
1

Chapter 6

Dynamic Programming

2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

3

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
■ Dynamic programming = planning over time.
■ Secretary of Defense was hostile to mathematical research.
■ Bellman sought an impressive name to avoid confrontation.

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

4

Dynamic Programming Applications

Areas.
■ Bioinformatics.
■ Control theory.
■ Information theory.
■ Operations research.
■ Computer science: theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms.
■ Unix diff for comparing two files.
■ Viterbi for hidden Markov models.
■ Smith-Waterman for genetic sequence alignment.
■ Bellman-Ford for shortest path routing in networks.
■ Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

6

Weighted Interval Scheduling

Weighted interval scheduling problem.
■ Job j starts at sj, finishes at fj, and has weight or value vj .
■ Two jobs compatible if they don't overlap.
■ Goal: find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
■ Consider jobs in ascending order of finish time.
■ Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1 £ f2 £ . . . £ fn .
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1, 2, ..., j.

■ Case 1: OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

■ Case 2: OPT does not select job j.
– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j -1){ } otherwise
ì
í
î

optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems Þ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

3
4

5

1
2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
■ Sort by finish time: O(n log n).
■ Computing p(×) : O(n log n) via sorting by start time.

■ M-Compute-Opt(j): each invocation takes O(1) time and either
– (i) returns an existing value M[j]
– (ii) fills in one new entry M[j] and makes two recursive calls

■ Progress measure F = # nonempty entries of M[].
– initially F = 0, throughout F £ n.
– (ii) increases F by 1 Þ at most 2n recursive calls.

■ Overall running time of M-Compute-Opt(n) is O(n). �

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

■ # of recursive calls £ n Þ O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 £ f2 £ ... £ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}

6.3 Segmented Least Squares

17

Segmented Least Squares

Least squares.
■ Foundational problem in statistic and numerical analysis.
■ Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).
■ Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus Þ min error is achieved when

SSE = (yi - axi -b)2
i=1

n
å

a =
n xi yi - (xi)iå (yi)iåiå

n xi
2 - (xi)

2
iåiå

, b =
yi - a xiiåiå

n

x

y

18

Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and
parsimony?

x

y

goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.
■ Points lie roughly on a sequence of several line segments.
■ Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with
■ x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment
– the number of lines L

■ Tradeoff function: E + c L, for some constant c > 0.

x

y

20

Parsimony theory

Principle of parsimony
• A theory should provide the simplest possible explanation for a

phenomenon.

Occam’s razor
■ The simplest of two competing theories is to be preferred.

The KISS principle
■ Keep in Simple, Stupid!

Good theory
■ Exhibits an aesthetic quality, that a good theory is beautiful or

natural.

21

Dynamic Programming: Multiway Choice

Notation.
■ OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
■ e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
■ Last segment uses points pi, pi+1 , . . . , pj for some i.
■ Cost = e(i, j) + c + OPT(i-1).

OPT(j) =
0 if j = 0

min
1£ i £ j

e(i, j) + c + OPT(i -1){ } otherwise
ì
í
ï

î ï

22

Segmented Least Squares: Algorithm

Running time. O(n3).
■ Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = j down to 1
compute the least square error eij for
the segment pi,…, pj

for j = 1 to n
M[j] = min 1 £ i £ j (eij + c + M[i-1])

return M[n]
}

can be improved to O(n2) by pre-computing various statistics

6.4 Knapsack Problem

24

Knapsack Problem

Knapsack problem.
■ Given n objects and a "knapsack."
■ Item i weighs wi > 0 kilograms and has value vi > 0.
■ Knapsack has capacity of W kilograms.
■ Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 Þ greedy not optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2W = 11

25

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

■ Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }

■ Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will have to

reject other items
– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

26

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

■ Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w

■ Case 2: OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT(i, w) =
0 if i = 0

OPT(i -1, w) if wi > w
max OPT(i -1, w), vi + OPT(i -1, w-wi){ } otherwise

ì

í
ï

î ï

27

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

28

Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

f

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

29

Knapsack Problem: Running Time

Running time. Q(n W).
■ Not polynomial in input size!
■ "Pseudo-polynomial."
■ Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

6.5 RNA Secondary Structure

31

RNA Secondary Structure

RNA. String B = b1b2…bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

32

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:
■ [Watson-Crick.] S is a matching and each pair in S is a Watson-

Crick complement: A-U, U-A, C-G, or G-C.
■ [No sharp turns.] The ends of each pair are separated by at least 4

intervening bases. If (bi, bj) Î S, then i < j - 4.
■ [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then we

cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form the
secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2…bn, find a secondary structure S
that maximizes the number of base pairs.

approximate by number of base pairs

33

RNA Secondary Structure: Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
£4

base pair

34

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring b1b2…bj.

