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Abstract—Wireless power transfer is a promising technology
to extend the lifetime of, and thus enhance the usability of, the
energy-hungry battery-powered devices. It enables energy to be
wirelessly transmitted from power chargers to energy receiving
devices. Existing studies have mainly focused on maximizing
network lifetime, optimizing charging efficiency, minimizing
charging delay, etc. Different from these works, our objective is
to optimize charging quality in a 2-D target area. Specifically, we
consider the following charger Placement and Power allocation
Problem (P3): Given a set of candidate locations for placing
chargers, find a charger placement and a corresponding power
allocation to maximize the charging quality, subject to a power
budget. We prove that P3 is NP-complete. We first study P3 with
fixed power levels, for which we propose a (1−1/e)-approximation
algorithm; we then design an approximation algorithm of factor
1−1/e

2L for P3, where e is the base of the natural logarithm, and
L is the maximum power level of a charger. We also show how
to extend P3 in a cycle. Extensive simulations demonstrate that,
the gap between our design and the optimal algorithm is within
4.5%, validating our theoretical results.

Index Terms—Wireless power transfer, power allocation, sub-
modularity, approximation algorithm

I. Introduction

We have witnessed the increasing potential of wireless
devices to improve the quality of our lives in the last few
years. To extend the lifetime of, and thus enhance the usability
of, these battery-powered devices, solutions from different per-
spectives have been proposed, including energy harvesting [1],
energy conservation [2], and battery replacement [3]. However,
they remain limited due to various reasons.

Recent breakthroughs in wireless power transfer [4, 5]
provide a promising alternative that has attracted significant
attention from both academia and industry. With this technol-
ogy, energy can be wirelessly transmitted from power chargers
to energy receiving devices such as RFID tags, sensors,
smartphones, and Tesla cars [6]. Existing studies regarding this
issue have mainly focused on maximizing network lifetime [7],
optimizing charging efficiency [8], energy provisioning [9],
collaboration between chargers [10], minimizing charging de-
lay [11], minimizing maximum radiation point [12], etc.

Different from existing works, we consider the following
scenario. A service provider decides to offer a wireless power
charging service in an area of interest, e.g., a campus or park.
Based on historical data analysis and market investigation,
it could predict the location information of future potential
customers (i.e., devices) and then preselect a certain number

of candidate locations for placing wireless power chargers
(chargers for short in the sequel). The power of each charger
is adjustable within an appropriate range. The maximum cover
distance of a charger is determined by its power and the
environment. The power received by a device from multiple
chargers is assumed to be additive [9]. Given a power budget,
the wireless charging service provider wants to maximize its
revenue, which is proportional to the charging quality defined
later in the paper. In order to maximize the charging quality, a
limited number of chargers with appropriate power levels must
be strategically placed at a subset of the candidate locations.

This charger Placement and Power allocation Problem (P3)
can be briefly stated as follows: Given a set of candidate
locations for placing chargers, how to find a charger place-
ment and a corresponding power allocation to maximize the
charging quality, subject to a power budget. In this paper, we
prove that the P3 problem is NP-complete by reduction from
the set cover problem [13]. To gain a better understanding, we
first consider the P3 problem with fixed power levels, where the
power level of every candidate location is fixed, for which we
propose a (1 − 1/e)-approximation algorithm. Then, based on
the acquired insights, we design an approximation algorithm
of factor 1−1/e

2L for the P3 problem, where e is the base of the
natural logarithm, and L is the maximum power level.

We also discuss an extension of P3. When the power
consumption rates of devices exhibit cyclic patterns, how
do we decide a subset of the candidate locations and cor-
responding power levels for each time slot in a cycle? We
show that solving this problem is not equivalent to solving
multiple consecutive P3 problems, and we propose a 1−1/e

2L -
approximation algorithm for this problem.

The contributions of this paper are three-fold:
• To the best of our knowledge, we are the first to study the

joint optimization of charger placement and power allo-
cation problem. We present a formal problem statement
and prove that the problem is NP-complete.

• We develop two approximation algorithms for P3 with
and without fixed power levels, respectively. Evaluations
confirm the effectiveness of the proposed algorithms.

• We discuss how to extend P3 in a cycle and propose a
1−1/e

2L -approximation algorithm for this problem.
The rest of the paper is organized as follows. We discuss

related work in Section II. We introduce the problem in
Section III. We present our solution to P3 in Section IV. Before



we conclude the paper in Section VI, we evaluate our design
in Section V.

II. RelatedWork

Kurs et al. experimentally demonstrated that energy can be
efficiently transmitted between magnetically resonant objects
without any interconnecting conductors [4]. Intel develope-
d the wireless identification and sensing platform (WISP)
for battery-free programmable monitoring [14]. Motivated by
these enabling technologies, most of prior studies envisioned
employing mobile vehicles equipped with wireless chargers to
deliver energy to sensor nodes.

