

Chapter 5
 Divide and Conquer

Divide-and-Conquer

Divide-and-conquer.

- Break up problem into several parts.
- Solve each part recursively.
- Combine solutions to sub-problems into overall solution.

Most common usage.

- Break up problem of size n into two equal parts of size $\frac{1}{2} n$.
- Solve two parts recursively.
- Combine two solutions into overall solution in linear time.

Consequence.

- Brute force: n^{2}.
- Divide-and-conquer: $n \log n$.

5.1 Mergesort

Sorting

Sorting. Given n elements, rearrange in ascending order.
Applications.

- Sort a list of names.
- Organize an MP3 library. obvious applications
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
problems become easy once
items are in sorted order
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
non-obvious applications
- Book recommendations on Amazon.
- Load balancing on a parallel computer.
...

Mergesort

Mergesort.

- Divide array into two halves.
- Recursively sort each half.
- Merge two halves to make sorted whole.

A	L	G	O	R	I	T	H	M	S

A	L	G	\mathbf{O}	\mathbf{R}

A	G	L	O	R

A	\mathbf{G}	\mathbf{H}	\mathbf{I}	L	\mathbf{M}	O	R	\mathbf{S}	\mathbf{T}

Merging

Merging. Combine two pre-sorted lists into a sorted whole.
How to merge efficiently?

- Linear number of comparisons.
- Use temporary array.

A	G	H	I

Challenge for the bored. In-place merge. [Kronrud, 1969]
using only a constant amount of extra storage

A Useful Recurrence Relation

Def. $T(n)=$ number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. $T(n)=O\left(n \log _{2} n\right)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=$.

Proof by Recursion Tree

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }} & +\underbrace{n}_{\text {merging }}
\end{array} & \text { otherwise }\end{cases}
$$

Proof by Telescoping

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }}+\underbrace{n}_{\text {merging }} & \text { otherwise }
\end{array}\end{cases}
$$

Pf. For $n>1$:

$$
\begin{array}{rll}
\frac{T(n)}{n} & =\frac{2 T(n / 2)}{n}+1 \\
& =\frac{T(n / 2)}{n / 2}+1 \\
& =\frac{T(n / 4)}{n / 4}+1+1 \\
& \cdots \\
& =\frac{T(n / n)}{n / n}+\underbrace{1+\cdots+1}_{\log _{2} n} \\
& =\log _{2} n &
\end{array}
$$

Proof by Induction

Claim. If $T(n)$ satisfies this recurrence, then $T(n)=n \log _{2} n$.
assumes n is a power of 2

$$
\mathrm{T}(n)= \begin{cases}\begin{array}{ll}
0 & \text { if } n=1 \\
\underbrace{2 T(n / 2)}_{\text {sorting both halves }} & \underbrace{n}_{\text {merging }}
\end{array} \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Inductive hypothesis: $T(n)=n \log _{2} n$.
- Goal: show that $T(2 n)=2 n \log _{2}(2 n)$.

$$
\begin{aligned}
T(2 n) & =2 T(n)+2 n \\
& =2 n \log _{2} n+2 n \\
& =2 n\left(\log _{2}(2 n)-1\right)+2 n \\
& =2 n \log _{2}(2 n)
\end{aligned}
$$

Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n\lceil\lg n\rceil$.

$$
\mathrm{T}(n) \leq \begin{cases}0 & \text { if } n=1 \\ \underbrace{T(\lceil n / 2\rceil)}_{\text {solve left half }}+\underbrace{T(\lfloor n / 2\rfloor)}_{\text {solve right half }}+\underbrace{n}_{\text {merging }} & \text { otherwise }\end{cases}
$$

Pf. (by induction on n)

- Base case: $n=1$.
- Define $n_{1}=\lfloor n / 2\rfloor, n_{2}=\lceil n / 2\rceil$.
- Induction step: assume true for $1,2, \ldots, n-1$.

$$
\begin{aligned}
T(n) & \leq T\left(n_{1}\right)+T\left(n_{2}\right)+n \\
& \left.\leq n_{1} 1 \lg n_{1}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& \left.\left.\leq n_{1}\right\rceil \lg n_{2}\right\rceil+n_{2}\left\lceil\lg n_{2}\right\rceil+n \\
& =n\left\lceil\lg n_{2}\right\rceil+n \\
& \leq n(\lceil\lg n\rceil-1)+n \\
& =n\lceil\lg n\rceil
\end{aligned}
$$

$$
\begin{aligned}
n_{2} & =|n / 2| \\
& \leq\left\lceil 2^{\lceil\lg n\rceil} / 2\right\rceil \\
& =2^{\lceil\lg n\rceil} / 2 \\
\Rightarrow & \lg n_{2} \leq\lceil\lg n\rceil-1
\end{aligned}
$$

