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Abstract—Offloading cellular traffic through WiFi Access
Points (APs) has been a promising way to relieve the overload of
cellular networks. However, data offloading process consumes
a lot of resources (e.g., energy, bandwidth, etc.). Given that
the owners of APs are rational and selfish, they will not
participate in the data offloading process without receiving the
proper reward. Hence, there is an urgent need to develop an
effective incentive mechanism to stimulate APs to take part in
the data offloading process. This paper proposes a novel Delay-
constraint and Reverse Auction-based Incentive Mechanism,
named DRAIM. In DRAIM, we model the reverse auction-
based incentive problem as a nonlinear integer problem from
the business perspective, aiming to maximize the revenue of the
Mobile Network Operator (MNO), and jointly consider the delay
constraint of different applications in the optimization problem.
Then, two low-complexity methods: Greedy Winner Selection
Method (GWSM), and Dynamic Programming Winner Selec-
tion Method (DPWSM) are proposed to solve the optimization
problem. Furthermore, an innovative standard Vickrey-Clarke-
Groves scheme-based payment rule is proposed to guarantee the
individual rationality and truthfulness properties of DPWSM. At
last, extensive simulation results show that the proposed DPWSM
is superior to the proposed GWSM and the Random Winner
Selection Method in terms of the MNO’s utility and traffic load
under different scenarios.

Index Terms—Cellular Network; Data Offloading; WiFi Access
Point; Reverse Auction; Incentive Mechanism.

I. INTRODUCTION

ITH the rapid popularity of mobile devices (e.g., i-pad,

laptops, smart-phones) in recent years, mobile Internet
services are experiencing an explosive growth [1], [2], [3].
Cellular networks are the most popular way to provide mobile
Internet services today, especially with the coming of 5G
networks [4], [S]. However, the explosive growth of mobile
services and user demands will very likely make the cellular
network overload and congest in the near future. Especially
during peak time or in urban area, mobile users may face
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extreme performance hits in terms of low network bandwidth,
missed voice calls, unreliable coverage, and so on. According
to Cisco’s report, it is stated that global mobile traffic was 1.2
ZB per year in 2016, but by 2021, it will reach 3.3 ZB per
year [6]. Therefore, it is very urgent for the Mobile Network
Operator (MNO) to offer quick and promising methods to ease
the traffic burden of cellular networks.

As mobile network traffic continues to grow rapidly, mo-
bile data offloading has become a key industry area, which
uses complementary network communication technologies to
offload traffic originally planned for delivery through cellular
networks [7], [8], [9]. Cellular traffic can be offloaded through
other complementary networks, such as Small Base Stations
(SBSs), Opportunistic Mobile Networks, WiFi Access Points
(APs), or Heterogeneous Networks [10], [11], [12], [13], [14].
Data offloading through SBSs, or SBSs offloading, uses low
power Small Base Stations (SBSs) to offload cellular traffic.
Data offloading through Opportunistic Mobile Networks, or
opportunistic offloading, utilizes Opportunistic Mobile Net-
works to offload cellular traffic. Data offloading through WiFi
Access Points (APs), or WiFi offloading, switches cellular
traffic to WiFi APs to reduce traffic burden of the cellular
networks when mobile users enter into a WiFi-covered area.
Meanwhile, data offloading through Heterogeneous Networks
is the combination of the above three data offloading methods.

Researcher find that WiFi traffic from both mobile devices
and WiFi-only devices altogether accounts for more than 60%
of mobile traffic in 2017 [15]. Due to the widely deployment
of WiFi APs, offloading overloaded cellular traffic to WiFi
APs has become an efficient and promising method. Recent
studies [16], [17], [18] have demonstrated that WiFi offloading
can effectively ease the traffic burden of cellular networks.
However, WiFi APs may be reluctant to participate in the data
offloading process without receiving the appropriate economic
incentives (e.g., payment or reward) [19]. The main reason
is that providing data offloading services for the MNO will
incur additional resource consumption inevitably, e.g., energy
consumption, bandwidth consumption, and so on. In addition,
if WiFi APs assist the MNO in data offloading, their own
service experience, e.g., bandwidth, transmission rate, QoS,
and so on, may be affected. Hence, there is an urgent need
to develop effective incentive mechanism to stimulate APs to
take part in the data offloading process.

To solve the above problem, this paper proposes DRAIM, a
novel Delay-constrained and Reverse Auction-based Incentive



Mechanism to stimulate WiFi APs to take part in the data
offloading process. In DRAIM, we model the reverse auction-
based incentive problem as a nonlinear integer problem from
the business perspective, aiming to maximize the revenue
of the MNO, and jointly consider the delay constraint of
different applications in the optimization problem. In specific,
we consider a simple scenario which consists of a base station
of the MNO, multiple mobile users, and several WiFi APs
deployed by some third party companies. The MNO acts as a
buyer (i.e., an auctioneer) and the Wi-Fi APs acts as a seller
(i.e., bidders). The Wi-Fi APs lease their bandwidth resources
as commodities and submit bids to the MNO. After evaluating
the bids from all the Wi-Fi APs, the MNO purchases the
required bandwidth resources to meet the traffic demands and
maximize its revenue. Finally, the MNO determines: (1) the
allocation (i.e., which bidder is the winner), and (2) the price
(i.e., how much to pay for each winner).

The contributions of this paper can summarize as follows:

1) The WiFi offloading problem is formulated as a reverse
auction-based incentive problem from the business per-
spective, aiming to maximize the revenue of the MNO,
and a novel Delay-constrained and Reverse Auction-
based Incentive Mechanism, named DRAIM is proposed
to stimulate WiFi APs to participate in the data offload-
ing process.

