
1

APPENDIX A
PROOF OF THEOREM 1

Proof: Given an order preserving function yi =
f(xi) + ri, ∀xi, xj , if we have yi + yj ∈ [f(xi +
xj), f(xi + xj) + ri+j ], obviously, yi is also additive
order preserving. Therefore, our goal is reduced to
prove that ∀xi, xj , yi+yj ∈ [f(xi+xj), f(xi+xj)+ri+j ].

Without loss of generality, we assume xi ≤ xj . Then
we have f(xi+xj)=f(xi)+∆f(xi)+ · · ·+∆f(xi+xj−1),
and f(xi) + f(xj) = 2f(xi)+∆f(xi)+ · · ·+∆f(xj − 1).
Therefore, we have

yi + yj − f(xi + xj)

≥ f(xi) + f(xj)− f(xi + xj)

= f(xi)− (∆f(xj) + · · ·+∆f(xi + xj − 1))

≥ f(xi)− i ·∆f(xi) (17)
= rimax

> 0

Additionally, we have

yi + yj − f(xi + xj)− r(i+j)max

≤ f(xi)+f(xj)−f(xi+xj)+rimax+rj max−r(i+j)max

= 2 [f(xi)− (∆f(xj)+···+∆f(xi+xj−1))]

−i·∆f(xi)−j·∆f(xj)−(i+j)·∆f(xi+xj)

= 2 [rimax+i·∆f(xi)− (∆f(xj)+···+∆f(xi+xj−1))]

−i·∆f(xi)−j ·∆f(xj)+(i+ j)·∆f(xi+xj)

< i2·
∣∣∣∆̃f(xi)

∣∣∣+ i· (∆f(xi)−∆f(xj))

−(j + 1)· (∆f(xj)−∆f(xi + xj))

+ [(∆f(xj)−∆f(xj+1))+··· (18)
+ (∆f(xj)−∆f(xj+xi−1))]

− [(∆f(xj+1)−∆f(xi+xj))+···

+ (∆f(xi+xj − 1)−∆f(xi+xj))]

≤ i2 ·
∣∣∣∆̃f(xi)

∣∣∣+i·(j−i)· ∣∣∣∆̃f(xj)
∣∣∣

−(j + 1) · i ·
∣∣∣∆̃f(xj)

∣∣∣
+(n−1) ·

(∣∣∣∆̃f(xj)
∣∣∣− ∣∣∣∆̃f(xj+xi−1)

∣∣∣)
< (−i) ·

∣∣∣∆̃f(xi)
∣∣∣

< 0

From the above two equations, we can easily get
∀xi, xj , yi + yj ∈ [f(xi + xj), f(xi + xj) + ri+j ]. Up to
now, Theorem 1 is proved.

APPENDIX B
PROOF OF THEOREM 2
Given the DBDH (Decisional Bilinear Diffie-Hellman)
assumption, PRMSM is semantically secure against
the chosen keyword attack.

Proof: Assume a polynomial-time adversary A
has a non-negligible advantage ϵ against PRMSM.
Then we can build a simulator B that solves DBDH

with advantage ϵ/2. The challenger flips a fair coin δ
outside of B’s view. If δ = 0, he sends (A,B,C,Z) =
(ga, gb, gc, gabc) to B; otherwise he sends (A,B,C,Z) =
(ga, gb, gc, gz) to B, where a, b, c, z ∈ Zp are randomly
generated. The goal of B is to guess δ’ for δ by
interacting with A and playing the following game.

Setup: B generates his private key (k1, k2), and
sends the public key (g, gk1 , gk2 , ga, gb, gc, Z) to A.

Phase 1: B maintains a keyword list Lw, which is
initially empty. A can issue any keyword w ∈ W
and ask B to generate the corresponding keyword
ciphertext ŵ for polynomial times. If w /∈ Lw, B adds
w to Lw and sends ŵ to A.

Challenge: A sends two keywords w0 and w1

with equal length, where w0, w1 /∈ Lw, to B, B
randomly sets µ ∈ {0, 1}, computes the ciphertext
ŵµ =

(
ZH(wµ)·k2 · gk1·k2 , Z

)
, and sends ŵµ to A.

Phase 2: A continues to submit keywords to request
B for generating the ciphertext of keyword as in Phase
1. The restriction here is that w0 and w1 cannot be
submitted.

Guess: A outputs its guess µ′ ∈ {0, 1} for µ. If µ′ =
µ, ŵµ is a correct encryption of wµ, then B outputs
δ′ = 0; otherwise, B outputs δ′ = 1.

To complete the proof of Theorem 2, we now com-
pute B’s advantage in solving DBDH. If δ = 0, then ŵµ

is a valid encryption of wµ, so A will output µ′ = µ
with probability 1/2 + ϵ. Additionally, if δ = 1, i.e.,
Z is randomly chosen, A will output µ′ = µ with
probability 1/2. Therefore, B will guess δ′ = δ with
probability 1/2(1/2+ϵ+1/2) = 1/2+ϵ/2. That is, if the
adversary A has advantage ϵ against PRMSM, then
the challenger B will solve DBDH with advantage ϵ/2.

APPENDIX C
PROOF OF THEOREM 3
Given the DL assumption, PRMSM achieves keyword
secrecy in the random oracle model.

Proof: We construct a challenger B that plays the
keyword secrecy game as follows.

Setup: B generates the private key k, ka1, ka2 ∈ Zp,
and sends the public key g, gk, gka1 , gka2 to A.

Phase 1: A adaptively queries the following oracle
for polynomial times.
O1: the challenger B maintains a O1-list, which is

initially empty. Each entry of O1-list is < w, Tw >. A
can query O1-list for a keyword w, if w is already in
O1-list, then B returns Tw to A, otherwise, B generates
the trapdoor Tw for w, adds < w, Tw > to O1-list, and
returns Tw to A.

Challenge: B chooses a keyword w∗

from the keyword dictionary uniformly at
random, and returns the encrypted keyword
ŵ∗ =

(
gk·r·H(w∗)·ka1 · gka1·ka2 , gk·r

)
, and trapdoor

Tw∗ = (gHs(w
∗)·r, gr) to A.



2

Guess: A outputs its guess w′ for w∗, and sends w′

to challenger B. B returns the encrypted keyword ŵ′

to A. If ŵ′ matches Tw∗ , then A wins the game.
To complete the proof of Theorem 3, we now com-

pute A’s probability in winning the keyword secrecy
game. Assume A has already tried t distinct keyword-
s before outputting w′, then the size of remaining

keyword dictionary is u − t. Additionally, due to the
hardness of discrete logarithm, deriving w∗ from ŵ∗

or Tw∗ is at most a negligible probability ϵ, therefore,
the probability that A wins the keyword secrecy game
is 1

u−t + ϵ.


