APPENDIX A PROOF OF THEOREM 1

Proof: Given an order preserving function $y_i = f(x_i) + r_i$, $\forall x_i, x_j$, if we have $y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$, obviously, y_i is also additive order preserving. Therefore, our goal is reduced to prove that $\forall x_i, x_j, y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$.

Without loss of generality, we assume $x_i \leq x_j$. Then we have $f(x_i+x_j)=f(x_i)+\Delta f(x_i)+\dots+\Delta f(x_i+x_j-1)$, and $f(x_i) + f(x_j) = 2f(x_i)+\Delta f(x_i)+\dots+\Delta f(x_j-1)$. Therefore, we have

$$y_i + y_j - f(x_i + x_j)$$

$$\geq f(x_i) + f(x_j) - f(x_i + x_j)$$

$$= f(x_i) - (\Delta f(x_j) + \dots + \Delta f(x_i + x_j - 1))$$

$$\geq f(x_i) - i \cdot \Delta f(x_i)$$

$$= r_{i \max}$$
(17)

Additionally, we have

$$y_{i} + y_{j} - f(x_{i} + x_{j}) - r_{(i+j)\max}$$

$$\leq f(x_{i}) + f(x_{j}) - f(x_{i} + x_{j}) + r_{i\max} + r_{j\max} - r_{(i+j)\max}$$

$$= 2[f(x_{i}) - (\Delta f(x_{j}) + \dots + \Delta f(x_{i} + x_{j} - 1))]$$

$$-i \cdot \Delta f(x_{i}) - j \cdot \Delta f(x_{j}) - (i+j) \cdot \Delta f(x_{i} + x_{j})$$

$$= 2[r_{i\max} + i \cdot \Delta f(x_{i}) - (\Delta f(x_{j}) + \dots + \Delta f(x_{i} + x_{j} - 1))]$$

$$-i \cdot \Delta f(x_{i}) - j \cdot \Delta f(x_{j}) + (i+j) \cdot \Delta f(x_{i} + x_{j})$$

$$< i^{2} \cdot \left| \tilde{\Delta} f(x_{i}) \right| + i \cdot (\Delta f(x_{i}) - \Delta f(x_{j}))$$

$$-(j+1) \cdot (\Delta f(x_{j}) - \Delta f(x_{i} + x_{j}))$$

$$+ [(\Delta f(x_{j}) - \Delta f(x_{j} + 1)) + \dots$$

$$+ (\Delta f(x_{j}) - \Delta f(x_{j} + x_{i} - 1))]$$

$$- [(\Delta f(x_{i} + x_{j} - 1) - \Delta f(x_{i} + x_{j}))]$$

$$\leq i^{2} \cdot \left| \tilde{\Delta} f(x_{i}) \right| + i \cdot (j - i) \cdot \left| \tilde{\Delta} f(x_{j}) \right|$$

$$-(j+1) \cdot i \cdot \left| \tilde{\Delta} f(x_{j}) \right|$$

$$+ (n-1) \cdot \left(\left| \tilde{\Delta} f(x_{j}) \right| - \left| \tilde{\Delta} f(x_{j} + x_{i} - 1) \right| \right)$$

$$< 0$$

From the above two equations, we can easily get $\forall x_i, x_j, y_i + y_j \in [f(x_i + x_j), f(x_i + x_j) + r_{i+j}]$. Up to now, Theorem 1 is proved.

APPENDIX B PROOF OF THEOREM 2

Given the DBDH (Decisional Bilinear Diffie-Hellman) assumption, PRMSM is semantically secure against the chosen keyword attack.

Proof: Assume a polynomial-time adversary A has a non-negligible advantage ϵ against PRMSM. Then we can build a simulator B that solves DBDH

with advantage $\epsilon/2$. The challenger flips a fair coin δ outside of \mathcal{B} 's view. If $\delta = 0$, he sends $(A, B, C, Z) = (g^a, g^b, g^c, g^{abc})$ to \mathcal{B} ; otherwise he sends $(A, B, C, Z) = (g^a, g^b, g^c, g^z)$ to \mathcal{B} , where $a, b, c, z \in \mathbb{Z}_p$ are randomly generated. The goal of \mathcal{B} is to guess δ' for δ by interacting with \mathcal{A} and playing the following game.

Setup: \mathcal{B} generates his private key (k_1, k_2) , and sends the public key $(g, g^{k_1}, g^{k_2}, g^a, g^b, g^c, Z)$ to \mathcal{A} .