2) The optimization problem is modeled as a nonlin-
ear integer programming problem by considering the
delay constraint of different applications, and two
low-complexity algorithms: Greedy Winner Selection
Method (GWSM), and Dynamic Programming Winner
Selection Method (DPWSM) are proposed to solve the
optimization problem.

3) A standard Vickrey-Clarke-Groves (VCG) scheme-based
payment rule is proposed, which can guarantee the
individual rationality and truthfulness properties of D-
PWSM.

4) Extensive simulation results verify that the proposed
DPWSM is superior to the proposed GWSM and the
Random Winner Selection Method in terms of the M-
NO’s utility and traffic load under different scenarios.

The remainder of this paper is organized as follows. After
reviewing the related work in Section II, Section III introduces
the system model related to this paper. Section IV introduces
the optimization problem of this paper. Section V introduces
the proposed methods, and a standard VCG scheme-based
payment rule. Section VI evaluates the performance of our
proposed methods. At last, Section VII concludes the paper.

II. RELATED WORK

Some studies have been developed to exploit WiFi offload-
ing. In [20], Lee et al. introduced a quantitative study about
the performance of data offloading through WiFi APs, and
showed that WiFi APs can offload about 65% of the total
mobile traffic and save 55% of battery power. The authors
in [21] proposed a collaborative WiFi offloading architecture
in Metropolitan Advanced Delivery Network, so as to increase
the energy efficiency of smartphones. The authors in [22]

presented an analytical model for multi-path WiFi offloading
to derive the aggregate offloading time via an alternative path
for multi-path offloading. Some studies also investigate the
optimum deployment of WiFi APs in WiFi offloading. The
authors in [23] investigated nodes’ mobility patterns to deploy
Wi-Fi APs, so as to maximize the continuous WiFi coverage
for mobile nodes. The authors in [24] deployed Wi-Fi APs
according to the density of nodes’ data requests by using some
real user mobility traces. However, these studies assume that
WiFi APs are cooperative.

Many economic theory-based incentive mechanisms have
been developed to motivate WiFi APs to provide data of-
floading services. The authors in [25] proposed a market-
based data offloading method, in which a multi-leader multi-
follower game was proposed to study the amount of traffic
WiFi APs offload for the MNO and the pricing strategy of
the MNO. A one-to-many bargaining game was proposed
in [26] to model and analyze the amount of the MNO’s
offloading traffic and the WiFi APs’ payment. A three-stage
Stackelberg game was proposed in [19] to investigate the data
offloading with price-taking and price-setting APs. The authors
in [27] investigated the data offloading problem through third-
party WiFi APs from the business perspective. In specific,
they model the problem as a utility maximization problem
and design different data offloading methods for the MNO
under three scenarios. In [28], Lee et al. proposed a two-
stage sequential game between the MNO and WiFi APs, and
investigated how much economic revenues can be generated
by WiFi offloading.

Recently, some auction-based incentive mechanisms have
been proposed to solve resource allocation, D2D communica-
tions and many other applications [29], [30], [31], [32], [33],
[34]. Particularly, a few studies have proposed auction-based
incentive mechanisms to solve the incentive problems in data
offloading. The authors in [35] introduced a reverse auction-
based incentive mechanism, named Win-Coupon, to stimulate
mobile nodes with high delay tolerance and large offloading
potential to offload their traffic to other intermittently con-
nected networks. In [36], Paris et al. designed a combinatorial
reverse auction mechanism to select the cheapest WiFi APs
and offload the maximum amount of traffic from the MNO.
In [37], Dong et al. proposed a novel reverse auction-based
incentive framework, named iDEAL, to enable the MNO to
buy third-party resources on demand, with significant savings.
In [38], Lu et al. proposed a new auction model, named
EasyBid, to provide guarantees for truthfulness even when a
system with imprecise valuations is considered, and designed
a dynamic programming based algorithm to maximize the
MNQO’s utility with partial truthfulness and imprecision loss.
In [39], Song et al. proposed a reverse auction-based incentive
mechanism with a cost constraint in content distribution via
D2D communications. In [40], Hou et al. proposed a social
relationship-based auction to offload cellular traffic through
WiFi APs efficiently, in which the social relationship of mobile
nodes is considered. In [41], Zhao et al. proposed an optimal
and truthful reverse auction-based incentive framework, which
can minimize the cost of the MNO and meet the traffic demand
in each time period.



Different from the above existing studies, in our study,
we model the reverse auction-based incentive problem as
a nonlinear integer problem from the business perspective,
aiming to maximize the revenue of the MNO. Furthermore,
we also jointly consider the delay constraint of different
applications in the optimization problem. In specific, mobile
users may run different applications, and thus the maximum
delay that can be tolerated for different applications should be
considered.

III. SYSTEM MODEL OF DRAIM
This section introduces the system model related to DRAIM.

A. Data Offloading Model

Fig. 1 shows a mobile data offloading scenario in a single
cell, which is formed by a Base Station (BS) of the MNO,
several WiFi Access Points (APs) and a set of Mobile Users
(MUs). Here, the BS is deployed by the Mobile Network
Operator (MNO) and WiFi APs are deployed by different
third-party companies. In addition, the MUs and the APs are
within the service coverage of the BS, and each AP only covers
a part of the MUs due to its smaller transmission power. Each
MU can download its preferred content from the BS. Since the
BS has a limited backhaul and radio access capacity, the MNO
may select some MUs to be served by the APs to improve
the overall network performance, especially when the network
congestion occurs.
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Fig. 1. Network scenario of WiFi offloading.

