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Abstract—This paper studies the node degree snowballing
effects (i.e., degree growth effects) in the age-sensitive preferential
attachment model, where nodes are iteratively added one by one
to a growing network. Upon entering the network, each new
node connects to a suitably chosen set of existing nodes, while
the attachment probability for an existing node to get connected
depends on both its node degree and age difference. We are
interested in accelerating the node degree snowballing effects
through the impact of the initial links. If a new node enters the
growing network with more initial links (a larger degree), it could
attract many more links from the later nodes, and thus, its degree
snowballs faster. We find that the initial links are only impactful
when neither the node degree nor the age difference dominates
the attachment probability. In that case, the relationship between
the ratio of the additional initial link and the gain ratio of the
eventual node degree is shown to include two stages (linear stage
and diminishing return stage). Applications of our work involve
citation networks and online social networks. For example, in
citation networks, we answer the question that whether an author
can attract additional citations through self-citations. Finally,
real data-driven experiments verify the accuracies of our results,
which cast some new light in real-world growing networks.

Keywords—Node degree snowballing effects, preferential attach-
ment model, percolation phenomena.

I. INTRODUCTION

One of the most impressive recent discoveries in the field
of network evolution is the observation that a number of large
growing networks are scale-free [1–3]. Their key feature is that
the node degree distributions have a power-law form [4, 5].
Typical scale-free networks include the citation networks, the
online social networks, the World Wide Web, and so on. The
preferential attachment model is one of the most acknowledged
models for explaining the formation of scale-free networks [6].
In this model, nodes are iteratively added one by one to a
growing network (one new node per time unit). Upon entering
the network, each new node connects to a suitably chosen set of
existing nodes, while the attachment probability for an existing
node to get connected is proportional to its degree. Therefore,
the existing node with a large degree is preferentially attached,
resulting in the degree snowballing effect (i.e., degree growth
effect), in which the rich get richer.

In this paper, we are interested in accelerating such degree
snowballing effects through the impact of the initial links.
The initial links of a node are the links set by that node at
the time when it enters the growing network. If a new node
enters the growing network with more initial links, it could
attract many more links from the later nodes, and thus its
degree snowballs faster. While the impact of the initial links
remains unexplored, it has important applications as follows.

Fig. 1. The age-sensitive preferential attachment.

(1) In citation networks, we are more likely to cite papers
with high citations than that with low citations. Then, if an
author cites his/her own papers (self-citation), is it possible
for the papers of this author to gain extra citations at a later
time by the snowballing effect? (2) In online social networks
such as Facebook and Twitter, business pages want to attract
more followers, as to propagate the product information for
sales. Then, if a business page makes an advertisement (e.g.,
Facebook page promotion [7]), how many additional followers
can this business page attract at a later time by the snowballing
effect? The impact of the initial links is explored in our study,
which is critical for the development of the network science.

To be more realistic, here we study the degree snowballing
effects in age-sensitive preferential attachment models, where
the attachment probability is age-sensitive [8]. For example,
in citation networks, we prefer to cite recent papers more than
old papers. Specifically, we consider that the attachment prob-
ability for an existing node to get connected is proportional to
dα · ∆t−β . Here, d is the degree of the existing node, while
∆t is the age difference (also entry time difference) between
the new node and the existing node. α and β (α > 0 and
β > 0) are parameters obtained by existing estimators [9].
The age-sensitive model can reduce to the classic model when
α = 1 and β = 0. Then, in terms of the attachment probability,
there exists a tradeoff between the attractiveness brought by
the node degree and the repulsiveness brought by the age
difference. Although older nodes have larger degrees, they
may not attract more links from the new nodes, due to the
larger age difference. An example is shown in Fig. 1, where
the nodes enter the growing network one by one (following
their IDs). Upon entering the network, the node connects
to existing nodes according to the node degree and the age
difference. It can be seen that the resulting network structure
of the age-sensitive preferential attachment model depends on
α and β (age difference domination area, transition area, and
node degree domination area).



The snowballing effects in age-sensitive preferential attach-
ment models are more intriguing and challenging. With respect
to α and β, how does the impact of the initial links vary? Since
those three areas in Fig. 1 result in different network structures,
the impact of the initial links should be qualitatively different.
Moreover, is the amount of the initial links important? While
a small amount of the initial links leads to a limited change,
a large amount of the initial links may lead to a big change.

Our results and contributions are summarized as follows:

• Percolation phenomena are found in the age-sensitive
preferential attachment models. Boundaries 1 and 2
in Fig. 1 are α = β + 1.5 and α = β, respectively.
We show that the initial links are not impactful in the
node degree domination area and the age difference
domination area.

