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Abstract—Conflict graph has been widely used for wireless
network optimization in dealing with the issues of channel
assignment, spectrum allocation, links scheduling and etc. Despite
its simplicity, the traditional conflict graph suffers from two
drawbacks. On one hand, it is a rough representation of the
interference condition, which is inaccurate and will cause sub-
optimal results for wireless network optimization. On the other
hand, it only defines the interference between two entities, which
neglects the accumulative effect of small amount interference.
In this paper, we propose the model of quantized conflict graph
(QCG) to tackle the above issues. The properties, usage and
construction methods of QCG are explored. We show that in
its matrix form, a QCG owns the properties of low-rank and
high-similarity. These properties give birth to three complemen-
tary QCG estimation strategies, namely low-rank approxima-
tion approach, similarity based approach, and comprehensive
approach, to construct the QCG efficiently and accurately from
partial interference measurement results. We further explore the
potential of QCG for wireless network optimization by applying
QCG in minimizing the total network interference. Extensive
experiments using real collected wireless network are conducted
to evaluate the system performance, which confirm the efficiency
of the proposed algorithms.

Index Terms—Wireless network optimization, Interference
model, Conflict graph, Matrix completion

I. INTRODUCTION

The performance of wireless networks could be improved
by optimizing the allocation of existing wireless spectrum
resources via link scheduling, channel allocation, etc. [1], [2].
Such optimizations usually allow multiple nodes to transmit at
the same time over the same channel, while dealing with the
interference of simultaneous transmissions appropriately. Two
main interference models have been proposed in the literature
[3]: the protocol model and the physical interference model,
also known as the Signal to Interference and Noise Ratio
(SINR) model.

The SINR model is considered to be a realistic interference
model. It accurately models the accumulative interference
effect, which refers to the interference aggregated from mul-
tiple sources. However, the SINR model suffers from some
problems such as high cost caused by exhaustive measurement
calibration. More importantly, its non-convex nature incurs
great complexity when it is applied in wireless network
optimization.

The protocol interference model or so-called conflict graph
is a simple graphical representation of the interference con-
dition between any two wireless communication links (or

wireless nodes). In such a model, if the interference between
entities exceeds a threshold, they are considered “conflict” and
there will be an edge linking the two entities in the conflict
graph. Conflict graph provides a simplified description of the
interference status, which greatly eases the design of channel
assignment/spectrum allocation algorithms, and consequently
gives birth to a series of highly efficient wireless network
optimization algorithms [1], [4]–[6].

However, there are two major drawbacks of the conflict
graph. First, the conflict graph is a coarse-grained and rough
estimation of the interference condition. It can only indicate
whether the interference between a pair of entities exceeds a
threshold, but it cannot describe the degree of the interference.
Due to the fact that interference is dynamic and fluctuating, it
can hardly be depicted by a simple threshold. Especially when
interference fluctuates around the threshold, the corresponding
conflict graph will be dynamic in the structure. As suggested
by the studies of [7], [8], such binary representation oversim-
plifies the communication condition, which makes the conflict
graph highly inaccurate and will consequently compromise the
wireless network optimization results [9]. Second, the conflict
graph only defines the interference between two entities, but
neglects the small amount interference from a third node.
However, such small amount interference accumulated from
multiple concurrent transmitters in the same channel could
also cause severe communication failures [7], [10].

In this paper, we propose the model of quantized conflict
graph (QCG) to address the above issues. In this model,
the interference between entity pairs is quantized to an M -
level discrete measurement. The M -level quantization is a
finer-grain estimation of the interference condition, which can
capture the degree of interference to make a more accurate pre-
sentation. With the proposed M -level quantization, traditional
conflict graph becomes a special case of quantized conflict
graph with M = 2. Furthermore, quantized conflict graph
captures the minor interference between nodes, which helps
to identify accumulative interference in wireless network envi-
ronment. In order to get an accurate QCG, the measurements
of RSS (Receiving Signal Strength) between each node are
required. However, the measurement method is too costly to
be applied. To avoid exhaustive measurement, we propose es-
timation methods to construct a QCG from partial interference
measurement. We treat the QCG as a matrix with some entries
known while the others are not. Thus, QCG construction
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Fig. 1: An example of quantized conflict graph representation.

is modeled as a matrix completion problem. Based on the
low-rank property of the quantized interference matrix and
the high correlation between the interference measurements,
several strategies are proposed to estimate the QCG matrix in
an efficient way.

