

Chapter 6

Dynamic Programming

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.
Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$. Def. $p(j)=$ largest index $i<j$ such that $j o b i$ is compatible with j.
$E x: p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests $1,2, \ldots, j$.

- Case 1: OPT selects job j.
- collect profit v_{j}
- can't use incompatible jobs $\{p(j)+1, p(j)+2, \ldots, j-1\}$
- must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, p(j)$
optimal substructure
- Case 2: OPT does not select job j.
- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$
O P T(j)=\left\{\begin{array}{cl}
0 & \text { if } \mathrm{j}=0 \\
\max \left\{v_{j}+O P T(p(j)), O P T(j-1)\right\} & \text { otherwise }
\end{array}\right.
$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.


```
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots,\ldots\mp@subsup{f}{n}{}
Compute p(1), p(2),\ldots,p(n)
Compute-Opt(j) {
    if (j = 0)
        return 0
    else
        return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```


Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, si,\ldots,\mp@subsup{S}{n}{},\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{n}{},\mp@subsup{\mathbf{v}}{1}{},\ldots,\mp@subsup{\mathbf{V}}{\textrm{n}}{}
Sort jobs by finish times so that }\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
for j = 1 to n
    M[j] = empty
M[0] = 0 global array
M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(vij + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```


Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.

- Sort by finish time: $O(n \log n)$.
- Computing $\mathrm{p}(\cdot): O(n \log n)$ via sorting by start time.
- m-Compute-Opt (j): each invocation takes $O(1)$ time and either
- (i) returns an existing value $\mathrm{m}[\mathrm{j}]$
- (ii) fills in one new entry m[j] and makes two recursive calls
- Progress measure $\Phi=\#$ nonempty entries of $\mathrm{m}[\mathrm{]}$.
- initially $\Phi=0$, throughout $\Phi \leq n$.
- (ii) increases Φ by $1 \Rightarrow$ at most $2 n$ recursive calls.
- Overall running time of m -Compute-Opt (n) is $\mathrm{O}(\mathrm{n})$. .

Remark. $O(n)$ if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.

What if we want the solution itself?
A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (vj + M[p(j)] > M[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- \# of recursive calls $\leq n \Rightarrow O(n)$.

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, si,\ldots,\mp@subsup{S}{n}{},\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{n}{},\mp@subsup{\textrm{v}}{1}{},\ldots,\mp@subsup{\mathbf{v}}{\textrm{n}}{}
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots,\ldots\mp@subsup{f}{n}{}
Compute p(1), p(2), .., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(vij +M[p(j)], M[j-1])
}
```


6.3 Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Find a line $y=a x+b$ that minimizes the sum of the squared error:

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

Solution. Calculus \Rightarrow min error is achieved when

$$
a=\frac{n \sum_{i} x_{i} y_{i}-\left(\sum_{i} x_{i}\right)\left(\sum_{i} y_{i}\right)}{n \sum_{i} x_{i}^{2}-\left(\sum_{i} x_{i}\right)^{2}}, \quad b=\frac{\sum_{i} y_{i}-a \sum_{i} x_{i}}{n}
$$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes $f(x)$.
Q. What's a reasonable choice for $f(x)$ to balance accuracy and parsimony?
$\stackrel{\uparrow}{\text { number of lines }}$

Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
- $x_{1}<x_{2}<\ldots<x_{n}$, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
- Tradeoff function: $E+c L$, for some constant $c>0$.

Parsimony theory

Principle of parsimony

- A theory should provide the simplest possible explanation for a phenomenon.

Occam's razor

- The simplest of two competing theories is to be preferred.

The KISS principle

- Keep in Simple, Stupid!

Good theory

- Exhibits an aesthetic quality, that a good theory is beautiful or natural.

Dynamic Programming: Multiway Choice

Notation.

- $\operatorname{OPT}(j)=$ minimum cost for points $p_{1}, p_{i+1}, \ldots, p_{j}$.
- $e(i, j)=$ minimum sum of squares for points $p_{i}, p_{i+1}, \ldots, p_{j}$.

To compute OPT(j):

- Last segment uses points $p_{i}, p_{i+1}, \ldots, p_{j}$ for some i.
- Cost $=e(i, j)+c+$ OPT $(i-1)$.

$$
\operatorname{OPT}(j)= \begin{cases}0 & \text { if } \mathrm{j}=0 \\ \min _{1 \leq i \leq j}\{e(i, j)+c+O P T(i-1)\} & \text { otherwise }\end{cases}
$$

Segmented Least Squares: Algorithm

```
INPUT: n, p
Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = j down to 1
            compute the least square error e }\mp@subsup{e}{ij}{}\mathrm{ for
            the segment p pi,\ldots, p p
    for j = 1 to n
        M[j] = min}1\leqi\leqj(\mp@subsup{e}{ij}{}+c+M[i-1]
    return M[n]
}
```

Running time. $O\left(n^{3}\right)$. can be improved to $O\left(n^{2}\right)$ by pre-computing various statistics

- Bottleneck = computing e (i, j) for $O\left(n^{2}\right)$ pairs, $O(n)$ per pair using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."