• We show that the initial links are only impactful in
the transition area of β ≤ α ≤ β + 1.5. In that case,
the impact of the initial links is found to have two
stages (linear stage and diminishing return stage). We
further show that the initial links are most impactful,
when the corresponding growing network lies in the
“middle” of the transition area.

• Accuracies of our theoretical results are verified. The
degree snowballing effects are observed in the real-
world citation network and online social network.

The remainder of this paper is organized as follows. Section
II is the related work. In Section III, we set up the model and
formulate the problem. In Section IV, the impact of the initial
links is analyzed. Section V includes the experiments. Section
VI shows the conclusion. Proofs are presented in the Appendix.

II. RELATED WORK

The classic preferential attachment model was proposed in
[10] with a well-studied body of knowledge in the network
science. The aging effects have been observed. For example,
Wang et al. [11] studied the predictability of the citation
patterns with respect to different time slots. Zhao et al. [12]
explored the multi-scale dynamics of time-sensitive informa-
tion propagations. Authors in [8, 13] studied the scale-free
properties in the age-sensitive preferential attachment models,
in terms of the degree distributions and the clustering proper-
ties. The aging effects are preliminarily explored in the citation
networks [14], and then are found in the online social networks
[15], the World Wide Web [16], the recommendation systems
[17], and so on. These works mainly focus on the scale-free
properties, where the node degree distribution follows power-
law form. In contrast, we explore the degree snowballing
effects in growing networks, which are completely novel.

The other existing findings that are highly related to the
snowballing effects include the rich-get-richer phenomenon,
the “Matthew effect” [18], and the cumulative advantage [19].
Although they have been empirically confirmed for a long
time with respect to the economic market, quantitative studies
have not been conducted for the citation networks and the
online social networks. For example, Kumar et al. [20] studied
the equilibrium states of two-sided market evolution through
an empirical analysis on the cumulative capital advantage.
Braha et al. [21] simulated the corporate competition in the

preferential attachment model with respect to the snowball
effect. Kas et al. [22] studied the structures and statistics of
citation networks. However, they did not consider the impact
of the initial links, which is explored in this paper.

III. MODEL AND PROBLEM FORMULATION

A. Preferential Attachment Model

In the preferential attachment model [6], nodes are itera-
tively added one by one to a growing network (one new node
per time unit). The node added at the time s is denoted as
Ns, while the current time is denoted as t (t ≥ s). The age
of a node is its existing time in the growing network, i.e., the
age of the node Ns is t− s. Upon entering the network, each
new node connects to a suitably chosen set of existing nodes,
while the attachment probability for an existing node to get
connected is proportional to dα ·∆t−β . Here, d is the degree
of the existing node, while ∆t is the age difference (also entry
time difference) between the new node and the existing node. α
and β (α > 0 and β > 0) are parameters obtained by existing
estimators [9]. The initial links of a node are the links set by
that node at the time when it enters the growing network. We
assume that each new node sets m new links to the existing
nodes. The links are directional, while the node degree is the
summation of its in-degree and out-degree. Let d(s, t) denote
the expected degree of the node s at the time t (t ≥ s), while
the initialization condition is d(s, s) = m.

Since an existing node will get attached by later nodes,
the degree of an existing node snowballs with respect to the
time. However, in terms of the snowballing speed, there exists a
tradeoff between the attractiveness brought by the node degree
(with a larger α being more attractive) and the repulsiveness
brought by the age difference (with a larger β being more
repulsive). Although older nodes have larger degrees, they may
not attract more links from the new nodes, due to the larger
age differences. As previously shown in Fig. 1, the resulting
network structure of the age-sensitive preferential attachment
model depends on α and β (age difference domination area,
transition area, and node degree domination area).

B. Problem Formulation

In this paper, we study the impact of the initial links in the
age-sensitive preferential attachment models. While a normal
node enters the growing network with only m links, we focus
on a particular node that enters the network with additional m′

links (m+m′ links in total), as to observe the impact of the
initial links. Since a larger degree means a larger attachment
probability, the additional initial links can accelerate the degree
snowballing effects for the nodes in the growing network. Our
study has important applications as follows.

• In citation networks, we are more likely to cite papers
with a high number citations than that with a low
number of citations. Then, if an author cites his/her
own papers (self-citation), is it possible for the papers
of this author to gain extra citations at a later time? In
this scenario, m and m′ represent the average paper
citations and the number of self-citations, respectively.

• In online social networks such as Facebook and Twit-
ter, business pages want to attract more followers, as to



propagate the product information for sales. Then, if a
business page makes an advertisement (e.g., Facebook
page promotion [7]), how many additional followers
can this business page attract at a later time by the
snowballing effect? Here, m′ can be interpreted as the
number of followers attracted by the advertisement.

