Appendix A
 Proof of Theorem 1

Proof: Given an order preserving function $y_{i}=$ $f\left(x_{i}\right)+r_{i}, \forall x_{i}, x_{j}$, if we have $y_{i}+y_{j} \in\left[f\left(x_{i}+\right.\right.$ $\left.\left.x_{j}\right), f\left(x_{i}+x_{j}\right)+r_{i+j}\right]$, obviously, y_{i} is also additive order preserving. Therefore, our goal is reduced to prove that $\forall x_{i}, x_{j}, y_{i}+y_{j} \in\left[f\left(x_{i}+x_{j}\right), f\left(x_{i}+x_{j}\right)+r_{i+j}\right]$.

Without loss of generality, we assume $x_{i} \leq x_{j}$. Then we have $f\left(x_{i}+x_{j}\right)=f\left(x_{i}\right)+\Delta f\left(x_{i}\right)+\cdots+\Delta f\left(x_{i}+x_{j}-1\right)$, and $f\left(x_{i}\right)+f\left(x_{j}\right)=2 f\left(x_{i}\right)+\Delta f\left(x_{i}\right)+\cdots+\Delta f\left(x_{j}-1\right)$. Therefore, we have

$$
\begin{align*}
& y_{i}+y_{j}-f\left(x_{i}+x_{j}\right) \\
\geq & f\left(x_{i}\right)+f\left(x_{j}\right)-f\left(x_{i}+x_{j}\right) \\
= & f\left(x_{i}\right)-\left(\Delta f\left(x_{j}\right)+\cdots+\Delta f\left(x_{i}+x_{j}-1\right)\right) \\
\geq & f\left(x_{i}\right)-i \cdot \Delta f\left(x_{i}\right) \tag{17}\\
= & r_{i \max } \\
> & 0
\end{align*}
$$

Additionally, we have

$$
\begin{align*}
& y_{i}+y_{j}-f\left(x_{i}+x_{j}\right)-r_{(i+j) \max } \\
& \leq f\left(x_{i}\right)+f\left(x_{j}\right)-f\left(x_{i}+x_{j}\right)+r_{i \max }+r_{j \max }-r_{(i+j) \max } \\
& =2\left[f\left(x_{i}\right)-\left(\Delta f\left(x_{j}\right)+\cdots+\Delta f\left(x_{i}+x_{j}-1\right)\right)\right] \\
& -i \cdot \Delta f\left(x_{i}\right)-j \cdot \Delta f\left(x_{j}\right)-(i+j) \cdot \Delta f\left(x_{i}+x_{j}\right) \\
& =2\left[r_{i \max }+i \cdot \Delta f\left(x_{i}\right)-\left(\Delta f\left(x_{j}\right)+\cdots+\Delta f\left(x_{i}+x_{j}-1\right)\right)\right] \\
& -i \cdot \Delta f\left(x_{i}\right)-j \cdot \Delta f\left(x_{j}\right)+(i+j) \cdot \Delta f\left(x_{i}+x_{j}\right) \\
& <i^{2} \cdot\left|\tilde{\Delta} f\left(x_{i}\right)\right|+i \cdot\left(\Delta f\left(x_{i}\right)-\Delta f\left(x_{j}\right)\right) \\
& -(j+1) \cdot\left(\Delta f\left(x_{j}\right)-\Delta f\left(x_{i}+x_{j}\right)\right) \\
& +\left[\left(\Delta f\left(x_{j}\right)-\Delta f\left(x_{j}+1\right)\right)+\cdots\right. \tag{18}\\
& \left.+\left(\Delta f\left(x_{j}\right)-\Delta f\left(x_{j}+x_{i}-1\right)\right)\right] \\
& -\left[\left(\Delta f\left(x_{j}+1\right)-\Delta f\left(x_{i}+x_{j}\right)\right)+\cdots\right. \\
& \left.+\left(\Delta f\left(x_{i}+x_{j}-1\right)-\Delta f\left(x_{i}+x_{j}\right)\right)\right] \\
& \leq i^{2} \cdot\left|\tilde{\Delta} f\left(x_{i}\right)\right|+i \cdot(j-i) \cdot\left|\tilde{\Delta} f\left(x_{j}\right)\right| \\
& -(j+1) \cdot i \cdot\left|\tilde{\Delta} f\left(x_{j}\right)\right| \\
& +(n-1) \cdot\left(\left|\tilde{\Delta} f\left(x_{j}\right)\right|-\left|\tilde{\Delta} f\left(x_{j}+x_{i}-1\right)\right|\right) \\
& <(-i) \cdot\left|\tilde{\Delta} f\left(x_{i}\right)\right| \\
& <0
\end{align*}
$$

From the above two equations, we can easily get $\forall x_{i}, x_{j}, y_{i}+y_{j} \in\left[f\left(x_{i}+x_{j}\right), f\left(x_{i}+x_{j}\right)+r_{i+j}\right]$. Up to now, Theorem 1 is proved.

Appendix B

Proof of Theorem 2

Given the DBDH (Decisional Bilinear Diffie-Hellman) assumption, PRMSM is semantically secure against the chosen keyword attack.

Proof: Assume a polynomial-time adversary \mathcal{A} has a non-negligible advantage ϵ against PRMSM. Then we can build a simulator \mathcal{B} that solves DBDH
with advantage $\epsilon / 2$. The challenger flips a fair coin δ outside of \mathcal{B}^{\prime} s view. If $\delta=0$, he sends $(A, B, C, Z)=$ $\left(g^{a}, g^{b}, g^{c}, g^{a b c}\right)$ to \mathcal{B}; otherwise he sends $(A, B, C, Z)=$ $\left(g^{a}, g^{b}, g^{c}, g^{z}\right)$ to \mathcal{B}, where $a, b, c, z \in \mathbb{Z}_{p}$ are randomly generated. The goal of \mathcal{B} is to guess δ^{\prime} for δ by interacting with \mathcal{A} and playing the following game.