Peng et al. optimized the charging sequence for network
lifetime maximization [7]. Li et al. proposed routing and
charging strategies for the same objective [15]. Shi et al.
investigated the problem of periodically charging sensors to
maximize the ratio of the charger’s vacation time (time spent
at the home service station) over the cycle time [8, 16]. Tong et
al. evaluated the performance of multi-node simultaneous
charging [17]. To minimize the total charging delay, Fu et
al. proposed an approx. algorithm for determining the mobile
charger stop locations and the corresponding stop durations via
discretizing charging power [11]. He et al. [9] investigated the
energy provision problem of finding the minimum number of
RFID readers to cover a given network. Wang et al. designed
efficient energy monitoring and reporting protocols based on
NDN-related mechanisms [18]. Zhang et al. leveraged col-
laboration between mobile chargers to optimize energy usage
effectiveness [10, 19]. Dai et al. proposed a near optimal solu-
tion for determining the maximum electromagnetic radiation
point in a given plane [12]. Different from them, our work
jointly determines charger placement and power allocation to
improve the charging quality, subject to a budget constraint.

III. Problem Formulation

A. Network Model

We consider a set of M stationary rechargeable devices
S = {s1, s2, ..., sM} distributed in a two-dimensional plane. The
preselected candidate locations for placing stationary wireless
power chargers is denoted by a set C = {c1, c2, ..., cN}. We also
use ci to denote the charger placed at a candidate location ci

if no confusion is caused. A charger placement is denoted by
C′, which is a subset of C.

The location of a device s j can be localized using techniques
in [20] and represented as (x[s j], y[s j]). The location of ci is
(x[ci], y[ci]). The distance function d : (C ∪ S,C ∪ S) → R
gives the Euclidean distance between two objects (chargers or
devices), e.g., the distance between charger ci and device s j

is defined as

d(ci, s j) =
√

(x[ci] − x[s j])2 + (y[ci] − y[s j])2.

Fig. 1 is an illustration of some basic concepts. There are
2 candidate locations and 3 devices in the example.

c1 s1s2 c2D(1) D(2) s3
Fig. 1: Illustration of basic concepts. The maximum cover distance of a power
level is indicated by the radius of a dashed circle. If we set C′ = {c1, c2} and
H = (2, 2), we have pC′ (s1) = p(c1, s1) + p(c2, s1), and pC′ (s3) = p(c2, s3).

B. Charging Model

We assume that the power of each charger is adjustable.
Each charger can be operated at L different power levels. De-
note the power of charger ci by pi; without loss of generality,
we define:

pi = p(hi) = hi · pmin

where hi ∈ {1, 2, ..., L} is the power level of ci, and pmin
is the minimum power of a charger. Note that, this kind of
discretization is for simplicity; in fact, as long as the number of
allowable power levels of each charger is limited, the proposed
solutions are still valid. A power allocation can be denoted by
a vector H = (h1, h2, ..., hN).

According to the profiling experiments in [9], the power
p(ci, s j) received by device s j from charger ci can be quantified
by an empirical model as follows:

p(ci, s j) =


α

(d(ci,s j)+β)2 p(hi) d(ci, s j) ≤ D(hi)

0 d(ci, s j) > D(hi)
(1)

where α and β are know constants determined by hardware
of chargers and devices and the environment, and D(hi) is the
maximum cover distance of a charger with power level hi.

When a device is far away from a charger, the device would
receive negligible power that cannot be rectified to useful
electrical energy. The threshold of this negligible power is
denoted by pth. By letting

α

(D(hi) + β)2 p(hi) = pth,

we have

D(hi) =
√
α

pth
p(hi) − β. (2)

That is, given constants α, β, and pth, the maximum cover-
age radius of a charger ci is determined by its power pi = p(hi).
In Fig. 1, when we place a charger c1 with a power level h1
being 1, its maximum coverage radius is D(1), and thus c1
cannot transfer power to s1, which is more than D(1) distance
away from c1.

As evidenced by [17], a charger can transfer energy to
multiple devices simultaneously without significantly reducing
the received power at one device.



Symbol Meaning
N the number of candidate locations
C the set of candidate locations
C′ a charger placement, i.e., a subset of C
ci a candidate location or a charger
pi the power of charger ci

hi the power level of charger ci

pth the threshold of negligible power
pmin the minimum power of a charger
L the maximum power level of a charger

D(hi) the maximum coverage radius with respect to hi

H a power allocation, i.e., (h1, h2, ..., hN)
M the number of stationary devices
S the set of stationary devices
s j an energy consuming device
P j the maximum power consumption rate of device s j

B the power budget
d(ci, s j) the distance between charger ci and device s j

p(ci, s j) the power received by device s j from charger ci

pC′ (s j) the total power received by s j with respect to C′
QC′ (s j) the charging quality of C′ on device s j

Q(C′,H) the charging quality with respect to C′ and H

Fig. 2: Main notations for quick reference.

We assume the power received by one device from multiple
chargers is additive [9]. That is, given a charger placement C′,
the total power pC′ (s j) received by device s j is

pC′(s j) =
∑
ci∈C′

p(ci, s j). (3)

For example, in Fig. 1, if we set C′ = {c1, c2} and H = (2, 2),
we have pC′(s1) = p(c1, s1)+ p(c2, s1), pC′ (s2) = p(c1, s2), and
pC′(s3) = p(c2, s3).