Since providing data offloading services will inevitably
incur additional resource consumptions, the APs deployed by
third-party companies usually do not actively participate in the
data offloading process. To stimulate APs to participate in the
data offloading process, the MNO needs to compensate for the
additional resource consumptions of the APs. Moreover, when
the MNO makes an offloading decision, the maximum delay
that the MUs can tolerate should be considered.

APs lease their available spectrum resource blocks to the
MNO, in exchange for remuneration. In detail, each AP reports
its available spectrum resource blocks periodically and asks
for a price from the MNO, whereas the MNO chooses some

APs based on the collected information and pays them the
corresponding remuneration.

B. The MNO’s Revenue Model

In the network, the MNO obtains a revenue by providing
content services to the MUs. We assume that the total mobile
data requested by the MUs in the system is ¢, where the
amount of traffic that can be offloaded by APs is f. Therefore,
the total traffic transmitted by the BS is (¢— f). Since the cost
invested by the MNO in the construction and maintenance of
BSs in the early stage is fixed, we can set the cost of unit
mobile data as e and the price as d. Then, we can obtain
the revenue that the MNO receives from the unit mobile
data as (d — e). If the payment is not considered for the
APs participating in the data offloading process, the MNO’s
revenue function is expressed as follows:

Ulg, f) = (d—e)(qg— f) +df, )

where the first term is the revenue generated by the traffic that
is transmitted by the BS, and the second term is the revenue
generated by the traffic that is offloaded by APs.

We divide the data offloading process into multiple time
slots, where each time slot is at least larger than the maximum
tolerated delay of MUs. The MNO launches an auction and
collects bids from APs in each time slot. Based on the
requests of the surrounding MUs, the MNO can evaluate each
AP’s offloading potential according to its available spectrum
resource blocks. Then, the MNO selects the most valuable APs
to provide data offloading services.

C. Transmission Model

Using N' = {1,2,3,..., N} to denote the set of MUs. Each
MU j € N has the following attributes:

o The traffic demand s;: Each MU in the network has its
own traffic demand, which is based on different types of
applications that need to be transferred in the specified
delay.

o The maximum delay threshold ¢;: It depends on the
service types of each MU. We consider that MUs running
different types of applications tolerate different maximum
delays. For example, applications (such as file) are more
tolerant of latency than video applications (such as We-
bcast).

« The channel transmission rate 12;;: For the channel model
between each AP and MU, both the path loss and small-
scale fading are considered. The channel transmission rate
between AP ¢ € K and MU j € N is expressed as
follows:

Pk (di) ™ 2
Rij:Bij10g2{1+t| i () | }7 (2
Ny

where B;; is the bandwidth of the leased transmission
channel between AP ¢ and MU j, P; is the transmission
power of the AP i, Ny denotes the channel noise power,
d;; denotes the distance between AP ¢ and MU j, o is
the path-loss exponent, and h; is the small-scale channel
fading which is Rayleigh distributed.



D. AP’s Bidding Model

Using K = {1,2,3,..., K} to denote the set of APs. Each
AP i € K has the following attributes:

o The available spectrum resource blocks Bj"®*: It rep-
resents the available spectrum resource blocks of AP ¢
leased to the MNO for remuneration.

o True value of the unit leased spectrum resource block
v;: It represents the true consumption per unit time
of AP ¢’s unit spectrum resource block by serving the
data offloading service, and v; is the private information
belonging to the AP 1.

o The bid of the unit leased spectrum resource block ¢;:
Similar to v;, we use ¢; to represent the compensation
that AP ¢ requests from the MNO, compensating for
the resource consumption generated by the unit spectrum
resource block per unit time. Therefore, based on band-
width of the leased spectrum B;;, and the occupied time
duration t;; = ;—jj the communication cost of MU j
with AP i, defined as &;;, can be calculated as:

Eij = ¢ Byjty;. 3)

During the auction process, each AP ¢ € I submits its bid
vector [¢;, B**] to the MNO, denoting its bid value ¢; and
available spectrum resource blocks B;"**. Due to the nature
of selfishness and rationality, AP ¢ may raise a bid ¢; higher
than its true value v; to get more compensation. To make the
auction process fair and reasonable, and the trade between the
APs and the MNO mutually beneficial, appropriate incentive
mechanism should be designed to stimulate the APs to partic-
ipate in the data offloading process.

E. Reverse Auction Model

This paper uses the reverse auction to stimulate APs to take
part in the data offloading process, where the MNO acts as the
auctioneer and the APs act as the bidders. The APs lease their
bandwidth resources as commodities and submit the bid vector
to the MNO. After evaluating the bids for all APs, the MNO
purchases the required bandwidth resources to meet the traffic
demands and maximize its revenue. Specifically, the auction
procedure includes three steps:

« Each AP submits its bid vector [¢;, B/"**] to the MNO.

o Each MU reports to the MNO its available WiFi connec-
tion and the maximum delay that can be tolerated as well
as the requested data size (i.e., s; and §;, Vj € N). Based
on the reported information, the MNO can generate an
AP-MU association set 7 = {F;}, - which reflects the
set of MUs within each AP’s coverage, where F; denotes
the set of MUs covered by AP ¢. For instance, MU 6,
MU 8, MU 9, MU 10 are covered by AP 3 as shown
in Fig. 1. Therefore, the set of MUs covered by AP 3 is
F3 ={6,8,9,10}. Similarly, the set of MUs covered by
AP 4 is Fy, = {7,8,9,10}.

o The MNO determines the subset of APs which will pro-
vide data offloading services, and calculates the payment
granted to each AP.