Two Exercises

- Using recursion tree to guess a result, and then, applying induction to prove.
(1) $T(n)=3 T(n / 4)+\Theta\left(n^{2}\right)$

Use $c n^{2}$ to replace $\Theta\left(n^{2}\right)$ for $c>0$ in recursion tree Apply $T(n) \leq d n^{2}$ for $d>0$, the guess result, in induction prove Determine the constraint associated with d and c
(2) $T(n)=T(n / 3)+T(2 n / 3)+O(n)$

Use c to represent the constant factor in $O(n)$ in recursion tree Apply $T(n) \leq d n \lg n$ for $d>0$, the guess result, in induction prove Determine the constraint associated with d and c

Master Theorem

Theorem 4.1 (Master theorem)

Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$
T(n)=a T(n / b)+f(n)
$$

where we interpret n / b to mean either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \lg n\right)$.
3. If $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

$$
\begin{array}{ll}
T(n)=9 T(n / 3)+n, T(n)=\Theta\left(n^{2}\right) ; & T(n)=3 T(n / 4)+n \log n, T(n)=\Theta(n \log n) \\
T(n)=T(2 n / 3)+1, T(n)=\Theta(\log n) ; & T(n)=2 T(n / 2)+\Theta(n), T(n)=\Theta(n \log n) \\
T(n)=8 T(n / 2)+\Theta\left(n^{2}\right), T(n)=\Theta\left(n^{3}\right) ; & T(n)=7 T(n / 2)+\Theta(n 2), T(n)=\Theta(n \log 7)
\end{array}
$$

5.3 Counting Inversions

Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_{1}, a_{2}, \ldots, a_{n}$.
- Songs i and j inverted if $i<j$, but $a_{i}>a_{j}$.

Songs

Inversions
3-2, 4-2

Brute force: check all $\Theta\left(n^{2}\right)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.

1	5	4	8	10	2	6	9	12	11	3	7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

1	5	4	8	10	2	6	9	12	11	3	7	Divide: $O(1)$.
1	5	4	8	10	2	6	9	12	11	3	7	Conquer: $2 \mathrm{~T}(\mathrm{n} / 2)$
5 blue-blue inversions						8 green-green inversions						
5-4, 5-2, 4-2, 8-2, 10-2						$6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7$						

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_{i} and a_{j} are in different halves, and return sum of three quantities.

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- Count inversions where a_{i} and a_{j} are in different halves.

- Merge two sorted halves into sorted whole.
to maintain sorted invariant

13 blue-green inversions: $6+3+2+2+0+0$

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 17 | 18 | 19 | 23 | 25 | Merge: $O(n)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
T(n) \leq T(\lfloor n / 2\rfloor)+T(|n / 2|)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
    if list L has one element
        return O and the list L
    Divide the list into two halves A and B
    (r}\mp@subsup{A}{A}{},A)\leftarrow\mathrm{ Sort-and-Count(A)
    ( }\mp@subsup{r}{B}{},B)\leftarrow\mathrm{ Sort-and-Count(B)
    (r , L) \leftarrow Merge-and-Count(A, B)
    return r = rat r r + r and the sorted list L
}
```


5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate.
to make presentation cleaner

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $n / 4$ points in each piece.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.

Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2} n$ points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta\left(n^{2}\right)$
- Return best of 3 solutions.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $<\delta$.

- Observation: only need to consider points within δ of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ-strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Closest Pair of Points

Def. Let s_{i} be the point in the 2δ-strip, with the $i^{\text {th }}$ smallest y-coordinate.

Claim. If $|i-j| \geq 12$, then the distance between s_{i} and s_{j} is at least δ.
Pf.

- No two points lie in same $\frac{1}{2} \delta-$ by $-\frac{1}{2} \delta$ box.
- Two points at least 2 rows apart have distance $\geq 2\left(\frac{1}{2} \delta\right)$. -

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair(p}\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}) 
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{\prime}
    Delete all points further than \delta from separation line L
    Sort remaining points by y-coordinate.
    Scan points in y-order and compare distance between
    each point and next }11\mathrm{ neighbors. If any of these
    distances is less than }\delta\mathrm{ , update }\delta\mathrm{ .
    return \delta.
}
```


Closest Pair of Points: Analysis

Running time.

$$
\mathrm{T}(n) \leq 2 T(n / 2)+O(n \log n) \Rightarrow \mathrm{T}(n)=O\left(n \log ^{2} n\right)
$$

Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by \times coordinate.
- Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