For the simplicity of the following analysis, we define the
initial rate (ri) as the ratio of the additional initial links to
the normal initial links (i.e., ri = m′/m). A larger initial rate
means that the corresponding node has a larger initial degree.

If the node Ns enters the network with an additional m′

links, then we use d′(s, t) to denote its expected degree at the
time t (t ≥ s). Its initialization condition is d′(s, s) = m+m′.
We are interested in the ratio of the node degree gain brought
by the additional initial links, which is defined as the gain rate
(denoted by rg). In other words, we have:

rg =
d′(s, t)− d(s, t)

d(s, t)
(1)

The objective of this paper is to study the relationship
between the initial rate and the gain rate, which represents
the impact of the initial links in the growing networks. A
larger initial rate should bring a non-smaller gain rate. We
also want to study how this relationship changes with respect
to the parameters α, β, s, and t. Note that, α and β indicate the
attractiveness brought by the node degree and the repulsiveness
brought by the age difference, respectively. Therefore, the
values of α and β are also important for the initial links to be
impactful in the corresponding growing network. Meanwhile,
s indicates the time for introducing the additional initial links.
Our analyses are shown in the next section.

IV. SNOWBALLING EFFECTS IN AGE-SENSITIVE
PREFERENTIAL ATTACHMENT

In this section, we study the relationship between the initial
rate and the gain rate, as to understand the impact of the
initial links. First, we review the classic preferential attachment
model. Then, we look into the snowballing effects within the
node degree domination area and the age difference domination
area of the age-sensitive model, respectively. Finally, we show
the snowballing effects within the transition area.

A. Classic Preferential Attachment

In the classic preferential attachment model [6], the attach-
ment probability for an existing node to get connected is only
proportional to its degree (α = 1 and β = 0). Let us start
with the case for a normal node that enters the network with
m links. Then, when a new node enters the network at the
time t+ 1, the attachment probability for the node Ns to get
connected is:

d(s, t)∑t
s=1 d(s, t)

=
d(s, t)

2mt
(2)

The denominator
∑t

s=1 d(s, t) is the total degree, which is the
normalization factor in Eq. 2. The total degree is 2mt, since
there are t nodes in the network and each node has brought m
links. We assume that the attachment processes for the m links
are independent of each other, and thus the expected degree

gain of the node Ns is m× d(s,t)
2mt = d(s,t)

2t . In other words, we
have the following equation:

d(s, t+ 1) = d(s, t) +m× d(s, t)

2mt
=

2t+ 1

2t
d(s, t) (3)

If we do the recursion in Eq. 3, then we can get:

d(s, t) =
2t− 1

2t− 2
× 2t− 3

2t− 4
× · · · × 2s+ 1

2s
× d(s, s)

= exp
{
ln

2t− 1

2t− 2
+ · · ·+ ln

2s+ 1

2s

}
× d(s, s)

≈ exp
{ 1

2t− 2
+ · · ·+ 1

2s

}
× d(s, s)

≈ exp
{1
2
ln

t

s

}
× d(s, s) = m

√
t

s
(4)

In Eq. 4, we have used the approximations of ln 2s+1
2s ≈ 1

2s

and
∑t−1

x=s
1
2x ≈

∫ t

s
1
2xdx. Eq. 4 implies that the node degree

has a square-root growth with respect to the ratio of the current
time to the node entry time. Similar to Eq. 4, if the node Ns

enters the network with an additional m′ links, we can get:

d′(s, t) ≈ exp
{1
2
ln

t

s

}
× d′(s, s) = (m+m′)

√
t

s
(5)

Eqs. 4 and 5 mean that the gain rate equals the initial rate (i.e.,
rg = ri) in the classic preferential attachment model. Here we
have assumed that the number of additional initial links is
small (i.e., m′ ≪ 2mt). However, the relationship of rg =
ri is uncommon in real-world growing networks, since the
prerequisite that the attachment probability is only proportional
to the degree may not be true.

In the following three subsections, we will discuss the
snowballing effects in the age-sensitive preferential attachment
model, where the attachment probability is determined by both
the node degree and the age difference. As previously men-
tioned, the attachment probability is proportional to dα ·∆t−β .
The tradeoff between the attractiveness brought by the node
degree and the repulsiveness brought by the age difference
divides the resulting network structure into three areas (age
difference domination area, node degree domination area,
and transition area). Each of the three following subsections
corresponds to one of those three areas.

B. Age Difference Domination Area

In this subsection, we study the snowballing effects in
the age-sensitive preferential attachment model, in which the
age difference dominates the attachment probability. In other
words, the attractiveness brought by the node degree is much
smaller than the repulsiveness brought by the age difference.
To study the snowballing effects, we first need to clarify the
boundary of this area, as shown in the following theorem:

Theorem 1: When α < β, the first node will attract a finite
number of links, with respect to the network growth.