TABLE I
NOTATIONS AND SYMBOLS

Notation | Explanation

N The set of all MUs

K The set of all APs

q The total mobile data requested by MUs in the system
model

f The amount of mobile data that can be offloaded

e The MNO unit mobile data cost

d The MNO unit mobile data price

Brax The available spectrum resource blocks of AP ¢

v True value of the unit leased spectrum resource block
of AP i

bi The bid of the unit leased spectrum resource block of
AP ¢

85 The traffic demand of MU j

' The maximum delay threshold of MU j

R;j The channel transmission rate between MU j’s and AP
i

N; The set of MUs covered by AP ¢

Eij The communication cost of MU j with AP 4

tij The communication duration of MU j with AP ¢ under
the maximum delay constraint

Bij The bandwidth of the leased transmission channel be-
tween AP ¢ and MU j

F AP-MU association set

F; The set of MUs within AP ¢’s coverage

z; Binary variable that indicates if AP ¢ wins the auction

a;j Binary variable that indicates if MU j is assigned to
AP 4

u; AP i’s contribution

L The set of MUs served by winning APs

T The optimal AP-MU association set

T; The optimal set of MUs served by AP ¢, which can
maximize the mobile data that AP ¢ offloads in each
time slot.

b; The total asking price of AP ¢

w The set of winning APs

M Winner set contribution

M; AP ¢’s marginal contribution

IV. PROBLEM FORMULATION

This section describes the objective function of the MNO,
and models the delay-constrained and reverse auction-based
incentive problem as a nonlinear integer programming prob-
lem, aiming to maximize the revenue of the MNO.

Assuming that the MNO knows all MUs’ channel state
information and transmission power. Then, two indicator func-
tions z; € {0,1} and a;; € {0, 1} are used to indicate whether
AP 17 is selected to offload traffic, and whether AP 7 is selected
to provide data offloading service for MU j, respectively. If AP
1 is selected to conduct the offloading task, x; = 1; otherwise,
x; = 0. Similarly, if MU j connects to AP i, a;; = 1;
otherwise, a;; = 0. Then, the MNO’s utility can be given
as:

Hi (zi,0:5) =U Z S5, Z Z QijS;

JEN €K jEN

—Z Z xiaij&j .

1€ jEN
4)

where U (g, f) is the revenue function of the MNO as shown
in Eq. (1), but it does not consider the payment given to the
winning APs. Therefore, we need to use U(qg, f) minus the
payment to the winner.

The MNO aims to maximize its revenue with fewer pay-
ments. Hence, the optimization problem can be formulated as



follows:
max H]c (l‘i, Cl,‘j) (5)
st aiBi; <BM™, Vie KVjeN, (6)
JEN
ti; < 4;, Vie K,VieN, (1)

Ti, Q35 € {0, 1}, Vie KL, Vj € N. ©)]

The meaning of the constraints is as follows:

o Constraint (5) makes sure that the bandwidth of the
spectrum leased by AP to MU matches the maximum
available spectrum resource blocks.

o Constraint (6) makes sure that MU transmission delay
does not exceed its maximum delay threshold.

o Constraint (7) expresses that only winners can be as-
signed to assist with MU data offloading.

o Constraint (8) guarantees the integer nature of binary
variables.

It is very hard to solve the problem which has integer
constraints z; € {0,1} , a;; € {0,1} and division math-
ematical operation of the variables. Compared with the O-
1 knapsack problem, the proposed optimization problem is
more complicated, so it certainly belongs to the NP-hard
problem. Since no algorithm in polynomial time can solve
this problem, we introduce heuristic algorithms to reduce the
time complexity and obtain the approximate optimal solution.

V. MAIN APPROACH OF DRAIM

This section introduces heuristic algorithms to solve the
above optimization problem, and reduce the computational
complexity. We first propose a selection method based on
the greedy algorithm, and further propose a selection method
based on the dynamic programming to solve the defects in the
greedy selection method. In the end, we introduce the MNO’s
payment determination for the winning APs.

A. Greedy Winner Selection Method

A simple way to solve the above optimization problem is
to choose the APs with the maximum increase of the MNO’s
utility. Therefore, in this part, we first introduce a Greedy
Winner Selection Method, named GWSM.

Before introducing the proposed GWSM, We first give some
related definitions.

Definition 1. (AP’s contribution) The contribution of AP i €
K is defined as the increment of the MNQO’s revenue after
selecting AP 1, which is given as:

U = Z de,

JEF;

(10)

where F; denotes the set of MUs within AP i’s coverage.

Definition 2. (AP’s total bid price) The total bid price of AP
i € K is defined as the sum of the communication costs of the
MU served by AP i , which can be calculated as:

b; = Z Eij,

JEF;

Y

where &;; denotes the communication cost of MU j with AP
7.

Definition 3. (Winner set contribution) Using VW to denote
the set of winning APs, the contribution of the winner set is
defined as the sum of the contribution of all APs in W, which
can be calculated as:

icw
Definition 4. (AP’s Marginal Contribution) Using W to
denote the set of winning APs, the marginal contribution of AP

1 ¢ W is defined as the increase in the winner set contribution
caused by the winning AP i, which can be calculated as:

Mi(W) = MW U {i}) — MOW).

(12)

13)

Since the MNO aims to select a set of APs to maximize
its utility, according to Eq. (4), the MNQO’s objective function
can be changed to:

H(W) = max Z (dfe)sj+2ui72bi
FEN\Ly iEW iEW
= max Z (d—e)Sj+ZZde—Zzgij
FEN\Lw iEW JEF; iEW JEF;
(14)
st. Y B <BM™, VieWVjeF, (I5)
JEF;
tij <05, Vi e W,Vj € F;, (16)

where L,, denotes the set of MUs served by the winning APs.