Phase 1: \mathcal{B} maintains a keyword list L_w , which is initially empty. \mathcal{A} can issue any keyword $w \in \mathcal{W}$ and ask \mathcal{B} to generate the corresponding keyword ciphertext \hat{w} for polynomial times. If $w \notin L_w$, \mathcal{B} adds w to L_w and sends \hat{w} to \mathcal{A} .

Challenge: \mathcal{A} sends two keywords w_0 and w_1 with equal length, where w_0 , $w_1 \notin L_w$, to \mathcal{B} , \mathcal{B} randomly sets $\mu \in \{0,1\}$, computes the ciphertext $\hat{w}_{\mu} = (Z^{H(w_{\mu})\cdot k_2} \cdot g^{k_1 \cdot k_2}, Z)$, and sends \hat{w}_{μ} to \mathcal{A} .

Phase 2: A continues to submit keywords to request B for generating the ciphertext of keyword as in Phase 1. The restriction here is that w_0 and w_1 cannot be submitted.

Guess: \mathcal{A} outputs its guess $\mu' \in \{0, 1\}$ for μ . If $\mu' = \mu$, \hat{w}_{μ} is a correct encryption of w_{μ} , then \mathcal{B} outputs $\delta' = 0$; otherwise, \mathcal{B} outputs $\delta' = 1$.

To complete the proof of Theorem 2, we now compute \mathcal{B} 's advantage in solving DBDH. If $\delta = 0$, then \hat{w}_{μ} is a valid encryption of w_{μ} , so \mathcal{A} will output $\mu' = \mu$ with probability $1/2 + \epsilon$. Additionally, if $\delta = 1$, i.e., Z is randomly chosen, \mathcal{A} will output $\mu' = \mu$ with probability 1/2. Therefore, \mathcal{B} will guess $\delta' = \delta$ with probability $1/2(1/2+\epsilon+1/2) = 1/2+\epsilon/2$. That is, if the adversary \mathcal{A} has advantage ϵ against PRMSM, then the challenger \mathcal{B} will solve DBDH with advantage $\epsilon/2$.

APPENDIX C PROOF OF THEOREM 3

Given the DL assumption, PRMSM achieves keyword secrecy in the random oracle model.

Proof: We construct a challenger \mathcal{B} that plays the keyword secrecy game as follows.

Setup: \mathcal{B} generates the private key $k, k_{a1}, k_{a2} \in \mathbb{Z}_p$, and sends the public key $g, g^k, g^{k_{a1}}, g^{k_{a2}}$ to \mathcal{A} .

Phase 1: A adaptively queries the following oracle for polynomial times.

 \mathcal{O}_1 : the challenger \mathcal{B} maintains a \mathcal{O}_1 -list, which is initially empty. Each entry of \mathcal{O}_1 -list is $\langle w, T_w \rangle$. \mathcal{A} can query \mathcal{O}_1 -list for a keyword w, if w is already in \mathcal{O}_1 -list, then \mathcal{B} returns T_w to \mathcal{A} , otherwise, \mathcal{B} generates the trapdoor T_w for w, adds $\langle w, T_w \rangle$ to \mathcal{O}_1 -list, and returns T_w to \mathcal{A} .

Challenge: \mathcal{B} chooses a keyword w^* from the keyword dictionary uniformly at random, and returns the encrypted keyword $\hat{w}^* = (g^{k \cdot r \cdot H(w*) \cdot k_{a1}} \cdot g^{k_{a1} \cdot k_{a2}}, g^{k \cdot r})$, and trapdoor $T_{w^*} = (g^{H_s(w^*) \cdot r}, g^r)$ to \mathcal{A} . **Guess:** \mathcal{A} outputs its guess w' for w^* , and sends w' to challenger \mathcal{B} . \mathcal{B} returns the encrypted keyword \hat{w}' to \mathcal{A} . If \hat{w}' matches T_{w^*} , then \mathcal{A} wins the game.

To complete the proof of Theorem 3, we now compute A's probability in winning the keyword secrecy game. Assume A has already tried t distinct keywords before outputting w', then the size of remaining

keyword dictionary is u - t. Additionally, due to the hardness of discrete logarithm, deriving w^* from \hat{w}^* or T_{w^*} is at most a negligible probability ϵ , therefore, the probability that \mathcal{A} wins the keyword secrecy game is $\frac{1}{u-t} + \epsilon$.