The proof of Theorem 1 is shown in Appendix A. The basic
idea of the proof is to show that, when α < β, the first node
is much less attractive than a younger node for a new node to
attach. The insight behind Theorem 1 is that the age difference
dominates the attachment probability, where the new nodes are
more intended to link to the younger nodes. At this time, even



if an old node has a very high degree, it will not be further
attached to by the new nodes. The resulting network structure
for this case is illustrated in Fig. 2(a), where the nodes connect
to each other one by one following their entry times. As for
the snowballing effects, we have:

Theorem 2: When α < β, for the node Ns that enters the
growing network at the time s, it needs at least Ω((t− s)β/α)
additional initial links to keep its attractiveness for nodes that
enter the growing network at the time t.

The proof of Theorem 2 is shown in Appendix B. The
basic idea of the proof is to show that, when α < β, the node
Ns needs many additional initial links to resist the dominated
repulsiveness brought by the age difference. The insight behind
Theorem 2 is that the initial links in the growing network with
α < β are not impactful, since the initial links are wasted on
resisting the dominated aging effects. In other words, the gain
rate is close to zero, unless we have a very large initial rate
(basically impossible for real-world growing networks).

C. Node Degree Domination Area

In this subsection, we study the snowballing effects in the
age-sensitive preferential attachment model, in which the node
degree dominates the attachment probability. In other words,
the attractiveness brought by the node degree is much larger
than the repulsiveness brought by the age difference. Similarly,
we first need to clarify the boundary of this area, as shown in
the following theorem:

Theorem 3: When α > β + 1.5, the first node will attract
an infinite number of links, with respect to the network growth.
The first node N1 has a degree of Θ(t).

The proof of Theorem 3 is shown in Appendix C. The basic
idea of the proof is to show that, when α > β + 1.5, the first
node is much more attractive than the remaining nodes for a
new node to attach. The insight behind Theorem 3 is that the
degree dominates the attachment probability, where the new
nodes are more likely to attach to the oldest node. At this time,
younger nodes will not be further attached by the new nodes,
while the first node has a degree of Θ(t). In other words, the
first node monopolizes the majority of the links. The resulting
network structure for this case is illustrated in Fig. 2(c). Note
that, the classic model with α = 1 and β = 0 lies under the
boundary of α = β + 1.5, which has a qualitative difference
with models in the node degree domination area. The first node
only has a degree of Θ(

√
t) when α = 1 and β = 0. As for

the snowballing effects, we have:

Theorem 4: When α > β+1.5, for the node Ns that enters
the growing network at the time s, it needs at least Ω(sα−β)
additional initial links to keep its attractiveness for later nodes.

The proof of Theorem 4 is shown in Appendix D. The
basic idea of the proof is to show that, when α > β + 1.5,
the node Ns needs many additional initial links to compete
with the node N1, in terms of attracting the new attachments.
Theorem 3 states that the first node N1 has a degree of Θ(s)
at the time s. The insight behind Theorem 4 is that a large
number of additional initial links is needed to break the link
monopoly of the node N1. In other words, the gain rate is also
close to zero, unless a very large initial rate is used. Therefore,
the initial links in the growing network with α > β + 1.5 are

(a) α < β (b) β ≤ α ≤ β + 1.5 (c) α > β + 1.5

Fig. 2. The percolation phenomena in the age-sensitive preferential attach-
ment (m = 1 and t = 10). The ID of a node is its entry time.

not impactful on the eventual node degree, the result of which
is similar to that for the age difference domination area.

D. Transition Area

In the previous two subsections, Theorems 1 and 3 show
that α = β and α = β + 1.5 are two boundaries for
the percolation phenomena in the age-sensitive preferential
attachment models. When α < β or α > β+1.5, the resulting
network structure turns out to be simplex. The resulting
network structure for the transition area of β ≤ α ≤ β+1.5 is
more complex. An example for the transition area is illustrated
in Fig. 2(b). Meanwhile, Theorems 2 and 4 show that the initial
links are not impactful in the age difference domination area
and the node degree domination area, since the initial links are
wasted to resist the dominated power.