We also present the usage of QCG to improve the wireless
network optimization results. Specifically, we study the QCG-
based channel assignment problem in order to minimize the
overall communication interference in a wireless network.
We show that this problem equals to the classical Max K-
cut problem and can be solved with efficient approximate
algorithms.

Extensive experiments using real collected wireless network
are conducted to evaluate the performance of the proposed
algorithms. The results show that the proposed QCG estima-
tion strategies achieve low estimation error for proper system
settings, and with the application of QCG, the interference
minimization in wireless network approaches the upper bound
of performance gain.

The contributions of this paper are summarized as follows:

• A quantized conflict graph model. We propose the
quantized measurement of interference, the formulation
of QCG, and the definition of quantized RSS matrix,
which provides finer-grain representation of interference
in wireless networks.

• Properties of QCG. By analysing two datasets collected
from indoor and outdoor environment, we explore several
properties of QCG such as low-rank matrix and high-
similarity among the interference measurements.

• Strategies for efficient QCG estimation. We introduce
several strategies to estimate the QCG matrix from partial
measurement, namely low-rank approximation approach,
similarity based approach, and comprehensive approach,
which are shown to achieve high estimation accuracy and
efficiency.

• QCG-based wireless network optimization. We explore
the potential of QCG for wireless network optimization
by applying QCG for channel assignment to minimize
network interference. We show that QCG-based interfer-
ence minimization problem is equal to the Max K-cut
problem and can be solved efficiently.

The rest of papers are organized as follows: In Section II we
present the motivation and the system models. We then depict

the experimental findings from two real datasets in Section
III. In Section IV, complementary efficient QCG construction
solutions are presented. In Section V, we use the network
interference minimization problem to illustrate the advantage
and usage of QCG. The performance results are stated in
Section VI. Finally, we state the related work in Section VII
and conclude this paper in Section VIII.

II. MOTIVATION AND DEFINITION

In this section, we present the motivation and definition of
QCG.
A. Motivation

Quantized conflict graph (QCG) is a graph with discrete
indicators on the edges to depict the level of interference
for simultaneous wireless transmissions. An example of QCG
is illustrated in Fig. 1. Fig. 1(a) shows the scenario of four
wireless links and their measured interference by RSS (in
µW ). If applying a threshold of 0.5 µW , the traditional
conflict graph is obtained as Fig. 1(b), which shows that link
GH conflicts with AB, CD and EF for parallel transmission.
If we use the scales from 0 to 9 to denote the interference level,
the quantized conflict graph is shown in Fig. 1(c). Traditional
conflict graph is a special case of quantized conflict graph with
0− 1 level of conflict representation.

The motivation of using a quantized conflict graph lies
in twofold. First, traditional conflict graph uses a binary
conflict relationship to characterize the interference, which
ignores the minor interference accumulated from co-channel
communication pairs. Due to the fact that the conflict graph
oversimplifies the interference relationship by omitting the
level of interference and the accumulative interference, it may
cause sub-optimal channel assignment in wireless networks,
which can be leveraged by using the quantized conflict graph.
Second, the quantized conflict graph can improve the accuracy
of interference estimation with low system overhead of link
measurement. Specifically, interferences in QCG can be esti-
mated efficiently by the way of “measure a few and predict a
lot”, which can be applied for wireless network optimization
such as interference minimization to achieve near-optimal
results.

B. M-level quantized RSS measurement
Receiving signal strength (RSS) is the most straightfor-

ward indicator to express the level of interference between



nodes/links. In 802.11x networks, the RSS measurement can
be directly obtained from the received packets’ field of RSSI
(Receiving Signal Strength Indicator). We consider a M-level
quantized RSS measurement as following.

Assume Cmax is the maximum measured power (in µW ).
We divide the range [0, Cmax] into M equal intervals num-
bered 0 through M − 1, which indicates M different inter-
ference levels where 0 represents no interference and a larger
number corresponds to a higher interference degree in wireless
communication.

Specifically, we can apply a step function f to map the
measured RSS value to a quantized value such as

f(x) = ⌊x×M

Cmax
⌋. (1)

It is easy to verify that the quantized RSS measurement has
the following properties.

Property 1: ∀x1, x2 ∈ [0, Cmax], if x1 < x2 then f(x1) ≤
f(x2);

Property 2: ∀x1, x2 ∈ [0, Cmax], if f(x1) < f(x2) then
x1 < x2.

Such properties suggest that the quantized value can be
taken as a coarse estimation of the real RSS measurement
and it is linear additive, which is useful for wireless network
optimization such as interference minimization. In the real
world, RSS measurement is dynamic and varies over time.
Thus the quantized RSS should represent the mean of the RSS
measurement in long period.

