Appendix A

Proof of Theorem 1

Proof: Given an order preserving function $y_i = f(x_i) + r_i$, $\forall x_i, x_j$, if we have $y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$, obviously, y_i is also additive order preserving. Therefore, our goal is reduced to prove that $\forall x_i, x_j, y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$. Without loss of generality, we assume $x_i \leq x_j$. Then we have $f(x_i + x_j) = f(x_i) + \Delta f(x_j) + \cdots + \Delta f(x_j + x_j - 1)$, and hence $f(x_i) + f(x_j) = 2f(x_i) + \Delta f(x_i) + \cdots + \Delta f(x_j - 1)$. Therefore, we have $y_i + y_j - f(x_i + x_j) \geq f(x_i) + f(x_j) - f(x_i + x_j)$ $\geq f(x_i) - \Delta f(x_i) - \cdots - \Delta f(x_i + x_j - 1)$ $\geq r_{i+j} = r_{i+j}$ ≥ 0 (17)

Additionally, we have $y_i + y_j - f(x_i + x_j) - r_{i+j} \geq f(x_i) + f(x_j) - f(x_i + x_j) + r_{i+j}$ $\geq f(x_i) - \Delta f(x_i) - \cdots - \Delta f(x_i + x_j - 1)$ $\geq f(x_i) - \Delta f(x_i) - \cdots - \Delta f(x_i + x_j - 1)$ $\geq r_{i+j} = r_{i+j}$ ≥ 0 (18)

From the above two equations, we can easily get $\forall x_i, x_j, y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$. Up to now, Theorem 1 is proved.

Appendix B

Proof of Theorem 2

Given the DBDH (Decisional Bilinear Diffie-Hellman) assumption, PRMSM is semantically secure against the chosen keyword attack.

Proof: Assume a polynomial-time adversary A has a non-negligible advantage ϵ against PRMSM. Then we can build a simulator B that solves DBDH with advantage $\epsilon/2$. The challenger flips a fair coin δ outside of B's view. If $\delta = 0$, he sends $(A, B, C, Z) = (g^\alpha, g^b, g^c, g^{\alpha b})$ to B; otherwise he sends $(A, B, C, Z) = (g^a, g^b, g^c)$ to B, where $a, b, c, z \in Z_p$ are randomly generated. The goal of B is to guess δ' for δ by interacting with A and playing the following game.

Setup: B generates his private key (k_1, k_2), and sends the public key $(g, g^{k_1}, g^{k_2}, g^a, g^b, z)$ to A.

Phase 1: B maintains a keyword list L_w, which is initially empty. A can issue any keyword $w \in W$ and ask B to generate the corresponding keyword ciphertext \hat{w} for polynomial times. If $w \notin L_w$, B adds w to L_w and sends \hat{w} to A.

Challenge: A sends two keywords w_0 and w_1 with equal length, where $w_0, w_1 \notin L_w$, to B, B randomly sets $\mu \in \{0, 1\}$, computes the ciphertext $\hat{w}_\mu = (Z^H(w_\mu, k_2), g^{k_1, k_2}, Z)$, and sends \hat{w}_μ to A.

Phase 2: A continues to submit keywords to request B for generating the ciphertext of keyword as in Phase 1. The restriction here is that w_0 and w_1 cannot be submitted.

Guess: A outputs its guess $\mu' \in \{0, 1\}$ for μ. If $\mu' = \mu$, \hat{w}_μ is a correct encryption of w_μ, then B outputs $\delta' = 0$; otherwise, B outputs $\delta' = 1$.

To complete the proof of Theorem 2, we now compute B's advantage in solving DBDH. If $\delta = 0$, then \hat{w}_μ is a valid encryption of w_μ, so A will output $\mu' = \mu$ with probability $1/2 + \epsilon$. Additionally, if $\delta = 1$, i.e., Z is randomly chosen, A will output $\mu' = \mu$ with probability $1/2$. Therefore, B will guess $\delta' = \delta$ with probability $1/2(1/2 + \epsilon + 1/2) = 1/2 + \epsilon/2$. That is, if the adversary A has advantage ϵ against PRMSM, then the challenger B will solve DBDH with advantage $\epsilon/2$.

Appendix C

Proof of Theorem 3

Given the DL assumption, PRMSM achieves keyword secrecy in the random oracle model.

Proof: We construct a challenger B that plays the keyword secrecy game as follows.

Setup: B generates the private key $k, k_1, k_2 \in Z_p$, and sends the public key g, g^k, g^{k_1}, g^{k_2} to A.

Phase 1: A adaptively queries the following oracle for polynomial times.

Oracle O_1: the challenger B maintains an O_1-list, which is initially empty. Each entry of O_1-list is $<w, T_w>$. A can query O_1-list for a keyword w, if w is already in O_1-list, then B returns T_w to A, otherwise, B generates the trapdoor T_w for w, adds $<w, T_w>$ to O_1-list, and returns T_w to A.

Challenge: B chooses a keyword w^* from the keyword dictionary uniformly at random, and returns the encrypted keyword $\hat{w}^* = (g^{k \cdot H(w^*), k_1, k_2}, g^{k_1, k_2}, g^{k \cdot r})$, and trapdoor $T_{w^*} = (g^{H(w^*)}, g^r)$ to A.
Guess: A outputs its guess w' for w^*, and sends w' to challenger B. B returns the encrypted keyword \hat{w}' to A. If \hat{w}' matches T_{w^*}, then A wins the game.

To complete the proof of Theorem 3, we now compute A’s probability in winning the keyword secrecy game. Assume A has already tried t distinct keywords before outputting w', then the size of remaining keyword dictionary is $u - t$. Additionally, due to the hardness of discrete logarithm, deriving w^* from \hat{w}' or T_{w^*} is at most a negligible probability ϵ, therefore, the probability that A wins the keyword secrecy game is $\frac{1}{u-t} + \epsilon$. \Box