ Recursively define value of optimal solution.
■ Compute value of optimal solution.
■ Construct optimal solution from computed information.

Dynamic programming techniques.
■ Binary choice:  weighted interval scheduling.
■ Multi-way choice:  segmented least squares.
■ Adding a new variable:  knapsack.
■ Dynamic programming over intervals:  RNA secondary structure.

Top-down vs. bottom-up:  different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure



6.6  Sequence Alignment
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String Similarity

How similar are two strings?
■ ocurrance

■ occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.
■ Basis for Unix diff.
■ Speech recognition.
■ Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]
■ Gap penalty d; mismatch penalty apq.
■ Cost = sum of gap and mismatch penalties.

2d + aCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

aTC + aGT + aAG+ 2aCA

-

Edit Distance
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Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 
alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 
occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

!!

 

cost(M ) = a xi y j
(xi , y j ) Î M
å

mismatch
"! #!$!$! %!$!$!

+ d
i : xi  unmatched

å + d
j : y j  unmatched

å

gap
"! #!$!$!$!$!$! %!$!$!$!$!$!

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
■ Case 1:  OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

■ Case 2a:  OPT leaves xi unmatched.
– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

■ Case 2b:  OPT leaves yj unmatched.
– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

 

OPT (i, j) =

ì 

í 

ï 
ï ï 

î 

ï 
ï 
ï 

jd if  i = 0

min  

a xi y j +OPT (i-1, j -1)

d +OPT (i-1, j)
d +OPT (i, j -1)

ì 

í 
ï 

î 
ï 

otherwise

id if  j = 0
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Sequence Alignment:  Algorithm

Analysis.  Q(mn) time and space.
English words or sentences:  m, n  £ 10.
Computational biology:  m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) {
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]
}



6.7  Sequence Alignment in Linear Space
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.
■ Compute OPT(i, •) from OPT(i-1, •).
■ No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 
O(mn) time.
■ Clever combination of divide-and-conquer and dynamic programming.
■ Inspired by idea of Savitch from complexity theory.
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Edit distance graph.
■ Let f(i, j) be shortest path from (0,0) to (i, j).
■ Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

d

d

  

 

axi y j



47

Edit distance graph.
■ Let f(i, j) be shortest path from (0,0) to (i, j).
■ Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

j
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Edit distance graph.
■ Let g(i, j) be shortest path from (i, j) to (m, n).
■ Can compute by reversing the edge orientations and inverting the 

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

d

d

  

 

axi y j
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Edit distance graph.
■ Let g(i, j) be shortest path from (i, j) to (m, n).
■ Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

n / 2

q
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Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
■ Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

q

n / 2

m-n
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 
length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size
(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup

 

T(m, n)  £  2T (m, n /2)  +  O(mn)   Þ   T (m, n)  =  O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 
length m and n. T(m, n) = O(mn).

Pf.  (by induction on n)
■ O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.
■ T(q, n/2) + T(m - q, n/2) time for two recursive calls. 
■ Choose constant c so that:

■ Base cases: m = 2 or n = 2. 
■ Inductive hypothesis:  T(m, n) £ 2cmn.

Sequence Alignment:  Running Time Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=
+-+=

+-+£
+-+£

  

 

T(m, 2) £ cm
T(2, n) £ cn
T(m, n) £ cmn + T(q, n /2) + T(m- q, n /2)