C. Problem Definition

The maximum power consumption rate of device s j is
represented by P j. If the total power pC′(s j) received by device
s j is larger than P j, the over-received power, i.e., pC′(s j)−P j,
would be useless. Therefore, we define the charging quality
QC′ (s j) of C′ on device s j as:

QC′(s j) = min{pC′ (s j), P j}. (4)

Main notations are summarized in Fig. 2 for quick reference.
We define our objective function as follows:
Definition 1: (Charging Quality) Given a charger place-

ment C′ and a power allocation H, the charging quality, denot-
ed as Q(C′,H), is defined as the sum of the charging qualities
of C′ and H on all devices, i.e., Q(C′,H) =

∑M
j=1 QC′(s j)

The main problem studied in this paper is:
Problem 1: (Charger Placement and Power Allocation

Problem, P3) Given a set C of candidate locations, a set S
of devices, and a power budget B, P3 is to find a charger
placement C′ and a power allocation H to maximize Q(C′,H),
subject to the power budget constraint, i.e.,

∑
ci∈C′ pi ≤ B.

P3 with fixed power levelsP3Hardness analysisP3 in a cycle
Fig. 3: Flowchart of our solution.

IV. Solution to P3

Fig. 3 shows the flowchart of our solution. In this section,
we first show that P3 is NP-complete, then we propose
an approximation algorithm for a simplified case of the P3

problem, where the power level of each candidate location is
fixed, and finally we present a 1−1/e

2L -approximation algorithm
for the P3 problem. We also discuss an extension of P3 and
propose a provably good solution to it.

A. Hardness Analysis

Theorem 1: The P3 problem is NP-complete.
Proof: We prove this theorem by reduction from the Set

Cover problem (SC) [13], which is NP-complete. The decision
version of the SC problem is as follows: Given a universe
U = {e1, e2, ..., em} of m elements and an integer y, a collection
of subsets of U, R = {R1,R2, ...,Rk}, does there exist a sub-
collection of R of size y that covers all elements of U?

Given an instance of the decision version of the SC problem,
we construct an instance of the P3 problem as follows. We let
L = 1, i.e., every charger can only operated at the fixed power
pmin. For each element e j in U, we construct a device s j

in P3. We assume that all devices have the same maximum
power consumption rate, i.e., P1 = P2 = ...,= Pm = P. For
each Ri ∈ R, we add a candidate location ci to P3. For each
element e j in Ri, we move s j into the coverage of ci. We also
make sure that, as long as a device s j is within the coverage
of a location ci, p(ci, s j) ≥ P; this can be achieved by setting
pmin to a sufficiently large value.

Combining these together, we get the following special case
of the decision version of the P3 problem: Given a candidate
location set C of size k, and a device set S of size m, does
there exist a charger placement C′ of size ⌊ B

pmin
⌋, such that

Q(C′, (1, 1, ..., 1)) ≥ mP?
It is not hard to see that the construction can be finished in

polynomial time; thus, we reduce solving the NP-complete SC
problem to solving a special case of the P3 problem, implying
that P3 is NP-hard. It is easy to verify that P3 is in NP; the
theorem follows immediately.

B. Approximation Algorithm for P3 with Fixed Power Levels

In this subsection, we study the P3 problem where the
charger at each location can only work at a fixed power
level, i.e., hi is constant for all candidate locations. The
approximation algorithms designed here will serve as basics
of the algorithm for P3 proposed in the next subsection.



Algorithm 1 The Greedy Placement Algorithm (GPA)

Input: C, S, B, and p
Output: C′

1: C′ ← ∅
2: while |C′| < ⌊ B

p ⌋ do
3: c← arg max

c∈C\C′
(Q(C′ ∪ {c}) − Q(C′))

4: C′ ← C′ ∪ {c}
5: end while
6: return C′

1) Uniform Case: We first look at the uniform case of
power levels, i.e., h1 = h2 = ... = hN = h. In other words,
p1 = p2 = ... = pN = p(h) = h · pmin. For convenience, denote
the power of each charger by p in this subsection.

In this case, the objective function Q(C′,H) degenerates into
Q(C′), and the P3 problem can be reformulated as follows:
Given a set C of candidate locations, a set S of devices,
a power budget B, and a fixed power p, P3 is to find a
charger placement C′ to maximize Q(C′), subject to the budget
constraint, i.e., |C′| ≤ ⌊ B

p ⌋.
In the following, we prove that the objective function Q(C′)

has three tractable properties: nonnegativity, monotonicity,
and submodularity, which enable us to propose a (1 − 1/e)-
approximation algorithm shown in Alg. 1.

Definition 2: (Nonnegativity, Monotonicity, and Submod-
ularity) Given a non-empty finite set U, and a function f
defined on the power set 2U of U with real values, f is called
nonnegative if f (A) ≥ 0 for all A ⊆ U; f is called monotone
if f (A) ≤ f (A′) for all A ⊆ A′ ⊆ U; f is called submodular
if f (A∪{e})− f (A) ≥ f (A′∪{e})− f (A′) for all A ⊆ A′ ⊆ U.