C. Quantized conflict graph

In a typical wireless network, a set of wireless devices are
deployed and communicate with each other simultaneously.
A quantized conflict graph is a graphical representation of
the mutual interference degree between pairs of nodes/links in
the wireless network. The general definition of QCG is given
below.

Definition 1: (Quantized Conflict Graph) A QCG is defined
as a graph Gq = (Vq, Eq,Wq), where Vq = {1, 2, · · · , N}
is a set of nodes/links in the wireless network, and Eq =
{(i, j)|i ∈ Vq, j ∈ Vq} represents a conflict between two
neighbouring vertex. The set Wq = {wi,j |(i, j) ∈ Eq, qi,j ∈
{1, 2, · · · ,M}}, where wi,j denotes the non-zero quantized
RSS measurement regarding the vertex pair i and j.

D. Quantized RSS matrix

The quantized RSS matrix is the matrix representation of a
quantized conflict graph, which is defined below.

Definition 2: (Quantized RSS matrix) Given a conflict
graph Gq = (Vq, Eq,Wq) with size N , the quantized-RSS
matrix Q = [qij ]N×N is an N ×N matrix with each elements
qij being the quantized RSS measurement of vertex i and j.

According to the definition, qij = wij if (i, j) ∈ Eq , and
qij = 0 for the rest. Generally speaking, the quantized conflict
graph is not a complete graph, thus Q is a sparse matrix with
many elements equals to 0.

TABLE I: Notations
Notations Explanation

Gq quantized Conflict Graph
Vq Vertices in QCG
Eq Edges in QCG
Wq quantized Weights in QCG
(u, v) Edge between u and v

X̂ Estimated RSS matrix
xij Measured RSS between i and j
x̂ij Estimated RSS between i and j
Ω The measured set of node pairs

||X||∗ The nuclear norm of X
||X||F The Frobenius norm of X
||X||1 The ℓ1 norm of X

C The set of quantized values
γ, λ The regularized constant in

S(i, j) Similarity between rows/columns i and j
wk The weights to compute unmeasured RSS

I(i, j) Assignment indicator of j channel to node i

Since quantized RSS matrix is simply the matrix repre-
sentation of QCG, in the rest of this paper, we will use the
terms of quantized RSS matrix and QCG alternatively without
distinction.

The notations used in the paper are summarized in Table I.

III. PROPERTIES OF QCG

Our basic idea to efficiently generate QCG, or in other
words, to obtain quantized RSS matrix, is to follow a “measure
a few and predict a lot” framework. Before presenting the
methods in detail, we explore the properties of the quantized
RSS matrix through real datasets analysis.

A. Datasets

We use two datasets collecting from indoor and outdoor
wireless communication environment to analyse the properties
of quantized RSS matrix.
SWIM (indoor) [9]. It consists of 10 wireless nodes running
in 802.11a/b/g mode, which were deployed in the 3rd floor of
a building. The data of the RSSI of the beacons were collected
from each AP. Specifically, it activated one node at a time,
while each AP was tuned to 11 different channels sequentially.
Then, the collector walked to 25 different locations (including
the locations of 10 AP), to collect the 50 different beacon
messages from one AP in each channel. The RSSI, AP ID,
and channel ID were recorded.

MetroFi (outdoor) [11]. This dataset consists of RSS values
in a 7km2 area of an 802.11x municipal network in Portland,
Oregon. It was collected by a research group in 2007. This
dataset covers 30,991 distinct measured locations of 70 APs
with known GPS locations and generates more than 200,000
samples.

The MetroFi dataset did not collect the interference RSS at
the APs’ location, thus to derive the interference relationship
between nodes, we use the average of top-k RSS in each AP’s
region. Specifically, we set the region as the circle with radius
of 50 meters, and set k as 5. For the SWIM dataset, the RSS
values were collected in the position of APs, thus it is much
easier to get a RSS matrix from the packet heads. The RSS
values are in form of energy power with unit of Walt. The RSS



measurements are quantized using the method introduced in
Section II-B for further analysis.
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Fig. 2: Singular values of the quantized RSS matrix.
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Fig. 3: Correlation coefficient of rows of the quantized RSS
matrix.
B. Properties

We use Matlab to analyse the properties of the quantized
RSS matrix in the following.

1) Low rank property: Firstly, we analyse the rank property
of the RSS matrices. We use singular value decomposition
method [12] to get the normalized singular values of quantized
RSS matrix from the two datasets, which is illustrated in
Fig. 2. According to these figures, the major portion of the
normalized singular value of the quantized RSS matrices
are smaller than 0.1 in both datasets. It concludes that the
quantized RSS matrix is a low rank matrix, and the quantized
RSS measurements have high correlation in a whole. Such low
rank property implies that it is possible to predict the whole
quantized RSS matrix by partially measuring the RSS of a few
communication links.

