3-Dimensional Localization via RFID Tag Array

Yuan Zhang†, Lei Xie†, Yanling Bu†, Yanan Wang†, Jie Wu‡, and Sanglu Lu†

†State Key Laboratory for Novel Software Technology, Nanjing University, China
‡Center for Networked Computing, Temple University, USA
Motivation

- Indoor Localization can be realized with the help of RFID.

Accurate 3D Localization
Existing RFID Localization schemes

- **RFID localization**
 - RF-IDraw (SIGCOMM, 14)
 - Tagoram (MOBICOM, 14)
 - BackPos (INFOCOM, 14)

- **Multipath suppression**
 - MobiTagbot (MOBICOM, 2014)
 - PinIt (SIGCOMM, 2013)

Motivation and Challenges Modeling the 3D Localization Our Solution: 3DLoc Performance Evaluation Conclusion
Challenges

• The 3D localization results can be impacted **multipath effect**
 → AoA-based mobile scanning scheme
 Remove the unexpected according to linear relationship of the AoA parameters.

• The **orientation** of the tagged objects is essential to be firstly determined before performing accurate 3D localization
 → Attach three tag arrays to three mutually orthogonal surfaces
AOA-based Localization

Phase difference \rightarrow angle of arrival

\[
\Delta \phi_{1,2} = 2\pi \cdot \frac{2\Delta d_{1,2}}{\lambda} + 2k\pi
\]

\[
\cos \theta = \frac{\lambda(\Delta \phi_{1,2} - 2k\pi)}{4\pi \Delta x}
\]

\[
\Delta d_{1,2} \approx \Delta x \cdot \cos \theta
\]

\[
\theta = \cos^{-1}\left(\frac{\lambda \cdot \Delta \phi_{1,2}}{4\pi \Delta x}\right)
\]

\[
x = \frac{x_1 + x_2}{2}
\]
Modeling the 3D Localization

- AOA-based Localization

\[\theta = \cos^{-1} \left(\frac{\lambda \Delta \phi}{4\pi \Delta x} \right) \]

Motivation and Challenges
Modeling the 3D Localization
Our Solution: 3DLoc
Performance Evaluation
Conclusion
We can calculate the tag’s angle of arrival at different locations:

\[R = \{ (\tilde{x}_0, \tilde{\theta}_0), \ldots, (\tilde{x}_m, \tilde{\theta}_m) \} \]
Modeling the 3D Localization

- **AoA Localization via Mobile Scanning**

Theorem 1: Let the antenna’s linear moving trajectory be the X axis and θ be the angle of arrival of the tag at position x, then and x and $\cot \theta$ have the following **linear relationship**:

$$\cot \theta = -\frac{1}{d_0} (x - x_0)$$

$$x - x_0 = d_0 \cdot \cot \theta$$
Modeling the 3D Localization

- AoA Localization via Mobile Scanning

(a) Free space
(b) Severe multipath

Fig. 3. Comparisons of \((\tilde{x}_i, \cot \tilde{\theta}_i)\) in two cases
Modeling the 3D Localization

- Tag Array-based Localization

✓ Accuracy
✓ Accuracy
✓ Orientation
Modeling the 3D Localization

- Tag Array-based Localization

Rotation

Flip

Motivation and Challenges Modeling the 3D Localization Our Solution: 3DLoc Performance Evaluation Conclusion
Modeling the 3D Localization

- Flip State

Maximum Z coordinate

Minimum Z coordinate

Same Z coordinate

Different Z coordinate

Target Tag Array
Modeling the 3D Localization

- Rotation Angle

Rotation angle α
Modeling the 3D Localization

1. **Rotation Angle** (four cases)

 - For \(i^{th} \) tag, its coordinates \((x_i, y_i)\) are related to the rotation angle \(\alpha\) and tag array center \((x_0, y_0)\):

 \[
 \begin{align*}
 x_i &= x_0 + p_i \cdot d \cos \beta \\
 y_i &= y_0 + q_i \cdot d \sin \beta \\
 \beta &= f(\alpha)
 \end{align*}
 \]