We have the following theorem:
Theorem 2: The objective function Q(C′) is nonnegative,

monotone, and submodular.
Proof: According to Def. 1, Q(C′) is nonnegative. For all

C′ ⊆ C′′ ⊆ C, we have

Q(C′) =
∑M

j=1
QC′(s j) ≤

∑M

j=1
QC′′ (s j) = Q(C′′),

implying that, Q(C′) is monotone. For all C′ ⊆ C′′ ⊆ C, we
need to prove Q(C′ ∪ {c}) − Q(C′) ≥ Q(C′′ ∪ {c}) − Q(C′′). It
is sufficient to show that for any s j ∈ S, we have

Q(C′∪{c})(s j) − QC′ (s j) ≥ Q(C′′∪{c})(s j) − QC′′(s j).

Based on Equ. (3) and Equ. (4), we prove the above inequation
in three cases:
• P j ≤ PC′(s j): since PC′′(s j) ≥ PC′(s j), we have

Q(C′∪{c})(s j) − QC′(s j) = 0 = Q(C′′∪{c})(s j) − QC′′(s j).

• PC′(s j) < P j < PC′′(s j): in this case, Q(C′′∪{c})(s j) −
QC′′(s j) = 0, and we have

Q(C′∪{c})(s j) − QC′ (s j)
= min{P j − PC′ (s j), P(C′∪{c})(s j) − PC′(s j)}
= min{P j − PC′ (s j), p(c, s j)}
≥ 0 = Q(C′′∪{c})(s j) − QC′′ (s j).

c1
s1 c2

s2 cN-1
sN-1

cN
sN

(a) Using Equ. (5)

c1
s1
c2

s2
s3 sN-1sN

(b) Using Equ. (6)

Fig. 4: Motivational examples show that, directly applying Equ. (5) or Equ. (6)
to the non-uniform case may perform very bad.

• PC′′ (s j) ≤ P j: in this case, we have

Q(C′∪{c})(s j) − QC′ (s j) = min{P j − PC′(s j), p(c, s j)},
Q(C′′∪{c})(s j) − QC′′ (s j) = min{P j − PC′′(s j), p(c, s j)}.

If p(c, s j) ≤ P j − PC′′ (s j), then

Q(C′∪{c})(s j) − QC′(s j) = p(c, s j) = Q(C′′∪{c})(s j) − QC′′(s j).

If P j − PC′′(s j) < p(c, s j) < P j − PC′(s j), then

Q(C′∪{c})(s j) − QC′ (s j) = p(c, s j)
> P j − PC′′(s j) = Q(C′′∪{c})(s j) − QC′′ (s j).

If P j − PC′(s j) ≤ p(c, s j), then

Q(C′∪{c})(s j) − QC′ (s j) = P j − PC′(s j)
≥ P j − PC′′(s j) = Q(C′′∪{c})(s j) − QC′′ (s j).

Therefore, we proved that Q(C′) is submodular.
According to the results in [21, 22], we have a (1 − 1/e)-

approx. algorithm shown in Alg. 1, which starts with an empty
set C′, in each iteration, we add the location that maximizes
the marginal gain of the objective function into C′, i.e.,

c← arg max
c∈C\C′

(Q(C′ ∪ {c}) − Q(C′)). (5)

There are at most N iterations in Alg. 1; in each iteration,
we need to check at most N locations to find the location that
maximizes the marginal gain. It takes O(MN) time to compute
Q(C′), thus, the time complexity of Alg. 1 is O(MN3).

2) Non-uniform Case: We then study the non-uniform case
of power levels, in this case, P3 can be reformulated as follows:
Given a set C of candidate locations, a set S of devices, a
power budget B, and a power allocation H = (h1, h2, ..., hN),
P3 is to find a charger placement C′ to maximize Q(C′), subject
to the budget constraint, i.e.,

∑
ci∈C′ pi ≤ B.

To solve this problem, an intuitive method is using the same
greedy idea as in Equ. (5). However, we show in Fig. 4(a) that,
this method may perform very bad. In Fig. 4(a), there are
N = L + 1 candidate locations and M = N devices; h1 = h2 =

... = hN−1 = 1, and hN = L; the radii of dashed circles indicate
the maximum coverage distance of each charger; p(c1, s1) =
p(c2, s2) = ... = p(cN−1, sN−1) = p(cN , sN)− ϵ, where ϵ satisfies
0 < ϵ < p(cN , sN). Given a power budget B = L · pmin, using



Algorithm 2 Approx. Alg. for P3 with Known Power Levels

Input: C, S, B, and H
Output: C′

1: C1 ← ∅, C2 ← ∅
2: while B ≥ ∑

ci∈C1

pi + min
ci∈C\C1

pi do

3: c← arg max
c∈C\C1,

∑
ci∈C1∪{c} pi≤B

(Q(C1 ∪ {c}) − Q(C1))

4: C1 ← C1 ∪ {c}
5: end while
6: while B ≥ ∑

ci∈C2

pi + min
ci∈C\C2

pi do

7: cx ← arg max
cx∈C\C2,

∑
ci∈C2∪{cx } pi≤B

Q(C2∪{cx})−Q(C2)
px

8: C2 ← C2 ∪ {cx}
9: end while

10: return arg max
C′∈{C1,C2}

Q(C′)

Equ. (5), the charger cN would be picked. However, if we pick
c1, c2, ..., and cN−1, the charging quality would be L · p(c1, s1)
instead of p(c1, s1) + ϵ. When ϵ is approaching zero, using
Equ. (5) would generate approximately 1/L of the charging
quality returned by the optimal solution.