2) Similarity: We then examine the similarity between
the rows of the quantized RSS matrix. We use the Pearson
product-moment correlation coefficient [13] to measure the
similarity, which is defined as, given two columns Xi and
Xj , the correlated coefficient between them is:

rij =

∑N
l=1(Xil − X̄i)(Xjl − X̄j)√∑N

l=1(Xil − X̄i)2
√∑N

l=1(Xjl − X̄j)2
(2)

The sorted average correlation coefficients of the quantized
RSS matrix for the two datasets are illustrated in Fig. 3.
According to the figure, the correlations between rows are
high: most of them are higher than 0.5 and in some cases they
approach to 0.9. The high correlation of row values suggests
that the unknown value of a row can be revealed by the value
of the correlated rows with high accuracy.

The low rank and similarity properties of QCG lead to
different methods to estimate the quantized RSS matrix by
partial measurement, which will be introduced in the next
Section.

IV. STRATEGIES FOR QCG ESTIMATION

Exhausting measurement of pair-wise RSS values could be
high cost and time consuming [7], especially for large-scale
outdoor networks. To achieve efficient generation of quantized
conflict graph, we propose three strategies to estimate QCG
based on partial measurement. The basic idea is described
as follows. We first randomly choose a few links in the
wireless network and measure their RSS values. Since signal
propagation attenuation varies over time and environments, the
measurement of each link should take several rounds to get
an average value of the measurements. The number of links
chosen for measurement is normally in the order of O(N) (N
is the size of the quantized conflict graph) and it is shown
in later experiments (Fig. 4) that about 5% of measurements
are enough to achieve an acceptable accuracy. Based on the
partial measurement, we apply different methods to predict the
unmeasured RSS values in QCG.

Before introducing the detailed estimation methods, we
provide a formal definition of the QCG estimation problem.

A. Problem Definition

We consider a quantized conflict graph Gq = (Vq, Eq,Wq)
with size N, and assume X = [xij ]N×N being its corre-
sponding quantized RSS matrix. The set of vertex pairs in
Gq that are chosen for measurement is denoted by Ω. For
partial measurement, Ω ⊂ Eq and |Ω| ≪ |Eq|. Assume
X̂ = [x̂ij ]N×N is the estimated quantized RSS matrix. The
QCG estimation problem is defined as:

Definition 3: QCG Estimation Problem: For a QCG repre-
sented by a quantized RSS matrix X , given a set of observed
measurements {xi,j |(i, j) ∈ Ω}, find an estimated quantized
RSS matrix X̂ , so that the different between X and X̂ is
minimized.

In the next subsections, we propose three strategies to derive
the estimated quantized RSS values.

B. Estimation based on low-rank approximation

A straightforward approach is to formulate the QCG estima-
tion problem as a matrix completion problem. In mathematics,
matrix completion is the process of adding entries to a matrix
that has some unknown or missing values [14], which can
be applied to recover low-rank matrix. Specifically, low-rank
approximation targets at solving the following problem

min
X̂

rank(X̂) (3)

s.t. x̂ij = xij , (i, j) ∈ Ω

x̂ij ∈ C,

where C = {1, 2, · · · ,M} is the quantized RSS levels.
However, this optimization problem is NP-hard [14] and all



known algorithms that provide exact solution have exponential
time complexity.

To reduce computation complexity, we seek approximate so-
lution to the QCG estimation problem. According to the above
analysis, finding the X̂ needs to fulfill several objectives: (1)
to minimize the distance between X̂ and X; (2) to minimize
the rank of X̂; (3) to retain several signal properties such as
pathloss in X̂ .

The first objective requires that the estimated value x̂ij is
close to the measured value as much as possible. Since X is
only partially measured, this requires minimizing the estimated
error in the domain of Ω. Define MΩ = [mij ]N×N be the
measured matrix over Ω where mij = xij for ∀(i, j) ∈ Ω and
mij = 0 for the rest. Similar, define M̂Ω = [m̂ij ]N×N be the
estimated matrix over Ω where m̂ij = x̂ij for ∀(i, j) ∈ Ω and
m̂ij = 0 for the rest. Thus objective (1) can be achieved by
minimizing the Frobenius norm [14] of MΩ − M̂Ω, which is
defined by

||MΩ − M̂Ω||2F =

√ ∑
(i,j)∈Ω

|mij − m̂ij |2 (4)