Setup: \mathcal{B} generates his private key $\left(k_{1}, k_{2}\right)$, and sends the public key $\left(g, g^{k_{1}}, g^{k_{2}}, g^{a}, g^{b}, g^{c}, Z\right)$ to \mathcal{A}.

Phase 1: \mathcal{B} maintains a keyword list L_{w}, which is initially empty. \mathcal{A} can issue any keyword $w \in \mathcal{W}$ and ask \mathcal{B} to generate the corresponding keyword ciphertext \hat{w} for polynomial times. If $w \notin L_{w}, \mathcal{B}$ adds w to L_{w} and sends \hat{w} to \mathcal{A}.

Challenge: \mathcal{A} sends two keywords w_{0} and w_{1} with equal length, where $w_{0}, w_{1} \notin L_{w}$, to \mathcal{B}, \mathcal{B} randomly sets $\mu \in\{0,1\}$, computes the ciphertext $\hat{w}_{\mu}=\left(Z^{H\left(w_{\mu}\right) \cdot k_{2}} \cdot g^{k_{1} \cdot k_{2}}, Z\right)$, and sends \hat{w}_{μ} to \mathcal{A}.

Phase 2: \mathcal{A} continues to submit keywords to request \mathcal{B} for generating the ciphertext of keyword as in Phase 1. The restriction here is that w_{0} and w_{1} cannot be submitted.

Guess: \mathcal{A} outputs its guess $\mu^{\prime} \in\{0,1\}$ for μ. If $\mu^{\prime}=$ μ, \hat{w}_{μ} is a correct encryption of w_{μ}, then \mathcal{B} outputs $\delta^{\prime}=0$; otherwise, \mathcal{B} outputs $\delta^{\prime}=1$.

To complete the proof of Theorem 2, we now compute \mathcal{B}^{\prime} s advantage in solving DBDH. If $\delta=0$, then \hat{w}_{μ} is a valid encryption of w_{μ}, so \mathcal{A} will output $\mu^{\prime}=\mu$ with probability $1 / 2+\epsilon$. Additionally, if $\delta=1$, i.e., Z is randomly chosen, \mathcal{A} will output $\mu^{\prime}=\mu$ with probability $1 / 2$. Therefore, \mathcal{B} will guess $\delta^{\prime}=\delta$ with probability $1 / 2(1 / 2+\epsilon+1 / 2)=1 / 2+\epsilon / 2$. That is, if the adversary \mathcal{A} has advantage ϵ against PRMSM, then the challenger \mathcal{B} will solve DBDH with advantage $\epsilon / 2$.

APPENDIX C Proof of Theorem 3

Given the DL assumption, PRMSM achieves keyword secrecy in the random oracle model.

Proof: We construct a challenger \mathcal{B} that plays the keyword secrecy game as follows.

Setup: \mathcal{B} generates the private key $k, k_{a 1}, k_{a 2} \in \mathbb{Z}_{p}$, and sends the public key $g, g^{k}, g^{k_{a 1}}, g^{k_{a 2}}$ to \mathcal{A}.

Phase 1: \mathcal{A} adaptively queries the following oracle for polynomial times.
\mathcal{O}_{1} : the challenger \mathcal{B} maintains a \mathcal{O}_{1}-list, which is initially empty. Each entry of \mathcal{O}_{1}-list is $\left\langle w, T_{w}\right\rangle$. \mathcal{A} can query \mathcal{O}_{1}-list for a keyword w, if w is already in \mathcal{O}_{1}-list, then \mathcal{B} returns T_{w} to \mathcal{A}, otherwise, \mathcal{B} generates the trapdoor T_{w} for w, adds $<w, T_{w}>$ to \mathcal{O}_{1}-list, and returns T_{w} to \mathcal{A}.

Challenge: \mathcal{B} chooses a keyword w^{*} from the keyword dictionary uniformly at random, and returns the encrypted keyword $\hat{w}^{*}=\left(g^{k \cdot r \cdot H(w *) \cdot k_{a 1}} \cdot g^{k_{a 1} \cdot k_{a 2}}, g^{k \cdot r}\right)$, and trapdoor $T_{w^{*}}=\left(g^{H_{s}\left(w^{*}\right) \cdot r}, g^{r}\right)$ to \mathcal{A}.

Guess: \mathcal{A} outputs its guess w^{\prime} for w^{*}, and sends w^{\prime} to challenger \mathcal{B}. \mathcal{B} returns the encrypted keyword \hat{w}^{\prime} to \mathcal{A}. If \hat{w}^{\prime} matches $T_{w^{*}}$, then \mathcal{A} wins the game.
To complete the proof of Theorem 3, we now compute \mathcal{A} 's probability in winning the keyword secrecy game. Assume \mathcal{A} has already tried t distinct keywords before outputting w^{\prime}, then the size of remaining
keyword dictionary is $u-t$. Additionally, due to the hardness of discrete logarithm, deriving w^{*} from \hat{w}^{*} or $T_{w^{*}}$ is at most a negligible probability ϵ, therefore, the probability that \mathcal{A} wins the keyword secrecy game is $\frac{1}{u-t}+\epsilon$.