Difficulty. Results in two sub-problems.
■ Finding secondary structure in: b1b2…bt-1.
■ Finding secondary structure in: bt+1bt+2…bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

35

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bibi+1…bj.

■ Case 1. If i ³ j - 4.
– OPT(i, j) = 0 by no-sharp turns condition.

■ Case 2. Base bj is not involved in a pair.
– OPT(i, j) = OPT(i, j-1)

■ Case 3. Base bj pairs with bt for some i £ t < j - 4.
– non-crossing constraint decouples resulting sub-problems
– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

Remark. Same core idea in CKY algorithm to parse context-free grammars.

take max over t such that i £ t < j-4 and
bt and bj are Watson-Crick complements

36

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

Running time. O(n3).

RNA(b1,…,bn) {
for k = 5, 6, …, n-1

for i = 1, 2, …, n-k
j = i + k
Compute M[i, j]

return M[1, n]
}

using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

37

Dynamic Programming Summary

Recipe.
■ Characterize structure of problem.
■ Recursively define value of optimal solution.
■ Compute value of optimal solution.
■ Construct optimal solution from computed information.

Dynamic programming techniques.
■ Binary choice: weighted interval scheduling.
■ Multi-way choice: segmented least squares.
■ Adding a new variable: knapsack.
■ Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6 Sequence Alignment

39

String Similarity

How similar are two strings?
■ ocurrance

■ occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

40

Applications.
■ Basis for Unix diff.
■ Speech recognition.
■ Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
■ Gap penalty d; mismatch penalty apq.
■ Cost = sum of gap and mismatch penalties.

2d + aCA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

aTC + aGT + aAG+ 2aCA

-

Edit Distance

41

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

!!

cost(M) = a xi y j
(xi , y j) Î M
å

mismatch
"! #!$!$! %!$!$!

+ d
i : xi unmatched

å + d
j : y j unmatched

å

gap
"! #!$!$!$!$!$! %!$!$!$!$!$!

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

42

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
■ Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

■ Case 2a: OPT leaves xi unmatched.
– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

■ Case 2b: OPT leaves yj unmatched.
– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT (i, j) =

ì

í

ï
ï ï

î

ï
ï
ï

jd if i = 0

min

a xi y j +OPT (i-1, j -1)

d +OPT (i-1, j)
d +OPT (i, j -1)

ì

í
ï

î
ï

otherwise

id if j = 0

43

Sequence Alignment: Algorithm

Analysis. Q(mn) time and space.
English words or sentences: m, n £ 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, d, a) {
for i = 0 to m

M[i, 0] = id
for j = 0 to n

M[0, j] = jd

for i = 1 to m
for j = 1 to n

M[i, j] = min(a[xi, yj] + M[i-1, j-1],
d + M[i-1, j],
d + M[i, j-1])

return M[m, n]
}

6.7 Sequence Alignment in Linear Space

45

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
■ Compute OPT(i, •) from OPT(i-1, •).
■ No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.
■ Clever combination of divide-and-conquer and dynamic programming.
■ Inspired by idea of Savitch from complexity theory.

46

Edit distance graph.
■ Let f(i, j) be shortest path from (0,0) to (i, j).
■ Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

d

d

axi y j

47

Edit distance graph.
■ Let f(i, j) be shortest path from (0,0) to (i, j).
■ Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

j

48

Edit distance graph.
■ Let g(i, j) be shortest path from (i, j) to (m, n).
■ Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

d

d

axi y j

49

Edit distance graph.
■ Let g(i, j) be shortest path from (i, j) to (m, n).
■ Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

j

50

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

51

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

n / 2

q

52

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
■ Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

e

e

0-0

q

n / 2

m-n

53

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size
(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup

T(m, n) £ 2T (m, n /2) + O(mn) Þ T (m, n) = O(mn logn)

54

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
■ O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
■ T(q, n/2) + T(m - q, n/2) time for two recursive calls.
■ Choose constant c so that:

■ Base cases: m = 2 or n = 2.
■ Inductive hypothesis: T(m, n) £ 2cmn.

Sequence Alignment: Running Time Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

=
+-+=

+-+£
+-+£

T(m, 2) £ cm
T(2, n) £ cn
T(m, n) £ cmn + T(q, n /2) + T(m- q, n /2)