According to the study of [14], minimizing the rank of
a matrix corresponds to minimizing its nuclear norm. Thus
objective (2) can be achieved by minimizing the nuclear norm
of X̂ which is defined by

||X̂||∗ =
∑
i

δi, (5)

where δi is the singular values of the matrix X̂ .
To fulfill objective (3), we apply the Uniform Pathloss

Model [15], which is the simplest and most-used model for
wireless communication. It captures signal attenuation over
distance using a single pathloss exponent. In this model, RSS
can be calculated by Pd−α, where P is the sending power; d
is the distance of the node pair; and α is the pathloss exponent
related to the environment with the typical value of 4.

The set of measurements {xi,j |(i, j) ∈ Ω} can be used to
calibrate this model by performing a regression. Then we get
a matrix X̂m, whose entries, denoted as x̂m

ij are all generated
by the calibrated model. Thus, if the estimated X̂ approximate
the measured one, the ℓ1 norm should be minimized:

||X̂ − X̂m||1 =
∑
i,j

|x̂ij − x̂m
ij | (6)

Combining equations (4), (5) and (6), we have the following
optimization problem for QCG estimation:

min
X̂

||MΩ − M̂Ω||2F + λ||X̂||∗ + γ||X̂ − X̂m||1, (7)

s.t. x̂ij ∈ C,

where λ ∈ (0, 1) and γ ∈ (0, 1) are the regularized coefficient
balancing the observations fit, the rank of matrix X̂ , and the
calibrated pathloss property.

If we use continuous X̂ , this problem is a typical convex
optimization problem, so the estimated quantized RSS matrix

Algorithm 1 WKNN anglrothm

1: Get the measurement calibrated quantized RSS matrix
X̂m.

2: Compute the similarity between rows/columns S(i, j) of
matrix X ′.

3: Find k nearest neighbors of N(i, j) for each unknown
element of X̂ .

4: Estimate the unknown elements x̂ij ∈ X̂ using Eq. (8).
5: Quantize the predicted value x̂ij to the range of C.

X̂ can be obtained by using the standard algorithms for convex
optimization. The quantized version could be efficiently solved
with the method introduced in [16].

C. Estimation based on similarity

Due to the similarity property of quantized RSS matrix, the
unmeasured value in a row can be estimated by incorporating
the values of other similar rows. We propose a weighted k-
nearest neighbor method (WKNN) which is extended from the
classical KNN algorithm [17] and exploits a weighted mean
of the k-nearest neighbors values for QCG estimation.

To apply the WKNN algorithm, we use similarity as the
distance measurement between two rows, which can be cal-
culated by the Pearson product-moment correlation coefficient
defined in Eq. (2).

Since the matrix X is not known in advance, we use
the measurement calibrated RSS matrix X̂m to estimate the
mutual similarity S(i, j) of row i and row j in the matrix,
which is calculated by their correlation coefficient.

The set of k-nearest neighbors of the row containing xij in
matrix X̂ is denoted by N(i, j). Then, the estimated value of
xij is given by

x̂ij =

∑
k∈N(i,j)(S(k, j)xkj))∑

k∈N(i,j) S(k, j)
. (8)

where xkj is the measured or estimated values of the k-nearest
neighbors. The detailed description of the algorithm is given
in algorithm 1.

During the discussion, we only use the rows as the estima-
tion reference. Noted that the proposed WKNN algorithm can
also be applied to columns for matrix estimation with slight
modification.
D. A comprehensive strategy

The low-rank based strategy and the similarity based strat-
egy both have advantages and disadvantages. On one hand,
low-rank approximation is a general method that can be
applied to any matrix with low-rank property. But it relies
on convex optimization, which always yields complicated
optimization problem with high computation complexity. On
the other hand, similarity based strategy only deals with the
input from k−nearest neighbors, which is more efficient and
achieves high accuracy. But it works well only when the
rows are highly correlated and there are enough of measured
neighbors. To make the best use of their advantages, we



propose a comprehensive strategy targeting to improve the
estimation accuracy.

The comprehensive strategy is described as follows.
• Step 1: Execute the low-rank approximation method to

get a preliminary estimation denoted by X̂LR.
• Step 2: Compute the nearest k neighbors N(i, j) of each

unmeasured value x̂ij using X̂LR.
• Step 3: Compute a set of weights {w1, ..., wk} for each

entry using the regression:

X̂LR(i, j) =
∑

k∈N(i,j)

wkX̂LR(k, j), j = {1, 2, ..., N}.