 - **Case (a)**: \(0 \leq \alpha < \frac{\pi}{2}\)
 - **Case (b)**: \(\frac{\pi}{2} \leq \alpha < \pi\)
 - **Case (c)**: \(\pi \leq \alpha < \frac{3\pi}{2}\)
 - **Case (d)**: \(\frac{3\pi}{2} \leq \alpha < 2\pi\)
3DLoc —— System Overview

Localization for single tag
- AoA Localization via Mobile Scanning
- Multi-path Suppression

Calibration by tag arrays
- Orientation Estimation
- Target Tag Array Localization
- Object Localization

3D location

Motivation and Challenges Modeling the 3D Localization Our Solution: 3DLoc Performance Evaluation Conclusion
3DLoc —— Localization for a single tag

- **AoA Localization via Mobile Scanning**

\[R = \{(\bar{x}_0, \bar{\theta}_0), ..., (\bar{x}_m, \bar{\theta}_m)\} \]

Linear relationship: \(\cot \theta = -\frac{1}{d_0} (x - x_0) \)

\[P = \{(\bar{x}_0, \cot \bar{\theta}_0), ..., (\bar{x}_m, \cot \bar{\theta}_m)\} \]

Linear least squares optimal solution \(x_0 \) and \(d_0 \)

\[
\arg \min_{d_0, x_0} \sum_{i=0}^{m} \left| \left(-\frac{1}{d_0} \cdot (\bar{x}_i - x_0) \right) - \cot \bar{\theta}_i \right|^2
\]
3DLoc — Localization for a single tag

- **Multipath Suppression**

1. Input: Point set $P = \{ (\bar{x}_0, \cot \bar{\theta}_0), ..., (\bar{x}_m, \cot \bar{\theta}_m) \}$
2. Split P into k subset using a slide window
3. Calculation for average changing rate
4. Outliers finding and removing
5. Output: new Point set P'
3DLoc —— Calibration by tag arrays

- **Orientation Estimation**

- **Distinguish** the three tag arrays
- **Judge** the flip state
- **Calibrate** the Z-coordinate of the target tag array

$$z_c = \frac{\sum_{i=1}^{n} \hat{z}_i}{n}$$
3DLoc —— Calibration by tag arrays

- Target Tag Array Localization

\[P_i = \{ (\tilde{x}_{i,1}, \cot(\tilde{\theta}_{i,1})), \cdots, (\tilde{x}_{i,k_i}, \cot(\tilde{\theta}_{i,k_i})) \} \]

Tag array center \((x_c, y_c, z_c)\)

Rotation angle \(\alpha\)
3DLoc —— Calibration by tag arrays

- Object Localization

3D coordinate of the object

\[
\begin{align*}
 x_o &= x_c + \frac{l_2}{2} \cdot \sin \alpha \\
 y_o &= z_o = z_c \cdot \cos \alpha \\
 z_o &= z_c
\end{align*}
\]
Performance Evaluation

• Implementation
Performance Evaluation

- Micro-Benchmarks
 - Determine a proper window size for multipath suppression

Fig. 12. Window size for multipath suppression

set ω to 15cm as a trade-off
Performance Evaluation

- **Micro-Benchmarks**
 - With or without multipath suppression

![Graph showing error (cm) vs. X for different tags with and without suppression](image)

Fig. 13. The performance of multipath suppression
Performance Evaluation

- Macro-Benchmarks

Two methods both perform well in the **free space**.

In the **multipath environment**, the errors for 3DLoc and the Hologram-based method are 8cm and 16.7cm respectively.

3DLoc **outperforms** the Hologram-based method significantly in the multipath environment.

Fig. 16. Scheme vs. error
Conclusion

- **3DLoc** uses the AoA-based **mobile scanning** scheme to accurately estimate the tagged objects’ orientations and 3D coordinates in the 3D space referring to the **fixed layout** of the tag array.

- We propose a novel algorithm to **suppress** the localization errors caused by the **multipath effect**.
Questions ?

Thank you !