Another intuitive method is that, in each iteration, we pick
the location that maximize the marginal ratio of objective gain
to power cost, i.e.,

cx ← arg max
cx∈C\C′,

∑
ci∈C′∪{cx } pi≤B

Q(C′ ∪ {cx}) − Q(C′)
px

. (6)

However, we show in Fig. 4(b) that, this method may also
perform badly. In Fig. 4(b), there are 2 candidate locations and
M = L + 1 devices; h1 = 1, and h2 = L; p(c1, s1) = p(c2, s2) =
p(c2, s3)... = p(c2, sM−1) = p(c2, sM) + ϵ, where ϵ satisfies
0 < ϵ < p(c1, s1). Given a power budget B = L · pmin, using
Equ. (6), the charger c1 would be picked. However, if we pick
c2, the charging quality would be (L− 1) · p(c1, s1)+ p(c2, sM)
instead of p(c1, s1). When ϵ is approaching zero, this method
would also generate approximately 1/L of the charging quality
returned by the optimal solution.

Surprisingly enough, if we simultaneously apply the above
two methods to the non-uniform case of P3 with fixed power
levels, and return the better one of the two results, we will
get an approx. algorithm (Alg. 2) of factor 1

2 (1− 1
e ) according

to [23]. The time complexity of Alg. 2 is also O(MN3).

C. Approximation Algorithm for P3

We design a probably good approximation algorithm, name-
ly TCA, in Alg. 3 that simultaneously determines C′ and H.

Denote the set {1, 2, ..., L} by H ; denote by Ii a row vector
where the i-th element is 1 and all of the other elements are
zeros, i.e., Ii = (0, 0, ..., 1, ..., 0). We use H[ci] to represent the
power level of a candidate location ci.

Before giving some explanations about TCA, we first con-
sider the following variant of the P3 problem (VP3): For each
candidate location ci, we are given L chargers with constant
but exactly different power levels, i.e., the power levels of these

Algorithm 3 Two-Choice-based Approx. Alg. for P3 (TCA)

Input: C, S, and B
Output: C′ and H

1: Z ← C ×H
2: Z1 ← ∅, H1 ← 0
3: while B ≥ min

(ci,hk)∈Z\Z1

p(hk) +
∑

(ci,hk)∈Z1

p(hk) do

4: (c, h)← arg max
(c,h)∈Z\Z1,

∑
(ci ,hk )∈Z1∪{(c,h)} p(hk)≤B

Q(Z1 ∪ {(c, h)}) − Q(Z1)
5: Z1 ← Z1 ∪ {(c, h)}
6: if H1[c] < h then H1[c]← h
7: end while
8: (C′1,H1)←RemoveDuplicationAndUtilize(C,S, B,H1)
9: Z2 ← ∅, H2 ← 0

10: while B ≥ min
(ci,hk)∈Z\Z2

p(hk) +
∑

(ci,hk)∈Z2

p(hk) do

11: (c, h)← arg max
(c,h)∈Z\Z2,

∑
(ci ,hk )∈Z2∪{(c,h)} p(hk)≤B

Q(Z2∪{(c,h)})−Q(Z2)
p(h)

12: Z2 ← Z2 ∪ {(c, h)}
13: if H2[c] < h then H2[c]← h
14: end while
15: (C′2,H2)←RemoveDuplicationAndUtilize(C,S, B,H2)
16: return arg max

(C′,H)∈{(C′1,H1),(C′2,H2)}
Q(C′,H)

17:
18: Sub-procedure: RemoveDuplicationAndUtilize
19: Input: C, S, B, and H
20: Output: C′ and H
21: C′ ← ∅, B′ ← 0
22: for all H[ci] > 0 do
23: C′ ← C′ ∪ {ci}, B′ ← B′ + p(H[ci])
24: end for
25: while B − B′ ≥ pmin do
26: ci ← arg max

H[ci]+1≤L
Q(C′ ∪ {ci},H + Ii) − Q(C′,H)

27: C′ ← C′ ∪ {ci}, H[ci]← H[ci] + 1, B′ ← B′ + pmin
28: end while
29: return (C′,H)

chargers are 1, 2, ..., and L. We use (ci, hk) to denote the
charger of a constant power level hk that can only be placed
at ci. Note that there are, in total, N ·L chargers. Given a power
budget B, how do we find a charger placement that maximize
the objective function defined below?

Let Z be the Cartesian product of C and H ; denote by
Z′ a subset of Z. We redefine several functions for the VP3

problem via overloading. The power p(ci, s j, hk) received by
device s j from ci (its power level is hk) is

p(ci, s j, hk) =


α

(d(ci,s j)+β)2 p(hk) d(ci, s j) ≤ D(hk),

0 d(ci, s j) > D(hk).
(7)

Correspondingly, given a charger placement Z′, the to-
tal power pZ′(s j) received by device s j is pZ′ (s j) =∑

(ci,hk)∈Z′ p(ci, s j, hk). The charging quality of Z′ on s j is

QZ′ (s j) = min{pZ′ (s j), P j}. (8)



The objective function is

Q(Z′) =
M∑
j=1

QZ′ (s j).