• Step 4: Estimate the matrix by x̂ij =
∑

k∈N(i,j) wkxkj ,
where if the xkj are unmeasured entries, use the estimated
value x̂kj in X̂LR; otherwise use the measured value.

This algorithm uses the output of low-rank approximation
as the input of the similarity based approach. Two changes
are made to the similarity based strategy used here. First,
the distance metric, which is correlation coefficients between
rows, are computed using X̂LR instead of X̂m. Second, the
correlation coefficients between rows are not using as the
weights to compute X̂ . Instead, we use linear regression to
compute the best weights that combines the rows to compute
X̂LR(i, j).

E. Discussion

The accuracy of quantized RSS matrix estimation is im-
pacted by a number of factors such the number of mea-
surements, the levels of quantization, and spectrum diversity,
which are discussed below.

1) Measurement method: The number of measurements
at the wireless links directly affects the accuracy of RSS
estimation. Theoretically, the more links are measured, the
more accurate the estimation is. However, increasing the
measurement number will also increase the cost and delay
for generating the quantized conflict graph. To address this
trade-off, we suggest that the links chosen from measurement
is in the order of O(N), where N is the size of the quantized
conflict graph. According to our experiments, at least 5%
of entries are required to be measured to achieve a certain
accuracy of RSS estimation using the proposed methods.

2) The level of quantization: Since we apply a M -level
quantized conflict graph for RSS estimation, the chosen of
parameter M is non-trivial. For a finer-grain partition, the
quantized RSS value is more approaching to the true value. But
it will harm the properties of low-rank and high correlation,
which increases the difficulty of RSS prediction. For a smaller
M , the prediction is more efficient and accurate, but will also
deviate from the true value. The chosen of proper value of M
is discussed in our experiments.

3) Spectrum diversity: We should also notice that, in the
scenario of wireless network with narrowband, one conflict
graph is enough to characterize the whole spectrum allocation.
But for the case of wider spectrum, the effect of spectrum
diversity could not be neglected. As the result, different
conflict graphs should be built for different spectrum. Building

quantized conflict graph over diverse spectrum efficiently will
be our future work.

V. WIRELESS NETWORK OPTIMIZATION BASED ON QCG

In this section, we apply the derived QCG for wireless
network optimization. Specifically, we focus on the problem
of interference minimization in wireless network using QCG.

We consider a wireless communication network with a
set of entities N = {1, 2, · · · , N}. There are a number of
wireless communication channels denoted by the set S =
{1, 2, · · · , S}. The interference between pairs of the entities
is described by an M -level quantized conflict graph Gq =
(Vq, Eq,Wq). Note that if M = 2, G will equal to the
traditional conflict graph with binary interference indication.

Interference can be avoided by assigning different commu-
nication channels to the neighboring communication nodes.
One important issue in wireless network is to obtain an optimal
assignment of S channels to the N communication nodes,
targeting at minimizing the overall interference in the wireless
network.

To make a clear statement, we introduce an indicator func-
tion I(i, j) to indicate the channel assignment of individual
node. For ∀i ∈ N and ∀j ∈ S,

I(i, j) =

{
1, if node i uses channel j

0. otherwise
(9)

According to the definition, a QCG Gq can be represented
by a quantized RSS matrix Q = [qij ]N×N . Since interfer-
ence occurs only when neighboring nodes working on the
same channel. Thus for channel j, the total interference can
be measured by the sum of RSS values over the channel:∑

i∈N qijI(i, j). The total interference over all S channels
are expressed by ∑

j∈S

∑
i∈N

qijI(i, j). (10)

Minimizing Eq. (10) equals to maximizing the “cut” of a
graph partition. Specifically, if we partition Gq into S groups,
the problem equals to finding the best partition to maximize the
total edge weights (represented by the quantized RSS value)
between partitions. This is the classical Max K-cut problem
[6] with K = S in the case of channel assignment.

Since Max K-cut is known to be NP-hard, the interference
minimization problem by channel assignment based on QCG
is also NP-hard. Several approximate algorithms have been
developed to solve this problem efficiently [6].

Aside from interference minimization, QCG can also be ap-
plied to optimize other objectives in wireless communication,
such as minimizing network throughput, optimizing sleeping
schedule in wireless networks, etc. Exploring the potential of
QCG for other wireless network optimization problems will
be our future work.



VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms. The evaluation targets are as follows.

• The accuracy of QCG estimation using the proposed low-
rank based, similarity based and comprehensive strate-
gies;

• The numerical results of the impact of system parameters;
• The impact of quantization levels;
• The performance gain of using QCG for interference

minimization in wireless networks comparing to the one
using traditional conflict graph;

Before presenting the numerical results, we introduce the
experimental settings.