In this subsection, we discuss the snowballing effects in
the transition area of β ≤ α ≤ β + 1.5, based on [8]. Let us
start with the case for a normal node that enters the network
with m links. Similar to Eq. 3, we have:

d(s, t+ 1) = d(s, t) +m× d(s, t)α(t− s)−β∑t
s=1 d(s, t)

α(t− s)−β
(6)

When α = 1 and β = 0, Eq. 6 is reduced to Eq. 3 (the classic
model). Eq. 6 can also be written in the continuous form:

∂d(s, t)

∂t
= m× d(s, t)α(t− s)−β∫ t

1
d(s, t)α(t− s)−βds

(7)

Since Eq. 7 is very complex, we consider the node degree to be
scaling (d(s, t) ≡ d(s/t)) [8]. In other words, the node degree
is considered as a function of s/t . For notation simplicity, we
set ξ = s/t. Then, Eq. 7 can be rewritten as:

1

d(ξ)α
× dd(ξ)

dξ
=

−1

ξ(1− ξ)β
m∫ 1

0
d(ξ)α(1− ξ)−βdξ

(8)

If we do the integral in Eq. 8, we can get:

d(ξ)1−α − d(1)1−α

1− α
=

m
∫ ξ

1
−1

ξ(1−ξ)β
dξ∫ 1

0
d(ξ)α(1− ξ)−βdξ

(9)

When α → 1 and β = 0, Eq. 9 reduces to ln d(ξ)
d(1) = −1

2 ln ξ

that is consistent with Eq. 4, i.e., d(s, t) = m
√

t/s. This is
because d(ξ)1−α ≈ e(1−α) ln d(ξ) ≈ 1 + (1− α) ln d(ξ), when
α → 1. The result in Eq. 9 can be rewritten as:

d(ξ) =

[
m1−α +

(1− α)m
∫ ξ

1
−1

ξ(1−ξ)β
dξ∫ 1

0
d(ξ)α(1− ξ)−βdξ

] 1
1−α

≈ m× [1 + (1− α)C(α, β, ξ)]
1

1−α (10)



Eq. 10 is approximated by using d(ξ) = mξ−1/2 to calculate
the normalization factor. This approximation is feasible, since
it can represent the degree distribution in the transition area.
Meanwhile, the C(α, β, ξ) in Eq. 10 is:

C(α, β, ξ) =

∫ ξ

1
−1

ξ(1−ξ)β
dξ∫ 1

0
ξ−α/2(1− ξ)−βdξ

(11)

Similar to Eq. 10, if the node Ns enters the network with m′

additional links, then we can get:

d′(ξ) =

[
(m+m′)1−α +

m
∫ ξ

1
−1

ξ(1−ξ)β
dξ∫ 1

0
d(ξ)α(1− ξ)−βdξ

] 1
1−α

≈ m× [(1 +
m′

m
)1−α + (1− α)C(α, β, ξ)]

1
1−α (12)

In Eq. 12, we have assumed that m′ is small enough with
respect to the normalization factor of

∫ 1

0
d(ξ)α(1 − ξ)−βdξ.

Combining Eqs. 10, 11, and 12, the relationship between the
initial rate and the gain rate can be obtained:

rg =

[
(1+ri)

1−α+(1−α)C(α, β, ξ)

1 + (1−α)C(α, β, ξ)

] 1
1−α

− 1 (13)

Note that, C(α, β, ξ) can be regarded as a constant with respect
to ri. Meanwhile, we have C(1, 0, ξ) = 1

2 ln ξ. Further analysis
on Eq. 13 shows the following theorem:

Theorem 5: When |(1−α)C(α, β, ξ)| ≫ 1, the gain rate is
close to zero (i.e., rg ≈ 0). When |(1−α)C(α, β, ξ)| ≪ 1, the
relationship between the initial rate and the gain rate satisfies
rg ≈ (1 + ri)e

−C(α,β,ξ) − 1.

The proof of Theorem 5 is shown in Appendix E. Theorem
5 shows three intriguing properties for the impact of the initial
links, while the first property is that there is a prerequisite for
the initial links to be impactful. This threshold results from
the fact that either the dominated attractiveness brought by
the node degree or the dominated repulsiveness brought by
the age difference can weaken the impact of the initial links.
This is similar to the case in the node degree domination
area or the age difference domination area. If this threshold
is satisfied, then the gain rate increases linearly with respect
to the initial rate. However, note that Theorem 5 is derived
under the assumption that m′ is small enough with respect to
the normalization factor in Eq. 7. If the initial rate is very large
(ri ∈ Ω(

∫ 1

0
ξ−α/2(1−ξ)−βdξ)), the gain rate has a diminishing

return effect with respect to the initial rate. This is because the
total links in the network are limited: A node cannot attract
more than 2mt links, no matter how many additional initial
links are given. Therefore, the relationship between rg and ri
has two stages as shown in Fig. 3 (denoted as the linear stage
and the diminishing return stage).