The main idea of TCA is as follows. We use the two
greedy heuristics (i.e., Equ. (5) and Equ. (6)) to solve the
VP3 problem defined above, and get two results Z1 and Z2,
respectively. Note that, there may be more than one charger
placed at a candidate location in Z1 or Z2. We then invoke
the RemoveDuplicationAndUtilize sub-procedure to transform
Z1 and Z2 into two solutions to P3, respectively.

The transformation works as follows (take Z1 for example):
For each location ci, we set H1[ci] to be the maximum value of
hk among all (ci, hk) ∈ Z1, i.e., H1[ci] = max(ci,hk)∈Z1 hk (line
6 of Alg. 3). For each location ci, if H1[ci] > 0, we add it into
C′1, which is equivalent to C′1 = {ci|(ci, hk) ∈ Z1} (lines 22-24).
As Alg. 3 shows, we retain only one charger for each location
in transforming Z1 into C′1 and H1, which implies that there
may be some unused budget for C′1 and H1. We thus try to
improve C′1 and H1 by utilizing the remaining budget (B−B′1)
(lines 25-28). In each iteration, we allocate a fixed power pmin
to the location that maximizes the marginal objective gain1.

We choose the better one of (C′1,H1) and (C′2,H2) as the fi-
nal solution to P3. The time complexity of TCA is O(MN3L3).
The following theorem gives the bound on the worst case
performance of TCA. Later, we will see in the simulations
that, the gap between TCA and the optimal solution is 4.5%
at most and 2.0% on average.

Theorem 3: TCA is a factor 1−1/e
2L approx. algorithm for P3.

Proof: Denote by (C∗,H∗) the optimal solution to P3, and
by (C′,H) the solution returned by TCA. We want to prove
that,

Q(C′,H)
Q(C∗,H∗) ≥

1 − 1/e
2L

.

Let Z∗ be the optimal solution to VP3, and let

Z′ = arg max
Z′∈{Z1,Z2}

Q(Z′)

where Z1 and Z2 are the solution generated by lines 3-7
and 9-14 of TCA, respectively. According to the results in
Section IV-B, we know

Q(Z′) ≥ 1 − 1/e
2

Q(Z∗).

Notice that, if we restrict the number of chargers that can
be placed at each candidate location to one, the VP3 problem
is equivalent to P3. From this viewpoint, we have

Q(Z∗) ≥ Q(C∗,H∗).

In Z1 (resp. Z2), we can place at most L chargers for one
location. When transforming Z1 (resp. Z2) into C′1 and H1

1Note that, we can further improve lines 25-28 of TCA by applying both
Equ. (5) and Equ. (6) and choosing the better one. However, the improvement
would be little. We choose the current form of TCA for brevity.

c1 s2
s1 c2

c3
Fig. 5: There are 3 candidate locations and 2 devices. The radii of dashed
circles show the maximum cover distances of four different power levels.

(resp. C′2 and H2), for each location, we retain the charger
that has the largest power level, if any. Therefore, we have

Q(C′1,H1) ≥ Q(Z1)
L
, and Q(C′2,H2) ≥ Q(Z2)

L
.

Combining them together, we have

Q(C′,H) = max{Q(C′1,H1),Q(C′2,H2)} ≥ max{Q(Z1),Q(Z2)}
L

=
Q(Z′)

L
≥ 1 − 1/e

2L
Q(Z∗) ≥ 1 − 1/e

2L
Q(C∗,H∗).

D. A Concrete Example

In this subsection, we provide an example that helps readers
better understand TCA. There are 3 candidate locations and 2
devices in the plane, as shown in Fig. 5. Following existing
works [9, 11, 12], we assume that, pmin = 50, L = 4,
pth = 0.01, α = 0.64, and β = 30. Given these parameters, we
have D(1) ≈ 27, D(2) = 50, D(3) ≈ 68, and D(4) ≈ 83. The
radii of dashed circles show the maximum cover distances of
four different power levels. We also knows that, d(c1, s1) = 20,
d(c1, s2) = 70, d(c2, s2) = 40, and d(c3, s2) = 60. The
maximum power consumption rate of s1 or s2 is 0.07, i.e.,
P1 = P2 = 0.07. Given a power budget B = 500, we now
check how TCA computes the result.

In lines 2-7 of Alg. 3, we first check which (c, h)
gives the maximal marginal objective gain. For c1, we have
Q({(c1, 1)}) = 0.0128, Q({(c1, 2)}) = 0.0256, Q({(c1, 3)}) =
0.0384, and Q({(c1, 4)}) = 0.064; for c2 and c3, we can
compute these values in a similar way. Thus, in the first
iteration of lines 2-8, we add (c1, 4) into Z1. It is worth
noting that, in the second iteration, Q({(c1, 4)} ∪ {(c1, 2)}) −
Q({(c1, 4)}) = min{p(c1, s1, 2), P1 − p(c1, s1, 4)} = 0.0188 (see
Equ. (7) and Equ. (8)). The reader can check that, Z1 would
be {(c1, 4), (c2, 4), (c1, 2)}.