A. Experimental Settings
We use the MetroFi dataset to evaluate the proposed al-

gorithms and optimization results. Firstly, we process the
MetroFi data to generate the node-to-node RSS values and get
a 70 × 70 matrix representing the RSS measurements. With
this matrix, we now present the specific settings for different
experiments.

1) Settings for quantized RSS matrix estimation: The
methodology of verifying the accuracy of quantized RSS
matrix estimation is to drop some entries from the measured
quantized RSS matrix, and then apply the estimation strategies
on them to recover the missing values. The original RSS
matrix is used as ground truth for comparison.

We use the normalized Mean Absolute Error (Normalized
MAE) to measure estimation accuracy, which is calculated by∑

(i,j)̸∈Ω |x̂ij − xij |∑
(i,j)̸∈Ω |xij |

(11)

where xij is the ground truth and x̂ij is the estimated value.
2) Settings for QCG-based interference minimization: We

examine the performance of QCG-based interference min-
imization and compare the result with the one based on
traditional binary conflict graph.

For a fair and comprehensive comparison, we generate 100
scenarios by randomly selecting κ nodes from the MetroFi
dataset to get the interference RSS measures. In our experi-
ments, we choose κ from {20, 30, 40, 50, 60} and randomly
generate 20 scenarios for each κ.

Since different scenarios have different network size, we
introduce a normalized interference reduction to evaluate the
performance gain, which is defined as

Ratior =
Inetwork − Iassigned

Inetwork
, (12)

where Inetwork is the total network interference represented
by the sum of all elements in the RSS matrix; and Iassigned is
the total network interference after applying the interference
minimization algorithm.

There are several parameters used in our configuration. The
default values are: k = 8 in the similarity based strategy; γ =
0.1 and λ = 0.1 in the low-rank based strategy; M = 10 for
the M -level quantization. The number of available channels
is assumed to be 10.

B. Numerical Result
1) Accuracy of quantized matrix estimation: We examine

the accuracy of the three proposed estimation strategies,
namely low-rank based method, similarity based method, and
comprehensive method. The results are shown in Fig. 4. Ac-
cording to this figure, the comprehensive method outperforms
the other methods no matter how much portion the RSS
matrix’s entries are measured. The similarity based method
has high estimated error when the portion of measured entries
is small, but it improves quickly when the portion increases,
which performs as good as the low-rank method when more
than 50% entries are measured. It should also be noticed that,
the comprehensive solution performs only slightly better than
the low-rank solution when the measured portion is low. But
the performance gap between comprehensive solution and low-
rank solution grows with the growing of measured portion.
This proves the effectiveness of incorporate the similarity
solution into comprehensive solution.

2) Sensitivity of system parameters: Sensitivity analysis of
the system parameters including γ, λ, and k are shown in Fig.
5, Fig. 6 and Fig. 7 respectively. The parameter γ and λ is the
regularized parameter, which adjust the portion of the norm of
||X̂ − X̂m||1 and the nuclear norm ||X̂||∗. We tune γ and λ
in four discrete values, {10−3, 10−2, 0.1, 1}. From Fig. 5, we
can see that either low-rank or comprehensive method achieve
their best performance when γ is set to 0.1. Similar trends are
observed for λ in Fig. 6, but the precision of low-rank and
comprehensive solution is more sensitive, whose variance is
larger when we vary λ. This means the nuclear norm |X̂|∗
contributes more to the results.

The parameter k, which indicates the number of neighbors
used to compute the RSS estimation, could impact the system
precision. As shown in Fig. 7, when k increases, the estimated
error reduces at the beginning, and increases when it reaches
some level. It implies that a larger k could damage the system
accuracy due to the reason that some neighbors with low
correlation will bring noise to the system. The figure suggests
that k = 8 is a proper value for quantized RSS matrix
estimation.

3) Impact of the level of quantization: We are also in-
terested in the impact of M for a M -level quantized RSS
measurement. We vary M by the number {2, 10, 100, 1000}
and show the result in Fig. 8. According to the figure, the
estimation error of all three algorithms improve when the
quantization approaching finer grain. However, when M is
larger than 10, the performance gain increases slowly, which
has only marginal improvement when M varying from 10
to 1000. Since the larger M will increase the computational
complexity of the algorithms, it suggests that M = 10 is a
proper grain for quantization.