We introduce a greedy algorithm to select the AP with
the largest marginal contribution value to effectively solve
the optimization problem. The AP is sorted according to the
marginal contribution value of the AP minus the total bid price,
as shown in Algorithm 1. The winning APs can be sorted as:

Moy —boy = -+ = Mom) —bgn) = -+ = Moy —bo(v)

a7
where 6(n) denotes the index of the AP at the position n in
the ordering. In Eq. (17), My, is used instead of Mg,y (W)
to simplify the notation.

Moreover, we initialize the index of the AP that has the
maximum value of the marginal contribution minus the total
bid price (Lines 2 in Algorithm 1). Then, we repeatedly select
the winning APs whose marginal contribution value is greater
than its total bid price (Lines 3-7 in Algorithm 1).

Note that although the objective of GWSM is to maximize
the utility of the MNO by constantly searching APs with the
largest value of the marginal contribution minus total asking
price, it does not take into account the constraints (15) (16).
Furthermore, there is no consideration that the same served
MU may exist in the overlapping areas of the APs. For
instance, as shown in Fig. 1, MU 8 € F3 and MU 8 € Fy, so
MU 8 may be served by both AP 3 and AP 4, but each MU
can only connect to one AP in each time slot.



Algorithm 1 AP Selection in GWSM
Require: C, N, B™®,¢,;,5;,0;

Ensure: W
LW« 0;
2 1+ argmax (Mi(W) —br);
3: whlleb </\/l( ) do
4 W+ Wulih
5:  Update each winner’s marginal contribution in W;
6: i+ argmax (Mg(W) — by);
kER\W
7: end while
8: return W

We then take the constraints (15) (16) and the overlapped
coverage into account and propose a dynamic programming
based algorithm.

B. Dynamic Programming Winner Selection Method

This section proposes a Dynamic Programming Winner
Selection Method to select winning APs and allocate MUs,
named DPWSM. In specific, the solution is divided into two
parts. The first part is to use a dynamic programming algorithm
to obtain the optimal AP-MU association set in each AP’s
coverage area, which can maximize the mobile data that each
AP offloads in each time slot. The second part is to use the
greedy algorithm to select the winning AP during the auction
process.

Firstly, we modify some of the definitions in GWSM. Then,
we elaborate the AP selection rule in the proposed DPWSM.

Definition 5. we modify Definition 1 and Definition 2 in
GWSM as follows:

= Zde, blz Zgij’

JET; JET;

(18)

where T;; denotes the optimal set of MUs served by AP 1, which
can maximize the mobile data that AP 1 offloads in each time
slot.

To obtain the optimal AP-MU association set 7T; in each AP
i’s coverage area, we consider using a dynamic programming
algorithm to solve. Similar to the 0-1 knapsack problem, the
optimization objective of this sub-problem is to find a subset T;
in F;, which can maximize the mobile data that AP ¢ offloads
in each time slot.

In each AP ¢ € I, sorting MU j € F; according to j in an
ascending order, we can get MU ¢(x) € F; as:

(1) <p(2) < < p(Q)-

where ¢(x) is the index of MU at the position z in the ordering
and the last one in the ordering is Q.

Then, we can describe this sub-problem as when the avail-
able spectrum resource block of the AP 7 is Bj"®*, which MU
p(x) € F; can make AP ¢ offload the maximum amount of
mobile traffic in each time slot. We can define the state of the
sub-problem as:

Let J%[x,y] indicate the maximum mobile data that can be
offloaded by AP i if MUs set {MU ¢(1), ... , MU o(z)}

19)

with the available spectrum resource block y € [0, Bf***] are
in its coverage area. Then, the state transition equation can be
expressed as:

Ji[z,y] = max {Ji[;v ~ 1y, J" e -1,y — Vé(z)] + sgp(x)(} ,

, (20)
where V;(I) is the spectrum resource block required by the
MU ¢(z) under the maximum delay, which can be calculated
as:

Sp(x)

Pilh(or (dipay) 12 )
5(/)(1) 1Og2 {1 4 ¢ ( )(N(;p( )) }

where s, is the traffic demand of MU ().

According to Eq. (20), if MU ¢(z) is not served by AP i,
then Ji[z,y] = J¢[z — 1,y]; if the MU ¢p(x) is served by AP
i, then Ji[x,y] = J* [a: —1lLy—-V? (w)} + Sy (z)- Finally, the
maximum mobile data that AP i can offload is J¢[Q, B™a*],
which can be obtained by traversing the state of all MU ¢(x) €
F; according to the state equation. Since our objective is to
obtain the optimal AP-MU association set 7;, we can get T;
based on the state transition of the final state J¢[Q, BM2¥].
More details are shown in Algorithm 2.

c,Z(:v) = (21)

Algorithm 2 MUs Allocation in DPWSM
Require: C, N, B"®*, ¢, s, 0,
Ensure: T;

1: for each AP i € K do

22 T«

3:  for each MU j € F; do

4: Calculate V]’ according to Eq. (21);

5:  end for

6:  After sorting MU j € F; according to j in an ascending

order, let p(z) denote the index of MU at the position
x in the ordering and the last one in the ordering is Q.
7. for z <+ 1to Q do
for y < 1 to B"** do
: qu,y](—{]i[l'—l,y];
10: ify >V}

() then
11: Calculate J'[z,y] according to Eq. (20);
12: end if
13: end for

14:  end for
15 o =Q, y = Bmax
16:  while z' >0 and y > 0 do

17: if Jijz',y']=Ji2 -1,y — V!

