On Efficient Data Collection and Event Detection with Delay Minimization in Deep Sea

Huangyang Zheng and Jie Wu

Computer and Information Sciences
Temple University
1. Introduction

- Efficient searching in deep sea is notoriously difficult due to the vast searching area
 - The search-and-rescue effort of Malaysia flight MH370 in the Pacific ocean
 - The detection of oil pipe leak through robotic submarines in Mexico

- Electromagnetic signal decays quickly in the water, while acoustic signal has a limited bandwidth
1. Introduction

- Multiple autonomous underwater vehicles (AUVs) are used to surface to transmit collected data (or events).

- The 2-D search space (a set of connected line segments) is parallel to the water surface.

- Examples:
 - Sensors on oil pipes
 - Submarine cable
 - Undersea tunnel
2. Problem Description

• The AUV trajectory planning problem, which aims to minimize the average data delay

 – How can we schedule the AUVs to resurface optimally in a circular search space (Eulerian cycle)?

 – How can we convert a general searching space to a circular search space?

 – Can we shorten the circumference of the converted circular search space?
3. Optimal AUV Resurfacing

- Data are uniformly distributed with a fixed generation rate

- **Objective**: minimize the *long-term* average data delay (to the water surface)

- The speed of the AUV is unit
 - C: the cycle circumference
 - L: the searching space depth
 - n: the number of AUVs
3. Optimal AUV Resurfacing

• If we have a larger AUV resurfacing frequency, the AUV can bring node A’s data to the water surface more quickly.

• However, node A’s data needs to wait the next AUV for a longer time, since resurfacings take additional time.

• AUV should resurface more frequently for shallow search spaces.
3. Optimal AUV Resurfacing

- **Theorem 1.** Optimally, the AUV resurfaces after traveling a distance of $\sqrt{2LC}$ on the original cycle (if we only have one AUV).

- If we have multiple AUVs (n AUVs), then we can evenly distribute these AUVs on the cycle.

- Each of these AUVs optimally resurfaces after traveling a distance of $\sqrt{\frac{2LC}{n}}$.

![Diagram showing the distribution of AUVs on a cycle with $n=3$.]
4. Constructing of A Cycle

- Why do we use **only one large cycle** instead of **multiple small cycles** to cover the search space?

- **Theorem 2.** Scheduling 2 is always no worse than Scheduling 1, due to more balanced cycling tasks among AUVs.
4. Constructing of A Cycle

- General search space: a set of connected line segments (called sensing edges in the graph)

- Graph with an even degree for every vertex
 - An Eulerian cycle exists

- Graph has vertices with odd degrees
 - Add redundant edges to make odd degree even
 - We need to minimally pairwise odd degree nodes by adding one link (There are even number of vertices with odd degrees)
4. Constructing of A Cycle

- Construct an Eulerian cycle **by adding sensing edges** (Algorithm 1)

- Some sensing edges are visited for multiple times

Given graph

- Nodes: A, B, C, D, E, F, G, H

Odd-degree vertex matching

Combined graph

- Nodes: A, B, C, D, E, F, G, H

Hierholzer's algorithm

- Nodes: A, B, C, D, E, F, G, H
5. Cycle Enhancement

- **Geometric shortest non-sensing edges** (which may be not in the search space) can shorten the cycle circumference, although no data is collected on them.

- Construct the cycle by adding **non-sensing edges** (Algorithm 2)

Given graph

Odd-degree vertex matching

Combined graph

Hierholzer's algorithm
6. Cycle Merge

- Cycle merge to further reduce delay
- Greedy cycle merge algorithm

(a) Two cycles.
(b) Merge result.
7. Experiments

- **Settings**
 - The test is based on a synthetic trace, which is generated through uniform, random placement of 100 nodes on a 100*100 square unit.
 - To guarantee the graph connectivity, a spanning tree is constructed. Additional edges, with given total numbers of 20 and 100, are used to uniform-randomly connect these nodes.
 - AUV has unit speed.
7. Experiments

• Proof-of-concept results:

(a) Given 20 additional edges.

(b) Given 100 additional edges.
7. Experiment

- A sparser graph leads to a larger gap between Algorithms 1 and 2 (an improvement of more than 20% for the sparse graph)

- The gap of pairwising odd vertices through the shortest path and that through the geometry link is becoming smaller, when the trace gets denser

- The delay reduction brought by one more AUV decreases, with respect to the current number of AUVs (i.e., the effect of diminishing return)
7. Experiment

- Real trace-driven experiments
 - Oil pipe layout near Florida (sea depth: 3790m)
7. Experiment

- Real trace-driven experiments (20 AUVs)
 - AUV cruising speed is 37km/h
 - AUV diving/surfacing speed is 26km/h
 - Sensors are uniformly placed along each pipe

- Baseline 1: distribute AUVs uniformly to each pipe. AUVs go back and forth independently

- Baseline 2: distribute AUVs according to the pipe length. AUVs go back and forth independently
7. Experiment

– Real trace-driven experiment result:
8. Conclusions and Future work

• The AUV trajectory planning determines the AUV resurfacing frequencies and their locations

• The deep sea trajectory planning is simplified to an extended Euler cycle problem

• Future Work
 – A more general approach for the search space that is not a set of connected segments
End

Q & A