The second property revealed by Eq. 13 is that the initial
links are most impactful when the attractiveness brought by
the node degree and the repulsiveness brought by the age
difference cancel each other out. This is because the threshold
of |(1 − α)C(α, β, ξ)| will be small in such a case. The first
node will not monopolize the majority of the links, while
the aging effect will not prevent the new entering node from
connecting to old nodes. The links from new entering nodes in
the growing network will evenly connect to both the old and

- /2(1- )1- d

linear

stage

rg

ri

diminishing

return stage

Fig. 3. The two-stage relationship between the gain rate (rg) and the initial
rate (ri), when |(1− α)C(α, β, ξ)| ≪ 1.

the young nodes. Actually, the classic model with α = 1 and
β = 0 is such a case (as previously shown in Eq. 5), where
the gain rate is strictly linear with respect to the initial rate.
This is because the threshold of |(1− α)C(α, β, ξ)| becomes
zero for α = 1 and β = 0. Moreover, this threshold can be
used to estimate whether the initial links are impactful in the
corresponding growing network or not. The initial links are
most impactful, when the corresponding growing network lies
in the “middle” of the transition area.

The third property revealed by Eq. 13 is on the impact of
the time period. Note that −C(α, β, ξ) decreases monotonous-
ly with respect to ξ (ξ = s/t). Meanwhile, the slope of the
linear stage is approximately e−C(α,β,ξ) (a smaller ξ brings a
larger slope). The insight is that the initial links become more
impactful with respect to a longer time period (the snowballing
effect becomes more significant). Further explorations on the
relationship between C(α, β, ξ) and ξ (representing the impact
of the time) will be our future work.

V. EXPERIMENTS

In this section, we first set up the age-sensitive preferential
attachment model to verify the accuracies of our theoretical
results. Then, the snowballing effects are studied in several
real-network datasets. The experimental results are shown from
different perspectives to provide insightful conclusions.

A. Accuracy Verifications on Theoretical Results

In this subsection, we verify the accuracy of our theoretical
results for the age-sensitive preferential attachment model,
which has a duration of 1,000 time slots (i.e., t =1,000). Upon
each time slot, one new node will enter the network with 10
new connections to the existing nodes (i.e., m = 10). First,
we check the expected node degree distributions with respect
to the node entry time s. The results, which are averaged over
1,000 times, are shown in Fig. 4 as a log-log plot. Figs. 4(a)
and 4(b) show two scenarios with different values of α and
β. It can be seen that, when α = β + 1.5, the first node
attracts almost all the new links from the later nodes (there are
m× t =10,000 links in total). At this time, the expected node
degree decays quickly with respect to the node entry time, due
to the overpowered attractiveness brought by the node degree.
On the other hand, when α = β, all the nodes tend to have a
degree of O(m), since the overpowered repulsiveness brought
by the age difference only enables new nodes to connect to the
most recent nodes. It can also be seen that, when neither the
node degree nor the age difference dominates the attachment
probability (β ≤ α ≤ β+1.5), the resulting network structure
is more complex, due to the fact that the new nodes will
connect to both old and young existing nodes. The experiment



α = 1.5, β = 0.0
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Fig. 4. The node degree distributions with respect to the node entry time.
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s/t = 0.25
s/t = 0.5
s/t = 0.75

(b) α = 2.5, β = 2.0.

Fig. 5. The node degree snowballing effects.

verifies the existence of the percolation phenomena in the age-
sensitive preferential attachment model.

The snowballing effects in the transition area are also ex-
perimentally studied. Fig. 5(a) shows the relationship between
the initial rate and the gain rate for the node that enters the
network at the 500th time slot (i.e., s/t = 0.5), under three
different settings of α and β. Each of the curves in Fig. 5(a)
clearly has two stages (linear stage and diminishing return
stage) as previously analyzed. Then, Fig. 5(b) shows the impact
of the time, under α = 2.5 and β = 2.0. It can be seen that a
smaller s/t leads to a larger gain rate, since more nodes will
enter the network after the node Ns. These experimental results
confirm that our theoretical results in Eq. 13 are accurate. In
the following two subsections, we will further verify the node
degree snowballing effects in real data-driven experiments (the
citation network and the online social network).

B. Citation Network

In this subsection, we conduct real data-driven experiments
to verify the snowballing effects in citation networks. Citation
networks are classic growing networks, where papers serve
as nodes in the network. New papers enter the network as
time goes by. If a paper i cites a paper j, then the network
contains a directed link from i to j. It is common sense that
authors generally prefer to cite papers with a high number of
citations (compared to papers with a low number of citations),
as well as recent papers (compared to old papers). Currently,
it is well-known that the classic preferential attachment model
can decently explain the formation of citation networks [6].

Our experiments use the real dataset [23] of the Arxiv high
energy physics phenomenology citation network (denoted as
cit-HepPh). This dataset covers the papers published over the
period from January 1993 to April 2003. 34,546 papers (nodes)
and 421,578 citations (links) are involved in this dataset. On
average, a new paper enters the growing network every 0.12
days (i.e., the time unit for adding one new node to the growing
network). The relationships between the attachment probability
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Fig. 6. The age-sensitive preferential attachment in cit-HepPh.