L,D(:E)/} + Sg&(m), then

18: T; < T, U p(z);
19: end 1f

20: r =2 — 1;

21:  end while

22: end for

23: return T;

According to the dynamic programming algorithm, we can
obtain the optimal AP-MU association set 7 = {7}, which
represents the optimal set of MUs within each AP’s coverage.
Now, we can formulate the problem of maximizing the MNO’s



utility by combining GWSM as follows:

H(W) = max Z (d—e)sj—l—Zui—Zbi
FEN\Ly iEW iEW
= max Z (d—e)Sj—FZZde—ZZgij
JEN\Ly €W jeT; €W jET;
(22)
st. Y B <BM™, Vie WVjeT,  (23)
JET;
tij < (Sj7 Vi € W,V] eT;. 24)

To solve this problem, we first calculate the spectrum
resource block demand V; for each MU j under the maximum
delay constraint in the coverage area of AP i. For each AP
i € KC, we use dynamic programming algorithm to obtain T;
under the constraints of (23) and (24), which are shown in
Algorithm 2. Then, we select the winning APs according to
the order of their marginal contributions minus total bid prices
until the total bid prices of the selected APs are larger than
or equal to their marginal contributions. In each while-loop of
the selection of winning APs, 7" = {T}},.\,y needs to be
updated since the same MU may exist in the optimal AP-MU
association set of both the selected APs and unselected APs
(Lines 9-11). For instance, it can be found that 753 = {6, 8,10},
Ty = {7,8} as shown in Fig. 1. Once AP 3 is selected as the
winning AP, Ty = {7,8} should be updated as T, = {7,9}
since MU 8 can only be served by one AP in each time slot.
The detail of the proposed AP selection method is shown in
Algorithm 3.

Algorithm 3 AP Selection in DPWSM
Require: IC, N, B, ¢,, s;, §;
Ensure: W

W0, L, + 0

2: Calculate T; according to Algorithm 2;

3: i« argmax (Mg(W) — by);

ke \W

4: while b; < MZ(W) do

55 W<+ WU{i},
6: Loy — L, UT;,
7
8
9

K+ K\{i};
Update each winner’s marginal contribution in W;
. for each AP i € C do
10: F; «+ F; \Lw;
11:  end for
12:  Update T; according to Algorithm 2;
13: i+ argmax (Mx(W) — by);
keK

€
14: end while
15: return W

C. Payment Determination

After selecting the winning APs, the MNO needs to de-
termine the payment to compensate for their cost. As we

mentioned in the AP’s bidding model, each AP wants to get
a higher reward which is not equal to the real value they
provided. In this part, we propose a standard VCG scheme-
based payment rule for DPWSM. The proposed payment rule
can stimulate the involvement of APs in the data offloading
process and guarantee the individual rationality and truthful-
ness properties.

In the standard VCG scheme, each winner will pay the “op-
portunity cost” caused to other participants. The “opportunity
cost” of bidder ¢ is denoted as total bids of all the other bidders
that would win without the participation of bidder ¢, minus the
sum of bids of all the other actual winning bidders.

According to Definition 5, we can know that u; denotes
the increment of the MNO’s revenue after selecting AP 7, and
b; denotes the sum of the communication costs of the MUs
served by AP i. Mathematically, we define Hc' (z;,a;;) as
the optimal solution without considering the contribution of
AP i, which can be formulated as:

Hic' (i, aij) = Hic (25, a55) — (ui — b;),

Furthermore, we use Hy\ 1y (74,a45) to denote the new
optimal solution without considering the participation of AP
1. Then, the price paid to AP ¢ is given as:

(25)

pi = u; — (Hie\ iy (5, a55) — He' (24, a45)) - (26)

Using v; = ZjeTi v; By;t;; to denote the sum of the real
value consumed by AP i in the data offloading process. Then,
the utility of each AP ¢ € W is defined as:

Wi = Pi = Yi- 27)

The payment and utility of those AP ¢ ¢ W is defined as 0.
The detail of the proposed payment rule is shown in Algorithm
4.

Algorithm 4 Payment Determination in DPWSM
Require: W, T;
Ensure: p;

1: for each AP i € K do

2: i < 0;

3: end for
4: for each AP i € W do
5: HEz (xi,aij) = Hg (xi,aij)—(ui —bi);
6: K+ K\{i}
7.
8
9

Update W according to Algorithm 3;
Calculate p; according to Eq. (26);
o K+« KuU{i};
10: end for
11: return p;,Vi € W

D. Proof of Properties

This part proves that our proposed DPWSM satisfies three
crucial properties: individual rationality, truthfulness and com-
putational efficiency. The individual rationality guarantees
each winner can obtain a non-negative utility. The truthfulness
prevents APs to obtain higher utility by bidding untruthfully.



Moreover, the computational efficiency of DPWSM can be
completed in the polynomial time complexity.

Theorem 1. (Individual Rationality). The payment rule de-
fined in Eq. (26) satisfies the individual rationality property,
ie,VieK,p; > Yi-

Proof: Based pm the payment rule Eq. (26), we can get:

pi = u; — (Hio\ 4y (i, ai5) — H' (i, a:5))
=u; — (Hi\qiy (i, ai5) — Hie (w4, ai5) — bi + u;)
= Hi (v, ai5) — Hi\ (ay (%4, aij) + by

When each AP ¢ € K bids truthfully, i.e., b; = ;, we can
obtain:

Hi =DPi — Vi
= Hi (2i, ai5) — Hie\ g3y (%4, agj)
> 0.

Therefore, the individual rationality property is satisfied. H

Theorem 2. (Truthfulness). The payment rule defined in
Eq. (26) satisfies the truthfulness property, i.e., it is a weakly
dominant strategy for each AP to set the bid ¢; = v;.

