Chapter 6

Dynamic Programming

\Ajnulmﬂ Al

}\ JON KLEINBERG - EVA TARDOS
\

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some
local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each
sub-problem independently, and combine solution to sub-problems to
form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping
sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
= Dynamic programming = planning over time.
« Secretary of Defense was hostile o mathematical research.
= Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

« Bioinformatics.
Control theory.
Information theory.
Operations research.

Some famous dynamic programming algorithms.
« Unix diff for comparing two files.
Viterbi for hidden Markov models.
Smith-Waterman for genetic sequence alignment.
Bellman-Ford for shortest path routing in networks.
» Cocke-Kasami-Younger for parsing context free grammars.

Computer science: theory, graphics, AL, compilers, systems,

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
= Job j starts at s;, finishes at fJ-, and has weight or value Vi .
= Two jobs compatible if they don't overlap.
« Goal: find maximum weight subset of mutually compatible jobs.

> lime

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.
« Consider jobs in ascending order of finish time.
« Add job to subseft if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

> lime

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

, lTime

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting
of job requests 1,2, .., j.

« Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j) +1,p(j)+2,...j-1}
- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., p(j) N

optimal substructure

« Case 2: OPT does not select job j. d

- must include optimal solution to problem consisting of remaining
compatible jobs 1, 2, ..., j-1

0 if =0
OPT(j)=
(/) {max { v+ OPT(p())), OPT(j—l)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

10

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence.

v

p(1) =0, p(j) = j-2

1

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

12

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(nh log n) time.
= Sort by finish time: O(n log n).
Computing p(-): O(n log n) via sorting by start time.

M-Compute-Opt (j): each invocation takes O(1) time and either
- (i) returns an existing value mM[7]
- (ii) fills in one new entry M[31 and makes two recursive calls

Progress measure ® = # nonempty entries of M[].
- initially ® = O, throughout ® <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

Overall running time of M-Compute-0pt (n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

13

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

= # of recursive calls <n = O(n).

14

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

15

6.3 Segmented Least Squares

Segmented Least Squares

Least squares.
« Foundational problem in statistic and numerical analysis.
= Given n points in the plane: (xi, y1), (X2, ¥2), (X Yn)
« Find aline y = ax + b that minimizes the sum of the squared error:

SSE = f:(yi—axi—b)2

1=

Solution. Calculus = min error is achieved when

:nZ,-X,-y,- _(Zixi) (Ziyi) bzziyi _azixi
nZixl-2 — (2, x; 2 ’ hn

a

17

Segmented Least Squares

Segmented least squares.
=« Points lie roughly on a sequence of several line segments.
= Given n points in the plane (x1, y1), (X2, Y¥2), (Xn, Yn) with
= X1< X2< ... < X, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

. 5 1
par?'mony' goodness of fit

number of lines

18

Segmented Least Squares

Segmented least squares.
=« Points lie roughly on a sequence of several line segments.
Given n points in the plane (x1, y1), (X2, Y¥2), (Xpn, Yn) with
X1< Xz < ... < X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
Tradeoff function: E + c L, for some constant ¢ > O.

19

Parsimony theory

Principle of parsimony
A theory should provide the simplest possible explanation for a
phenomenon.

Occam'’s razor
= The simplest of two competing theories is to be preferred.

The KISS principle
» Keep in Simple, Stupid!

Good theory
« Exhibits an aesthetic quality, that a good theory is beautiful or
natural.

20

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, piv1, ..., p;.
= e(i, j) = minimum sum of squares for points p;, pis1, ..., pj.

To compute OPT(j):
- Last segment uses points p;, pi.1, ..., pj for some i.
« Cost =e(i, j)+ c + OPT(i-1).

0 if j=0
OPT(j)= min { e(i,j) +c+ OPT(i—1)} otherwise

I1<i<j

21

Segmented Least Squares: Algorithm

i) can be improved to O(n?) by pre-computing various statistics
Running time. O(n3). ~—

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair using
previous formula.

22

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

» Given nobjects and a "knapsack."

« Item i weighs w; > O kilograms and has value v;> O.
« Knapsack has capacity of W kilograms.

« Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40.

1 1
W =11 2 6
3 18
4 22
5 28

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

1

2
5
6
7

24

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

= Case 1. OPT does not select item i.
- OPT selects best of {1, 2, ..., i-1}

= Case 2: OPT selects itemi.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

25

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

= Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

« Case 2: OPT selects item i.
- hew weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if 1=0
OPT(i,w)=4OPT(i—1,w) if w,>w
(max{ OPT(i—-1,w), v;,+ OPT(i—1,w—w;)} otherwise

26

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

27

¢
{1}
{12}
{1,2,3}
{1,2,3,4}
{1,2,3,4,5}

Knapsack Algorithm

W+1

Ll L el e Lo Lol

v

0
1
1
1
1
1

o O O O -
N N N N -~

OPT: {4, 3}
value = 22 + 18 = 40

1 1

1
7

1
7

1
7

-19 24 25 25

22 24 28 29
18 22 28 29 34

w=11

Ol D W N =

1
6
18
22
28

1 1
7 7
25 25

2o [0
34 [40°

1

N o 0o

28

Knapsack Problem: Running Time

Running time. ®(n W).
= Not polynomial in input size!
=« "Pseudo-polynomial.”
= Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

29

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = bjb,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA A / N\ A
N\ /7
A---U 6—C
| | / \
C---6) A A G
/ [[[I
G I I I
U I A= U =— U A
VN I N6~
A C G C U
I I I I G
l I I I I /
C G C G A G--C
N 7 | |
G
A--U
|
G

complementary base pairs: A-U, C-G6

31

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b;) } that satisfy:
« [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-G, or G-C.
= [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b, b;) € S, theni<j-4.
=« [Non-crossing.] If (b;, bj) and (by, b)) are two pairs in S, then we
cannot have i< k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form the

secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = bsb,...b,, find a secondary structure S
that maximizes the number of base pairs.