(a) Papers published in 1995. (b) Papers published in 1998.

Fig. 7. The node degree snowballing effects in cit-HepPh.

and the node degree (or age difference) are shown in Fig. 6.
It verifies the feasibility of the assumption that the attachment
probability is proportional to dα · ∆t−β . Then, we use the
maximum likelihood to estimate the exponents α and β in
the attachment probability. On average, we get α = 0.91 and
β = 1.2×10−3 as the exponents in the attachment probability.
Note that β is small, due to the ground truth that we sometimes
cite a paper from 10 years ago (more than 30,000 time units).

To study the snowballing effects, papers published in the
years 1995 and 1998 are analyzed. If a paper has more than
an average number of citations in its first publication year,
the additional portion is regarded as its initial rate. The final
number of citations of that paper (in the year 2003) and the
average number of citations are used to calculate the gain rate
of that paper. The result is shown in Fig. 7, where we have α =
0.91 and β = 1.2× 10−3. It can be seen that the relationship
between the initial rate and the gain rate has two stages in
Fig. 7 (i.e., real data result). It is consistent with Eq. 13, which
is denoted as the theoretical result in Fig. 7. It can also be seen
that, the initial links are more impactful for earlier papers. For
the same initial rates, papers published in 1995 have higher
gain rates than did those in 1998.

C. Online Social Network

In this subsection, we conduct real data-driven experiments
to verify the snowballing effects in the online social networks,
which are platforms for users to build social relations among
other users. Users in the network share news, stories, and
photos with each other. Social network sites are web-based
services that allow individuals to create a public profile, to
create a list of users with whom to share connections, and view
and cross the connections within the system. Online social
networks are growing networks, where users (i.e. nodes) enter
the network one by one. If a new user i follows an existing user
j, then the network contains a directed link from i to j. Users
are more likely to follow popular users with high degrees, as
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Fig. 8. The age-sensitive preferential attachment in Flickr.

(a) Users entered on Monday. (b) Users entered on Wednesday.

Fig. 9. The node degree snowballing effects in Flickr.

well as contemporary users with smaller age differences. It is
well-known that the classic preferential attachment model can
also be applied to the online social networks [6].

In the experiments, we use the Flickr dataset [24]. Flickr
is an online social network for sharing photos. Key features
of Flickr not initially present are tags, marking photos as
favorites, group photo pools, and interestingness, for which a
patent is pending. This dataset covers all new users in the peri-
od from November 2006 to May 2007, including 167,527 users
(nodes) and 526,874 follower-followee relationships (links).
On average, a new user enters the growing network every
0.04 days (i.e., the time unit for adding one new node to the
growing network). The relationships between the attachment
probability and the node degree (or age difference) are shown
in Fig. 8. It again verifies the feasibility of the assumption that
the attachment probability is proportional to dα·∆t−β . We also
use the maximum likelihood to estimate α and β. On average,
it turns out that we have α = 0.89 and β = 1.3× 10−4 in this
dataset. Note that β is also small in this dataset, due to the
ground truth that new users sometimes follow old users (one
month is about 750 time units).

To study the snowballing effects, we focus on the users
who entered the network in the first week of April. These users
are selected, since they have complete records in the dataset
(while the records of some other users may be missing). If
a user has above average connections in his/her first day, the
additional portion is regarded as its initial rate. Meanwhile,
the final number of connections of that user (at the end of
this week) and the average number of connections are used
to calculate the gain rate of that user. The result is shown in
Fig. 9, where we have α = 0.89 and β = 1.3 × 10−4. It
can be seen that the relationship between the initial rate and
the gain rate should also have two stages, as shown in Fig. 9
(i.e., real data result). Although our theoretical result in Eq. 13
has a little overestimation in Fig. 9(b), it is basically accurate
for this dataset. The initial links are also more impactful for

earlier users in this dataset. For the same initial rates, users
who entered on Monday have higher gain rates than do those
who entered on Wednesday.