- Item i weighs $w_{i}>0$ kilograms and has value $v_{i}>0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3,4\}$ has value 40 .

$\#$	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_{i} / w_{i}.
Ex: $\{5,2,1\}$ achieves only value $=35 \Rightarrow$ greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items $1, \ldots$, i.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$
- Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to reject other items
- without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. $\operatorname{OPT}(i, w)=\max$ profit subset of items $1, \ldots, i$ with weight limit w.

- Case 1: OPT does not select item i.
- OPT selects best of $\{1,2, \ldots, i-1\}$ using weight limit w
- Case 2: OPT selects item i.
- new weight limit $=w-w_{i}$
- OPT selects best of $\{1,2, \ldots, i-1\}$ using this new weight limit

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: \(\mathrm{n}, \mathrm{W}, \mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{N}}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\)
for \(w=0\) to \(W\)
    \(\mathrm{M}[0, \mathrm{w}]=0\)
for \(i=1\) to \(n\)
    for \(w=1\) to \(w\)
        if ( \(\left.w_{i}>w\right)\)
            \(M[i, w]=M[i-1, w]\)
        else
            \(M[i, w]=\max \left\{M[i-1, w], v_{i}+M\left[i-1, w-w_{i}\right]\right\}\)
return \(M[n, W]\)
```

Knapsack Algorithm

$$
工 W+1
$$

		0	1	2	3	4	5	6	7	8	9	10	11
	ϕ	0	0	0	0	0	0	0	0	0	0	0	0
	\{ 1 \}	0	1	1	1	1	1	1	1	1	1	1	1
$n+1$	\{ 1,2$\}$	0	1	6	7	7	7	7	7	7	7	7	7
	$\{1,2,3\}$	0	1	6	7	7	18	19	24	25	25	25	25
	$\{1,2,3,4\}$	0	1	6	7	7	18	22	24	28	29	29	40
	$\{1,2,3,4,5\}$	0	1	6	7	7	18	22	28	29	34	34	40

OPT: $\{4,3\}$
value $=22+18=40$

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(\mathrm{n}$ W).

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]
6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String $B=b_{1} b_{2} \ldots b_{n}$ over alphabet $\{A, C, G, U\}$.
Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

RNA Secondary Structure

Secondary structure. A set of pairs $S=\left\{\left(b_{i}, b_{j}\right)\right\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a WatsonCrick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $\left(b_{i}, b_{j}\right) \in S$, then $i<j-4$.
- [Non-crossing.] If $\left(b_{i}, b_{j}\right)$ and $\left(b_{k}, b_{1}\right)$ are two pairs in S, then we cannot have $\mathrm{i}<\mathrm{k}<\mathrm{j}<\mathrm{l}$.

Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

Goal. Given an RNA molecule $B=b_{1} b_{2} \ldots b_{n}$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.

ok

$\longleftarrow \leq 4 \longrightarrow$
sharp turn

crossing

RNA Secondary Structure: Subproblems

First attempt. OPT $(\mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{1} b_{2} \ldots b_{j}$.

Difficulty. Results in two sub-problems.

- Finding secondary structure in: $b_{1} b_{2} \ldots b_{t-1}$.
\leftarrow OPT((-1)
- Finding secondary structure in: $b_{t+1} b_{++2} \ldots b_{n-1}$. \leftarrow need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT $(\mathrm{i}, \mathrm{j})=$ maximum number of base pairs in a secondary structure of the substring $b_{i} b_{i+1} \ldots b_{j}$.

- Case 1. If $\mathrm{i} \geq \mathrm{j}-4$.
- OPT($\mathrm{i}, \mathrm{j})=0$ by no-sharp turns condition.
- Case 2. Base b_{j} is not involved in a pair.
$-\operatorname{OPT}(i, j)=\operatorname{OPT}(i, j-1)$
- Case 3. Base b_{j} pairs with b_{+}for some $i \leq t<j-4$.
- non-crossing constraint decouples resulting sub-problems
- OPT $(\mathrm{i}, \mathrm{j})=1+\max _{+}\{\operatorname{OPT}(\mathrm{i}, \mathrm{t}-1)+\operatorname{OPT}(\mathrm{t}+1, \mathrm{j}-1)\}$
take max over \dagger such that $\mathrm{i} \leq \dagger$ < $\mathrm{j}-4$ and
b_{+}and b_{j} are Watson-Crick complements
Remark. Same core idea in CKY algorithm to parse context-free grammars.

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

