

南京航空航天大学

NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS

LPDA-EC: A Lightweight Privacy-Preserving Data Aggregation Scheme for Edge Computing

Jiale Zhang, Yanchao Zhao, Jie Wu & Bing Chen

@ Nanjing University of Aeronautics and Astronautics & Temple University

IEEE MASS 2018

Chengdu, China

□ Simple application scenario: smart grid

- Users collect the sensitive data
- Then, forward them to the data center
- Making the intelligent decisions

Traditional data transmission

- Communication overhead
- Adversary can eavesdrop the channel
- System entities may not fully trusted
- User's private data may leakage

How to efficiently transmit the data while protecting user's privacy?

PPDA solution

DPPDA: Privacy-preserving data aggregation

- Cryptographic scheme to protect the data privacy
- Signature scheme to ensure the integrity

Oct 10, 2018

Problem statement

□ So what's the problem?

- We can ensure the user's privacy cryptographic
- Data can be aggregated homomorphic
- The data integrity can be guaranteed signature
- Why can't we just use it?

Problem statement

□ Two small wrinkles:

• Complex <u>signature and verification</u> operations

Usern

Problem statement

□ Two small wrinkles:

• Complex <u>signature and verification</u> operations

2012 TPDS: EPPA	
Sign & Ver Cost	$(N+1) * T_m + (N+1) * T_p$
Total Cost	$(2N+5) * T_m + T_e + (N+9)T_p$

Notations	Descriptions
T_m	Multiplication operation
T _e	Exponentiation operation
T _p	Pairing operation

2014 TII: PEDA	
Sign & Ver Cost	$(N + 1) * T_m + (2N + 1) * T_e + (N + 1) * T_p$
Total Cost	$3N * T_m + (5N + 1) * T_e + (N + 1) * T_p$

• Aggregator is always <u>resource-constraint</u>

Edge computing architecture

□ LPDA: System model

• Shifting the time-consuming operations to ES

Entities	Trusted Model
TA	Fully trusted
СС	Honest-but-curious
ES	Honest-but-curious
ETs	
Adversary	Malicious

Oct 10, 2018

OOS: Online/offline signature

□ BLS signature scheme (BLS'01: Asymmetric version)

- KeyGen: output $[g_1, pk] = (g_1)^{\alpha}]$, $sk \leftarrow \alpha$
- Sign (*sk*, *m*): output $\sigma^{BLS} \leftarrow H(m)^{\alpha}$
- Verify (*pk*, *m*, σ^{BLS}): accept if $e(H(m), pk) = e(\sigma^{BLS}, g_1)$ -

$$e(H(m), pk) = e(H(m), (g_1)^{\alpha}) = e(H(m)^{\alpha}, g_1) = e(\sigma^{BLS}, g_1) \leftarrow - - - -$$

□ Property

• Signature aggregation: <u>anyone</u> can compress n signatures into <u>one</u>

OOS Construction

□ Offline signature:

• Calculate the DTCH function value: $H_{ch_i} = g_1^{r_i} \cdot g_2^{s_i} \cdot g_3^{u_i}$

State information: $St = (r_i, s_i, u_i) \leftarrow I$

- Let DTCH be the "msg": $\sigma_i^{BLS} = (H_0(H_{ch_i}))^{\alpha}$
- The verify phase is the same as BLS signature

Online signature:

- Chooses s_i' as a trapdoor random number
- Generate the online signature:

$$\sigma_i^{on} = u_i' = ((r_i - c_i) + (s_i - s_i')y + u_iz)z^{-1}$$

• Verify: $H_{ch}(r_i, s_i, u_i) = H_{ch}(c_i, s_i', u_i') = - -$

Oct 10, 2018

Aggregation Phase

Ciphertext aggregation: Pailler'97

- Paillier homomorphic encryption: $c_i = g^{m_i} \cdot v_i^{n_i} modn^2$
- Ciphertexts aggregation: $c = \prod_{i=1}^{\omega} c_i \mod n^2 = g_{i=1}^{m} \cdot \prod_{i=1}^{\omega} v_i^n \mod n^2$

• Decryption:
$$m = \sum_{i=1}^{\omega} m_i = \frac{L(c^{\lambda} modn^2)}{L(g^{\lambda} modn^2)} modn$$

□ Offline signature aggregation

• Signature aggregation: $\prod_{i=1}^{\omega} \sigma_i^{BLS} = \prod_{i=1}^{\omega} (H_0(H_{ch_i}))^{\alpha} \leftarrow \cdots$

• Verification:
$$\prod_{i=1}^{\omega} e(H_0(H_{ch_i}), pk) = \prod_{i=1}^{\omega} e(H_0(H_{ch_i}), g_1^{\alpha}) =$$

$$\prod_{i=1}^{\omega} e(H_0(H_{ch_i})^{\alpha}, g_1) = \prod_{i=1}^{\omega} e(\sigma_i^{BLS}, g_1) = e(\prod_{i=1}^{\omega} \sigma_i^{BLS}, g_1)$$

Oct 10, 2018

LPDA-EC Construction

□ Applying OOS to PPDA scheme

Performance: Computational

Computational complexity comparison

Performance: Communication

Communication overhead comparison

Our scheme is more efficient in both ET-to-ES and ES-to-CC communication overheads!

communication overneads

We proposed an online/offline signature and verification scheme, OOS, for edge computing which is proved existentially unforgeable under chosen message attacks.

We further apply the OOS scheme to the traditional PPDA scheme, and realize the lightweight privacy-preserving data aggregation with edge computing.

We conduct the numerical evaluation of the proposed LPDA-EC scheme, the results indicate that the time of signature and verification for edge terminals are small and constant.

Thanks a lot !

Questions?