Note that, for each location, we retain only one charger
which has the largest power level in Z1. Then we get C′1 =
{c1, c2} and H1 = (4, 4). In lines 25-28, we try to utilize the
remaining budget 500 − (4 + 4) × 50 = 100. We find that, the
distance between c3 and s2 is larger than D(2), thus, there is
no need to allocate the remaining 100 units of power to c3.
And we have C′1 = {c1, c2} and H1 = (4, 4).



Similarly, after running lines 9-14, we would have Z2 =

{(c1, 4), (c1, 1), (c2, 2), (c2, 3)}. Through removing duplications,
we have C′2 = {c1, c2} and H2 = (4, 3). After utilizing
remaining budget, we also have C′2 = {c1, c2} and H2 = (4, 4).

The final solution is C′ = {c1, c2} and H = (4, 4), yielding
an objective of Q(C′,H) = 0.0902.

E. P3 in A Cycle

In this subsection, we provide an extension of P3 from the
time perspective.

Suppose the power consumption rates of devices exhibit
cyclic patterns, and a cycle contains T time slots. We assume
that the battery of each device is large enough to store (T ·
maxs j∈S P j) energy. In other words, if a device receives (T ·
maxs j∈S P j) energy in the 1st time slot of a cycle, it could
sustain its operations over the next T −1 time slots. We extend
P3 to P3(T ): Given a power budget T · B, how do we find a
charger placement C′t and a power allocation Ht for each time
slot t ∈ {1, 2, ..., T } to maximize the total charging quality?

It is easy to see that, P3(T ) becomes P3 when T = 1. How-
ever, solving P3(T ) is not equivalent to solving T consecutive
P3 problems. The following example shows that solving T
consecutive P3 problems may perform badly for P3(T ).

Assume that there are T locations and T devices. The
maximum power consumption rate of sT is larger than that
of any other device, i.e., P1 = P2 = ... = PT−1 < PT . For
1 ≤ i ≤ T , d(ci, si) ≤ D(1); for any i , j, d(ci, s j) > D(1). We
further assume that, for 1 ≤ i ≤ T , p(ci, si) ≥ T ·Pi, even when
the power level of ci is 1.

Given a power budget T · pmin, if we run TCA with budget
pmin in each time slot independently, since we can only place
only one charger with a power of pmin, and PT > P1 = P2 =

... = PT−1, in each time slot TCA would allocate pmin to cT .
And the final charging quality is T ·PT . However, the optimal
solution is to allocate pmin to c(T+1−i) in the i-th time slot,
leading to a total charging quality of T (T−1)

2 P1 + T · PT . When
PT approaches P1, the optimal solution is O(T ) times as large
as the result generated by solving T consecutive P3 problems.

We propose to solve P3(T ) in a similar way as TCA. We first
solve a variant of this problem, and then transform the solution
to the variant into the solution to P3(T ). The variant problem is:
For each candidate location in the k-th time slot, we are given
L chargers with constant but exactly different power levels.
We use (ci, hi, tk) to denote the charger of a constant power
level hi that can only be placed at ci in the k-th time slot. Note
that there are, in total, T ·N ·L chargers. Given a power budget
T · B, how do we find a charger placement that maximize the
total charging quality? The solution transformation process is
similar to that in Alg. 3. We can also prove that this algorithm
is a factor 1−1/e

2L approx. algorithm for P3(T ). We omit the
details due to space limitations.

As a final note, we are also thinking about offering wireless
charging services in some scenarios without any electric
wires, e.g., disaster areas (no infrastructure), and temporal
conferences. A natural method to cope with this no/low-
infrastructure challenge is relying on collaboration, i.e., charg-

ers form an ad-hoc network in which they deliver energy
amongst themselves.

V. Performance Evaluation
In this section, we conduct extensive simulations to evaluate

our design under different network settings and reveal insights
of the proposed design performance.

A. Baseline Setup

Since currently there is no algorithm available for the P3

problem, we introduce three algorithms for comparison.
Optimal Algorithm (OPT): P3 in general is NP-complete.

We simply use brute force to find the optimal solution. Due
to its high time complexity O(MLN), it is only practical for
small instances of the P3 problem.

Fixed Level Algorithm (FLA): It consists of two phases.
The first phase is to compute the optimal power level of each
location irrespective of the other locations, i.e., we set

hi = arg max
hi∈{1,...,L}

∑M
j=1 Q{ci}(s j)

p(hi)
.

The second phase is to invoke Alg. 2 to generate a charger
placement for P3 with fixed power levels.

Random Algorithm (RAN): It should generate each possible
solution with the same probability. We implement it as follows.
Let b = 0 at the beginning. In the i-th iteration, we uniformly
generate a random integer xi in the range [1, L], let b = b+ xi;
if (B/pmin − b) is no less than L, go to the next iteration, else
let xi+1 be (B/pmin−b). Suppose the index of the last iteration
is k, for k + 1 ≤ j ≤ N, we let x j be 0. We then sort x1, x2,
..., xN randomly to get a random permutation (x′1, ..., x

′
N). For

each ci, we set H[ci] = x′i in the random solution.