```
RNA ( }\mp@subsup{\textrm{b}}{1}{},\ldots,\mp@subsup{b}{n}{}) 
    for k = 5, 6, .., n-1
        for i = 1, 2, .., n-k
        j = i + k
        Compute M[i, j]
    return M[1, n] using recurrence
}
```

Running time. $O\left(n^{3}\right)$.

Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

- Binary choice: weighted interval scheduling.
- Multi-way choice: segmented least squares.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost = sum of gap and mismatch penalties.

$\alpha_{T C}+\alpha_{G T}+\alpha_{A G}+2 \alpha_{C A}$

$$
2 \delta+\alpha_{C A}
$$

Sequence Alignment

Goal: Given two strings $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_{i}-y_{j}$ and $x_{i^{\prime}}-y_{j^{\prime}}$ cross if $i<i^{\prime}$, but $j>j^{\prime}$.

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmatched }} \delta+\sum_{j: y_{j} \text { unmatched }} \delta}_{\text {gap }}
$$

Ex: ctaccg vs. tacatg.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{6}
C	T	A	\mathbf{C}	\mathbf{C}	-	G

Sol: $M=x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}$.

Sequence Alignment: Problem Structure

Def. OPT $(i, j)=$ min cost of aligning strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

- Case 1: OPT matches $x_{i}-y_{j}$.
- pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning two strings $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$
- Case 2a: OPT leaves x_{i} unmatched.
- pay gap for x_{i} and min cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$
- Case 2b: OPT leaves y_{j} unmatched.
- pay gap for y_{j} and min cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$


```
Sequence-Alignment(m, n, \mp@subsup{x}{1}{}\mp@subsup{\mathbf{x}}{2}{}\ldots..\mp@subsup{x}{m}{},\mp@subsup{y}{1}{}\mp@subsup{\mathbf{Y}}{2}{}\ldots\mp@subsup{y}{n}{},\delta,\alpha) {
    for i = 0 to m
        M[i, 0] = i\delta
    for j = 0 to n
        M[0, j] = j\delta
    for i = 1 to m
        for j = 1 to n
            M[i, j] = min(\alpha[xi, yj] + M[i-1, j-1],
                \delta + M[i-1, j],
                \delta + M[i, j-1])
    return M[m, n]
}
```

Analysis. $\Theta(m n)$ time and space.
English words or sentences: $m, n \leq 10$.
Computational biology: $m=n=100,000$. 10 billions ops OK, but 10GB array?
6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m+n)$ space and $O(m n)$ time.

- Compute $\operatorname{OPT}(\mathrm{i}, \cdot)$ from $\operatorname{OPT}(\mathrm{i}-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m+n)$ space and $O(m n)$ time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j)=\operatorname{OPT}(i, j)$.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n)

Sequence Alignment: Linear Space

Edit distance graph.

- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is $f(i, j)+g(i, j)$.

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, the shortest path from $(0,0)$ to (m, n) uses $(q, n / 2)$.
$n / 2$

Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n / 2)+g(q, n / 2)$ using $D P$.

- Align x_{q} and $y_{n / 2}$.

Conquer: recursively compute optimal alignment in each piece.
$n / 2$

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n)=$ max running time of algorithm on strings of length at most m and $n . T(m, n)=O(m n \log n)$.

$$
T(m, n) \leq 2 T(m, n / 2)+O(m n) \Rightarrow T(m, n)=O(m n \log n)
$$

Remark. Analysis is not tight because two sub-problems are of size $(q, n / 2)$ and $(m-q, n / 2)$. In next slide, we save $\log n$ factor.

Sequence Alignment: Running Time Analysis

Theorem. Let $T(m, n)=\max$ running time of algorithm on strings of length m and $n . ~ T(m, n)=O(m n)$.

Pf. (by induction on n)

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
- Choose constant c so that:

```
T(m,2) \leq cm
T(2,n)}\leqc
T(m,n)\leqcmn+T(q,n/2)+T(m-q,n/2)
```

- Base cases: $m=2$ or $n=2$.
- Inductive hypothesis: $T(m, n) \leq 2 \mathrm{cmn}$.

$$
\begin{aligned}
T(m, n) & \leq T(q, n / 2)+T(m-q, n / 2)+c m n \\
& \leq 2 c q n / 2+2 c(m-q) n / 2+c m n \\
& =c q n+c m n-c q n+c m n \\
& =2 c m n
\end{aligned}
$$