Proof: Assuming that a certain AP 7 declares the bid gb;
untruthfully, i.e., ¢, # v;. According to Eq. (27), the utility of
AP i changes to:

Hi =DP; — i
= U;- — (HIC\{i} (xi,aij) — lei ( z;, U)) Z Usz]tZJ
JET;

Then, the difference of AP ¢ € W’s utility after submitting
the untruthful bid and the truthful bid can be expressed as:

Api = iy — pg
:u; — (HIC\{z} (a:i,aij) — H,Ei ( z? ”)) Z ’UZBZJtU
JET;
— [Hk (%, aij) — Hie\ iy (i, ai;)]
—u; + Hig' () 01;) = Hi (w0,05) = 3 6iBigt

JET;

= Z d—e)sj—l—Zstj— Z Z&j

FEN\L!, iEW' jeT] iEW\{i'} jeT]
S IDNCETIES ) ST SID B
FEN\Low i€EW jeT; ieW\{i} j€T;

Since W is the optimal solution of the objective function

Eq. (4), we can obatian:
> 28y

Z d—e)s;+ Z stj—

FEN\L!, iew’ jer; iEW\{i'} jeT,
S SRS 3D S RS DD BN
FJEN\Lw ieEW jeT; ieW\{i} j€T;

Therefore, Ap; < 0, that is to say, APs cannot increase
their utility by bidding untruthfully. ]

Theorem 3. (Computational Efficiency). The proposed DP-
WSM is computationally efficient.

Proof: To prove the computational efficiency of the
proposed DPWSM, we just need to prove that DPWSM can be
conducted in polynomial time. In DPWSM, the computational
complexity primarily comes from two parts: the first part is to
use Algorithm 2 to obtain the optimal AP-MU association set,
the second part is to use the Algorithm 1 to select the winning
APs.

Assuming that there are N MUs, K APs, W winning APs,
and the maximum available spectrum resource blocks of the
APs is B. In the first part, we can obtain that the computational
complexity of obtaining the optimal AP-MU association set
(Lines 2 in Algorithm 3) takes no more than O(K N B) time.
In the second part, the while-loop (Lines 4-14 in Algorithm
3) executes W times. In each loop, finding the AP with the
largest marginal contribution minus total bid price (Lines 13
in Algorithm 3) takes no more than O(K) time. Since we
should update the APs’ optimal AP-MU association set when
a new AP is selected as a winner (Lines 12 in Algorithm 3),
the computational complexity of Algorithm 3 is

O(WK?NB).
Similar to Algorithm 3, the computational complexity of
Algorithm 4 is OWK2NB).
To summarize, the computational complexity of the pro-

posed DPWSM is O(WK2NB), and DPWSM is computa-
tionally efficient. [ ]

VI. PERFORMANCE EVALUATION

This section evaluates the performance of our proposed
methods, and investigates the impact of some parameters on
the performance of the proposed methods.

TABLE 11
SIMULATION CONFIGURATION

Parameter Configuration
The number of APs [0, 30]

The number of MUs [0, 100]

The available spectrum resource blocks of APs | [0, 80] M Hz
The MNO unit mobile data cost 0.6

The MNO unit mobile data price 1.2
Transmission power of AP 2 W

The channel noise power 1076 W
The traffic demand of each MU 20 MB

The MU’s maximum delay [0.1, 1]

A. Simulation Settings

In the simulation, we consider that several APs are randomly
distributed within the coverage of the BS, with uniform
transmission range over [50, 100]m. The bid of unit spectrum
resource block is normally distributed over [0.2, 0.5] monetary
units (e.g., US dollars, or RMB)/(M Hzsec). Each MU’s
maximum delay is uniformly distributed over [0.1, 1] second.
We vary the number of MUs and APs in the ranges [0, 100]
and [0, 30], and the maximum available spectrum resource
blocks of APs B,,.. in the range [0, 80], respectively. The
path-loss exponent is o = 2.5. Both MUs and the APs are
placed randomly in the area. We give the default simulation
parameters in Table II.



We then compare the performance of our proposed DPWSM
(S.1) and GWSM (S.2) with the Random Winner Selection
Method (S.3), which selects a group of APs to provide data
offloading services randomly. For fairness, the total number of
selected APs in the Random Winner Selection Method is the
same as that of our proposed methods, and the Random Winner
Selection Method uses the dynamic programming algorithm
to obtain the optimal AP-MU association set 7 = {Ti}; .
According to the proposed optimization problem, we use the
MNQO’s utility (or revenue) and the MNO’s traffic load as the
performance metrics. Here, the MNO’s utility is defined as
Eq. (4), and the MNO’s traffic load denotes the overall traffic
transmitted by the BS.

B. Performance Comparison

This part compares the performance of our proposed meth-
ods, DPWSM (S.1) and GWSM (S.2) with the Random Win-
ner Selection Method (S.3) in terms of the MNO’s utility (or
revenue) and the MNO'’s traffic load under different scenarios.

1) Different numbers of APs: We first compare the perfor-
mance of our proposed methods, DPWSM (S.1) and GWSM
(S.2) with the Random Winner Selection Method (S.3) in terms
of the MNO’s utility and traffic load, when the numbers of APs
is different. We set the number of MUs as |N| = 100, and the
available spectrum resource blocks of APs as 20M H z.

Fig. 2 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method (S.3)
in terms of the MNQO’s utility with the increase of the number
of APs. With the increase of the number of APs, more APs
can help the MNO offload traffic, so the MNO’s utility will
increase continuously. It can be found that DPWSM performs
much better than GWSM when the number of APs is different,
especially when the number of APs is larger. This is because
DPWSM uses a dynamic programming algorithm to obtain
the optimal AP-MU association set in each AP’s coverage
area, so the MNO of DPWSM has greater possibility to select
more valuable APs to offload traffic during the auction process,
while GWSM does not consider the overlapping areas of the
APs. It is obvious that the Random Winner Selection Method
performs worst. The main reason is that the Random Winner
Selection Method selects a set of APs to participate in the data
offloading process randomly.