B. Experiment Setup

We assume wireless devices and candidate locations are
randomly distributed over a 1, 000m×1, 000m two-dimensional
square area. The default number of candidate locations is 20.
The minimum power pmin of a charger is 50. By default, the
maximum power level L of a charger is 6. The default number
of devices is 200. Following prior works [9, 11, 12], we set
α = 0.64 and β = 30 in the charging model (Equ. (1)). The
threshold pth of negligible power is 0.01. Therefore, the min-
imum coverage radius is D(1) =

√
0.64 × 50/0.01 − 30 ≈ 27m

(see Equ. (2)), and by default the maximum coverage radius
is D(6) =

√
0.64 × 300/0.01 − 30 ≈ 109m. The maximum

power consumption rate of each device is uniformly generated
between 0.02 and 0.03. The default power budget is 3,000.

C. Performance Comparison

As we have mentioned, it is impractical to run OPT using
brute force in general, we thus use the following setting to
generate some small instances for comparing TCA with OPT:
N = 8, M = 50, B = 800, L = 4, and the side length of
the 2-D plane is 300m. Fig. 6 shows the results of different
experiment setups of small instances. We ran each different
setup ten times and averaged the results. The max and min
values among ten runs are also provided in the figures.
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Fig. 6: Evaluation results on small instances (the default setting is N = 8, M = 50, B = 800, L = 4, and the side length of the 2-D plane is 300m).

Fig. 7: A small instance visualization example

In general, TCA achieves a near optimal solution and
outperforms the other algorithms. Specifically, the gap be-
tween TCA and OPT is 4.5% at most and 2.0% on average.
This observation validates our theoretical results. FLA uses a
similar idea as our algorithm, thus, it performs much better
than RAN, which has the worst performance in all setups. On
average, the charging quality RAN achieves is roughly 64.4%
of that of TCA.

In Figs. 6(a) and 6(d), when the number of candidate
locations increases or the maximum power level of a candidate
location increases, the chance of having a better solution goes
up, so the overall charging quality increases. Since a charger
can transfer power to multiple devices simultaneously [17],
when the number of energy receiving devices increases, the
total power received by all devices would be larger than before,
so the charging quality increases as well. This is what we
noticed in Fig. 6(b). Fig. 6(c) presents the performance of
the four algorithms when the power budget is varying. As
we can see, when the budget increases, our objective function
increases as expected.

For easy understanding, we visualize two charger place-
ments and the corresponding allocated power levels generated
by TCA for two instances of P3 in Figs. 7 and 8, respectively.
In Fig. 7, there are in total 9 candidate locations and 50
devices. TCA picks 6 of them, and the corresponding power
levels are 4, 3, 1, 4, 1, and 3. As we mentioned in Equ. (2), the
maximum coverage distance is determined by the power level.

Fig. 8: A large instance visualization example

In the figure, we use circle radius to indicate the allocated
power level of a location. The charging quality (see Def. 1)
of this solution is 0.77. In Fig. 8, TCA picks 35 out of 50
candidate locations for charging 200 devices. The allocated
power levels consist of four 1’s, three 4’s, and twenty-eight
6’s, yielding a charging quality of 3.34.

Fig. 9 depicts the performance of TCA, FLA, and RAN
on large P3 instances. Most of the findings from Fig. 6 still
hold here. We would like to highlight that, in Fig. 9(c),
the increasing speed of the charging quality tends to slow
down gradually, e.g., the increment of TCA between the first
three consecutive groups are 0.21, 0.18, and 0.12. This is in
accordance with the submodularity of the objective function.

We also conduct evaluations based on large instances of
P3. Fig. 10 gives the comparison results on running time of
TCA, FLA, and RAN. Remember that the worst case time
complexity of TCA is O(MN3L3), thus, it is expected that
the running time of TCA increases as one of M, N, and
L increases. An interesting observation is that, TCA runs
averagely faster when L increases. The main reason behind this
phenomenon is that, when L increases, the number of iterations
in each while-loop (i.e., lines 3-7 and 10-14) becomes smaller,
which may shorten the running time.

In summary, the proposed algorithm TCA performs very
closely to OPT (the gap is no more than 4.5% of OPT), and
outperforms the other two baseline algorithms.
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Fig. 9: Evaluation results on large instances (the default setting is N = 20, M = 200, B = 3, 000, L = 6, and the side length of the 2-D plane is 1,000m).

Fig. 10: Running time comparison

VI. Conclusions

In this paper, we have studied the joint optimization problem
of charger placement and power allocation for wireless power
transfer. We proved that this problem is NP-complete by
reduction from the set cover problem. We first considered the
P3 problem with fixed power levels, and proposed a (1−1/e)-
approximation algorithm. Based on the acquired insights, we
then designed TCA for P3, which achieves an approximation
guarantee of 1−1/e

2L . We also discussed an extension of P3,
namely P3 in a cycle. Extensive simulation results confirmed
the performance of our algorithm compared with the optimal
algorithm and two other heuristic algorithms.
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