32

RNA Secondary Structure: Examples

Examples.

6—6 /G\ 6—6

/ N\ G G / N\

C V) \ / C V)

N\ / N\ /
C---6 C---6 C\ V)
| I I | >< |
A---U A---U A G
I I I I I I
U---A Uu---A U---A

base pair
AUGUGGTCCA AU AUGGGG CAU A GUUGGTCCA AU

—<4 __,

ok sharp fturn crossing

33

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bib,...b;.

match b; and b,

Difficulty. Results in fwo sub-problems.
« Finding secondary structure in: b;b,...b, . «— OPT(+-1)

= Finding secondary structure in: by,1bs.z...b,1. «— need more sub-problems

34

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring bib.;...b;.
« Casel Ifix>j-4.

- OPT(i, j) = O by no-sharp turns condition.

- Case 2. Base b; is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

- Case 3. Base bj pairs with b, for some i <t«<j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(, j) = 1 + max; { OPT(i, t-1) + OPT(1+1, j-1) }
\

take max over 1 such that i <1< j-4 and
b+ and bj are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free grammars.

35

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

) IS I N

6 7 8 9

Running time. O(n3).

36

Dynamic Programming Summary

Recipe.
« Characterize structure of problem.
« Recursively define value of optimal solution.
» Compute value of optimal solution.
» Construct optimal solution from computed information.

Dynamic programming techniques.
= Binary choice: weighted interval scheduling. o
. . Viterbi algorithm for HMM also uses
« Multi-way choice: segmented least squares. <~ DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy
= Adding a new variable: knapsack.

» Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

37

6.6 Sequence Alignment

String Similarity

How similar are two strings?
s Ocurrance

. OCccurrence

6 mismatches, 1 gap

IEEEEDEEE
ccurr=nce

1 mismatch, 1 gap

IHEEEREEE
ccurre.nc

O mismatches, 3 gaps

39

Edit Distance

Applications.

«» Basis for Unix diff.

= Speech recognition.

= Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty 3, mismatch penalty o
= Cost = sum of gap and mismatch penalties.

-@ENE: - » <@A-:
-aEEN: : » <@:

Otc + OgT+ Oagt 20ca

-CTGACCTACT
CCTGAC-TAC“T

20 + Oca

40

Sequence Alignment

Goal: Given two strings X = x; X, ... X,and Y =y;y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i’, but j>j'.

costtM) = > «a - > 0+)

XiYj

(x;,y;)eM i :x; unmatched j:y; unmatched
misrgatch gzp
X1 Xz X3 X4 Xs Xe
| c v a o EHE ¢
Ex: CTACCG vS. TACATG.
Sol: M = X,-y1, X3-Y2, X4-Y3, X5-Y4, X¢-Ye.
27Y1, X37Y2, X47Y3, X5-Y4, X6~Ye -T A c“'r G

Yi Y2 ¥3 Y4 Y5 Ye

41

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;and y1 ¥z ... ;.

- Case 1: OPT matches x;-y;.

- pay mismatch for x;-y; + min cost of aligning two strings

X1 X2 ... Xj1 and YiY2.. -YJ-I

= Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; xz ... X;.yand y1 y2 . . . y;
- Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; xz ... Xjand y1 yz ... yj1

Jjo if i=0
Ay +OPT(i-1, j—1)
OPT(i, j)=y min y 6+OPT(i—1, j) otherwise
| 0+OPT(i, j—1)
i if j=0

42

Sequence Alignment: Algorithm

Analysis. ®(mn) time and space.
English words or sentences: m,n <10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?

43

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
= Compute OPT(i, *) from OPT(i-1, -).
= No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.

= Clever combination of divide-and-conquer and dynamic programming.

= Inspired by idea of Savitch from complexity theory.

45

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
« Observation: (i, j) = OPT(i, j).

46

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
= Can compute f (*, j) for any j in O(mn) time and O(m + n) space.

2 Y1 Y2 Y3 Y4 Y5 Ye

47

Sequence Alignment: Linear Space

Edit distance graph.
« Let g(i, j) be shortest path from (i, j) fo (m, n).
= Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

48

Sequence Alignment: Linear Space

Edit distance graph.
« Let g(i, j) be shortest path from (i, j) fo (m, n).
« Can compute g(, j) for any j in O(mn) tfime and O(m + n) space.

49

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, §) + 9(i,)).

€ Y1 Y2 Y3 Y4 Y5

Yo

50

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, O) fo (m, n) uses (q, n/2).

n/2

2 Y1 Y2 Y3 Y4 Y5 Ye

51

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
= Align x, and y,».
Conquer: recursively compute optimal alignment in each piece.

n/2

52

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T'(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are of size
(9, n/2) and (m - g, n/2). In next slide, we save log n factor.

53

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

« O(mn) time to compute f(+, n/2) and g (*, n/2) and find index q.
T(q, n/2) + T(m - g, n/2) time for two recursive calls.
= Choose constant ¢ so that:

T(m, 2) < cm
T2, n) < cn
T(m,n) < cmn+T(q, n/2)+T(m—gq, n/2)
« Basecasessm=2orn=2.
= Inductive hypothesis: T(m, n) < 2cmn.
T(mmn) < T(g,n/2)+T(m—q,n/2)+cmn
< 2cqn/2+2c(m—q)n/2+cmn

cqn+cmn—cqn +cmn

2cmn

54