VI. CONCLUSION

In this paper, we study the node degree snowballing effects
in the age-sensitive preferential attachment model, where the
attachment probability depends on both the node degree and
the age difference. We are interested in accelerating such
degree snowballing effects through the impact of the initial
links. Our study answers the question ‘how many additional
citations can an author obtain through self-citations?’ The per-
colation phenomena are found in the age-sensitive preferential
attachment model: the initial links are only impactful in the
transition area, where neither the node degree nor the age
difference dominates the attachment probability. In that case,
we show that the relationship between the initial rate and the
gain rate has two stages (linear stage and diminishing return
stage). Real data-driven experiments in the citation network
and the online social network verify the accuracies of our
theoretical results, which cast some new light on the impact
of the initial links in real-world growing networks. Further
explorations on the impact of the time will be our future work.
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APPENDIX

A. Proof of Theorem 1

The basic idea of the proof is that, when the node Nt+1

enters the network, its probability of linking to the node N1 is
definitely smaller than that to the node Nt. The key observation
is that N1 has at most mt links at the time t (i.e., it attracts all
the links of the later nodes). While the linking probability from
Nt+1 to Nt is proportional to dα · ∆t−β = mα, the linking
probability from Nt+1 to N1 is asymptotically bounded by
dα ·∆t−β = (mt)α · t−β = mα · tα−β . If α < β, then Nt+1

is much more likely to link to Nt, instead of N1 (mα ≫
mα · tα−β when t is large). This implies that N1 is no longer
able to attract new links. N1 attracts a finite number of links.

B. Proof of Theorem 2

The basic idea of the proof is that, when α < β, the
node Ns needs Ω((t − s)β/α) additional links to resist the
dominated repulsiveness brought by the age difference. The
key observation is that the node Ns can attract more links
if we ignore the existences of all the nodes older than Ns.
In other words, the upper bound for the degree of the node
Ns is the case, where it is regarded as the first node in the
growing network. Similar to the proof of Theorem 1, let us

focus on the attachment probability for the node that enters the
growing network at the time t. While the linking probability
from Nt to Nt−1 is proportional to dα · ∆t−β = mα, the
linking probability from Nt to Ns is at most proportional to
dα ·∆t−β = dα · (t− s)−β . To keep the attractiveness of the
node Ns, its degree should be larger than m(t− s)β/α, which
can only be brought by its additional initial links. Therefore,
at least Ω((t− s)β/α) additional links are needed.

C. Proof of Theorem 3

By induction, we now prove that, when α > β + 1.5, the
node N1 has a degree of at least c · t at the time t. Here, c is a
certain constant. This declaration is true, when t = 1. Suppose
this declaration holds when t = T , and then the node NT+1

enters the growing network. Note that, the linking probability
from NT+1 to N1 is proportional to dα ·∆t−β ≥ cα · Tα−β .
Meanwhile, the linking probability from NT+1 to all the other
nodes (i.e., N2, N3, ..., NT ) is at most proportional to (2m−
c)α ·

∫ T−1

1
∆t−βd∆t. This upper bound is obtained by using

the average degree of (2m − c) to approximate this linking
probability, since older nodes should have larger degrees than
younger nodes. When β ≥ 0, we have

∫ T−1

1
∆t−βd∆t < T .

Therefore, the condition of α > β+1.5 indicates Tα−β ≫ T ,
meaning the node N1 attracts the most links of the node NT+1.
If we set c ≤ m/2, then the node N1 has a degree of at least
c · (T + 1), when t = T + 1. By induction, the node N1 has
a degree of at least c · t at the time t, when α > β + 1.5.

D. Proof of Theorem 4

When α > β+1.5, Theorem 3 states that the first node N1

has a degree of Θ(s), when the node Ns enters the growing
network at the time s. Since N1 has a very large degree,
Ns needs some additional initial links to compete with N1

in the following attachment process. Let us consider the case
when the node Ns+1 enters the network at the time s + 1.
The linking probability from Ns+1 to N1 is proportional to
dα ·∆t−β ∈ Θ(sα−β). Therefore, the node Ns needs at least
Ω(sα−β) additional initial links to break the link monopoly of
N1. Otherwise, the node Ns cannot attract the new links.

E. Proof of Theorem 5

When |(1−α)C(α, β, ξ)| ≫ 1, Eq. 13 can be rewritten as:

rg =

[
(1 + ri)

1−α + (1− α)C(α, β, ξ)

1 + (1− α)C(α, β, ξ)

] 1
1−α

− 1

≈
[
(1− α)C(α, β, ξ)

(1− α)C(α, β, ξ)

] 1
1−α

− 1 = 1− 1 = 0 (14)

When |(1− α)C(α, β, ξ)| ≪ 1, Eq. 13 can be rewritten as:

rg =

[
(1 + ri)

1−α + (1− α)C(α, β, ξ)

1 + (1− α)C(α, β, ξ)

] 1
1−α

− 1

≈
[

(1 + ri)
1−α

1 + (1− α)C(α, β, ξ)

] 1
1−α

− 1

≈
[

(1 + ri)
1−α

e(1−α)C(α,β,ξ)

] 1
1−α

− 1

= (1 + ri)e
−C(α,β,ξ) − 1 (15)

The above two equations complete the proof of Theorem 5.