Fig. 3 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method
(S8.3) in terms of the MNO’s traffic load with the increase
of the number of APs. With the increase of the number of
APs, more APs can help the MNO offload traffic, so the
traffic load of the MNO will decrease continuously. It can be
found that the traffic load of the MNO in DPWSM decreases
significantly as the number of APs increases, compared with
that of GWSM and the Random Winner Selection Method,
which demonstrates that DPWSM performs best. The traffic
load of the MNO in the Random Winner Selection Method
is the largest, which demonstrates that the Random Winner
Selection Method still performs worst.

2) Different numbers of MUs: This part compares the
performance of our proposed methods, DPWSM (S.1) and
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GWSM (S.2) with the Random Winner Selection Method (S.3)
in terms of the MNO’s utility and traffic load, when the number
of MUs is different. We set the number of APs as |K| = 30,
and the available spectrum resource blocks of APs as 20/ H z.

Fig. 4 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method (S.3)
in terms of the MNO’s utility with the increase of the number
of MUs. With the increase of the number of MUs, more
traffic demands will be requested by MUs, which means that
the traffic that can be offloaded by APs is also increasing.
Therefore, the MNQO’s utility will increase continuously. Sim-
ilarly, it can be found that with the increase of the number
of MUs, DPWSM still performs much better than GWSM,
especially when the number of APs is larger, and the Random
Winner Selection Method performs worst. Furthermore, with
the increase of the number of MUs, the utilities achieved by
GWSM and the Random Winner Selection Method increase
more slowly than DPWSM, which reflects that the proposed
DPWSM has a better performance in high-density network
scenarios. This is partly because the APs’ spectrum resources
are not being used efficiently, and there are more overlapped
coverage areas among adjacent APs when the number of MUs
increases.

Fig. 5 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method (S.3)
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in terms of the MNQ’s traffic load with the increase of the
number of MUs. With the increase of the number of MUs,
more traffic demands are requested by MUs, so the traffic load
of the MNO will increase continuously. It can be found that
the traffic load of the MNO in DPWSM increases slowly as the
number of MUs increases, compared with that of GWSM and
the Random Winner Selection Method, which demonstrates
that DPWSM performs best. The traffic load of the MNO in the
Random Winner Selection Method increases very fast, which
demonstrates that the Random Winner Selection Method still
performs worst.

3) Different available spectrum resource blocks of APs:
This part compares the performance of our proposed methods,
DPWSM (S.1) and GWSM (S.2) with the Random Winner
Selection Method (S.3) in terms of the MNO’s utility and
traffic load, when the available spectrum resource blocks of
APs are different. We set the number of APs as |K| = 30,
and the number of MUs as |N| = 100.

Fig. 6 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method
(8.3) in terms of the MNO’s utility with the increase of
the available spectrum resource blocks of APs. With the
increase of the available spectrum resource blocks of APs,
more MUs can be served by APs, so the MNO’s utility
will increase continuously. It can be found that the utility of
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the MNO in DPWSM increases significantly as the available
spectrum resource blocks of APs increase, compared with that
of GWSM and the Random Winner Selection Method, which
demonstrates that DPWSM performs best. When the available
spectrum resource blocks of APs increase to a large value,
ie, 50 M Hz, the MNO’s utilities of our proposed methods
increase very slowly, and are very close. This is because when
the spectrum resources of the APs are sufficiently enough,
each AP can meet the spectrum resource requirements of all
MUs in its coverage area. Then, even if dynamic programming
is not used to obtain the optimal AP-MU association set
in each AP’s coverage area, the performance difference of
DPWSM and GWSM will not be obvious. Furthermore, the
gaps between the Random Winner Selection Method and the
other two curves indicate that the Random Winner Selection
Method still performs worst.

Fig. 7 shows the performance comparison of DPWSM (S.1),
GWSM (S.2), and the Random Winner Selection Method (S.3)
in terms of the MNO’s traffic load with the increase of the
available spectrum resource blocks of APs. With the increase
of the available spectrum resource blocks of APs, more MUs
can be served by APs, so the MNO’s traffic load will decrease
continuously. Similarly, it can be found that the MNO’s
traffic load of DPWSM decreases significantly as the available



spectrum resource blocks of APs increase, compared with that
of GWSM and the Random Winner Selection Method, which
demonstrates that DPWSM performs best. The traffic load of
the MNO in the Random Winner Selection Method is the
largest, which demonstrates that the Random Winner Selection
Method still performs worst.

To summarize, we demonstrate that our proposed DPWSM
performs best in terms of the MNQO’s utility and traffic load,
and the proposed GWSM performs much better than the
Random Winner Selection Method in terms of the MNO’s
utility and traffic load under different scenarios.

VII. CONCLUSION

In this paper, we proposed a delay-constrained and reverse
auction-based incentive mechanism for offloading cellular
traffic through WiFi APs. We formulate the data offloading
problem as an optimization problem, and design an effective
reverse auction-based incentive mechanism to stimulate WiFi
APs to participate in the data offloading process, with consid-
eration of the delay constraint of different applications. The
optimization problem is modeled as a nonlinear integer pro-
gramming problem, and two low-complexity methods: GWSM
and DPWSM are proposed to solve the problem. Furthermore,
an innovative standard Vickrey-Clarke-Groves (VCG) scheme-
based payment rule is proposed to guarantee the individual
rationality and truthfulness properties of DPWSM. Extensive
simulation results illustrate that DPWSM outperforms the oth-
er two methods in terms of the MNO’s utility and traffic load
under different scenarios. In the future, we plan to consider
some realistic mobility models, and analyze the impact of
pricing strategy at different time periods on the utility of the
MNO.
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