4) The performance of QCG-based interference minimiza-
tion: The use of QCG to minimize wireless network inter-
ference is examined in Fig. 9. In this figure, we compare
the interference reduction ratio of QCG-based optimization
with the method based on traditional conflict graph (denoted
by BCG in the figure) and the method based on exhausting
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Fig. 4: Prediction accuracy comparison
for three proposed methods.
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Fig. 5: The sensitivity with the regulized
parameter γ.
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Fig. 6: The sensitivity with the regulized
parameter λ.
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Fig. 7: The sensitvity with the parameter
k in similarity method.
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to the Normalized MAE.
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Fig. 9: The comparison of network in-
terference minimization using QCG and
binary CG.

RSS measurement (denoted by RealMeasure). As shown in the
figure, QCG performs much better than BCG, which has the
interference reduction ratio gap larger than 12%. The result of
”RealMeasure” is the theoretical upper bound of interference
reduction, and the figure shows that QCG approaches to this
upper bound with the gap less than 6%.

VII. RELATED WORKS

In this section, we survey the related work of our paper
in three areas, namely, the work in interference model, the
work in wireless network optimization, and the ones in area
of matrix completion.

A. Interference model and Measurement Calibration

Many research works are endeavoured to bring more ac-
curate interference models. Theoretically, in [3], both conflict
graph and SINR model are proposed. For practical reasons, in
[18], Qiu and et al. proposed an generic interference model
using per-link signal measurements to capture interference
conditions among individual links. Recently, Zhou and et al.
[7] studied how to practically generate accurate conflict graph
for outdoor wireless network using measurement calibrated
signal propagation model. Aside from conflict graphs, recent
work examines the accuracy of general interference models
for small-scale networks using per-link measurements [19].

Our work differs from these work by exploring the low rank
property and locality of RSS matrix and introduce set of matrix
completion based efficient RSS matrix estimation methods.

B. The wireless network optimization based on interference
model

The interference models are developed to ease the mod-
elling and optimization of wireless networks. The milestone
work [3] proposed several famous theoretical results of the
capacity of wireless networks based on both protocol interfer-
ence model (conflict graph) and physical interference model
(SINR model). The conflict graph, considering the spectrum
diversity property, had been extended to multi-dimensional
conflict graph (MDCG), for general MR-MC networks [5],
[20]. Recently, in [4], Joo and et al. proposed a distributed
approximation algorithm for MWIS of link scheduling in
wireless network based on conflict graph. The SINR model
is frequently adopted in cross layer optimization of wireless
networks. Due to its computational complexity, [21], [22]
followed the layer-decoupled approach for analysis, under
which, the solution was obtained by determining an algo-
rithm/mechanism for one layer at a time, and then, piecing up
them together without the need of solving a joint optimization
problem. In [23], Bhatia and Kodialam optimized power
control and routing, but assumed some frequency hopping
mechanism was in place for scheduling, which simplified the
joint consideration of scheduling. Shi and et al. [24] modelled
the cross layer throughput optimization problem as MINLP
problem and solve it using branch and bound framework.

C. Matrix interpolation and its application in networks

The fundamental theory works of matrix interpolation of
low-rank matrix was brought by [14], [25]. This method is



universally applied in the area, where the data matrix have low-
rank property and missing values. In network research area, the
matrix interpolation and its vector version compressive sensing
are applied to many problems. For example, compressive
sensing was introduced to solve the traffic matrix derivation
and interpolation problem [26]. In [27] interpolation of low
rank matrix is also used for localization problem. In [9], it
was applied for efficient SINR estimation problem. To tackle
the matrix with discrete elements, both centralized [16] and
distributed [28] solutions were proposed.

VIII. CONCLUSION

In this paper, we propose the model of quantized conflict
graph, which generalized the 0-1 measurement of traditional
conflict graph binary to a M -level quantization. The benefits
of QCG lie on twofold: it provides a finer-grain measurement
of interference condition and can deal with the accumulative
effect of multiple small amount interference. We explore
the properties of QCG, such as low-rank matrix and high-
similarity between the interference measurements by analysing
two datasets collected from indoor and outdoor environments.
To achieve efficient construction of QCG, we propose three
QCG estimation strategies called low-rank approximation ap-
proach, similarity based approach, and comprehensive ap-
proach. We further applied QCG for wireless network op-
timization by studying the QCG-based network interference
minimization problem, which can be solved by tackling the
classical Max K-cut problem. We also conduct extensive
experiments using real wireless network datasets to evaluate
the performance of the proposed algorithms, which show that
the proposed QCG estimation strategies achieve low estimation
error for proper system settings, and approach the upper bound
of performance gain for interference minimization in wireless
network.
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