
Approximation Algorithms for
Dependency-Aware Rule-Caching in

Software-Defined Networks

Jie Wu, Yang Chen and Huanyang Zheng
Center for Networked Computing

Temple University, USA

1. Introduction of Rule Caching
l Rule caching

¡ Install packet-processing rules in switches
¡ Switch types

Switch types Pros Cons
Hardware Fast

(>400 Gbps)
Small in capacity
(2K~10K)

Software Large in capacity Slow (40 Gbps)

¡ Hardware: Ternary
Content Addressable
Memory (TCAM)

¡ Software: Software-based
switches

General Rule Matching Problem

l Rule dependency graph
¡ Use of wild card * to reduce rule number
¡ Directed acyclic graph: rule and all its decedents (to be in cache)

l Maximum traffic-hit by placing no more than k rules
¡ NP-hard [1]

[1] Cacheflow: Dependency-aware rule-caching for software-gdefined networks (SOSR’16)

Rule Code Priority Weight
R1 000 6 10
R2 00* 5 60
R3 0** 4 30
R4 11* 3 5
R5 1*0 2 10
R6 10* 1 120

Rule Table

Efficient Rule Caching
l Assumption

¡ Prefix coding to reduce rule
number (optimal coding [2] is hard)

¡ All rules form a forest of
trees

l Constraint
¡ Descendant constraint
¡ Limited number of cached

rules k

l Objective
¡ Maximize number of rules hits

[2] Explicit path control in commodity data centers: Design and applications (ToN’16)

Rul
e

Action

1000 Port 1
10** Port 2
111* Port 3

TCAM forwarding table

1000
Hit

1100

Miss

Software switch
forwarding table

A Motivating Example

k=2

Rule Action

TCAM forwarding table

Rule Action

k=3
With maximum hit

2. Solutions
Greedy Solution One (Branch)
l Definition

¡ Branch (which includes fork)
l A rule and all its descendants

¡ Max branch
l If it meets either of the two conditions:

(1) Branch size is k
(2) If size < k, not a branch of another branch with a size of

k or less
¡ Maintaining max branches will include all cacheable branches

Branch in a max branch

deny rule segment

R ...

branch

R

max branch max segment
(a) Branch in a max branch

deny rule segment

R ...

branch

R

max branch max segment
(b) Segment a max segment

Fig. 2: Topological sorting order for a max branch (a) and a
max segment (b) in non-increasing order from left to right.

The remainder of the paper is organized as follows. Sections
2 and 3 discuss two greedy solutions, one for the basic model
using a branch for caching and the other one for an enhanced
model that cuts a branch with a dummy rule, together with
complexity and performance analysis. Section 4 reviews an
optimal solution based on dynamic programming. Section 5
conducts a simulation study. Section 6 concludes the paper.

II. GREEDY SOLUTION ONE

Given a rule set in a forest of trees (see Fig. 1), a tree branch

consists of a rule and all its descendants. Due to the space limit
of the cache, we can only accommodate a branch of a size
up to k (cache size). A max branch is a branch that meets
the following conditions: (1) the branch size is k, or (2) if its
branch size is less than k, then it is not a branch of another
branch with a size of k or less. In Table 1, when k = 3, the
max branches are [R1], [R2, R3, R4], and [R5]; when k = 5,
the max branches are [R1] and [R2, R3, R4, R5, R6]. Note that
when k = 3, R6 does not belong to any branch, i.e., it cannot
be cached. This represents the fact that not all rules can be
cacheable due to the dependency condition.

Based on the definitions of the branch and the max
branch (see their topological sorting order representations
in Fig. 2(a)), we have the following properties: the set of
max branches includes all eligible branches that can be
placed in the cache. Each rule in a max branch together
with its descendants form a branch. For example, in max
branch [R2, R3, R4, R5, R6], R2 forms branch [R2], R3 forms
[R2, R3], R4 forms [R2, R3, R4], R5 forms [R5], and R6

forms [R2, R3, R4, R5, R6].
Now, we calculate the unit benefit for each branch in a

max branch. Each rule has a unit cost, C, with a weight, W .
Our goal is to find a branch that maximizes the unit benefit,
defined as the ratio of rule weight to rule cost (�W/�C).
The challenge lies in the fact that once a candidate branch
is selected and removed for future consideration, unit benefit
values of other branches in the same max branch need to
be updated. Therefore, we need to find an appropriate data
structure to control the complexity.

The solution is to maintain a special branch that corre-
sponds to the maximum unit benefit for each max branch.
Then we build a heap that consists of all these special
branches.

Max branches
1) Calculate the branch size for each node through a simple

traversal of each tree from lowest to highest in the
topological sorting order.

Algorithm 1 Greedy Algorithm One
1: Construct max branches with each max branch arranged

in a topological sorting order.
2: Calculate unit benefit values for all branches in the max

branches.
3: Find a special branch, called the max unit benefit branch,

that has the maximum unit benefit in each max branch.
4: Maintain a heap for all max unit benefit branches.
5: repeat
6: Determine the branch that has the maximum unit ben-

efit in the heap.
7: Remove the branch and update the corresponding max

branch, including its new max unit benefit branch.
8: Update the heap accordingly based on the new max

unit benefit branch selected by b).
9: until the cache exceeds its capacity

10: Suppose Steps 5 to 9 stop at round i+ 1, i.e., the first i
branches have not exceeded the cache capacity. Then, we
select the larger of the two in terms of weight: the first i
branches or the (i+ 1)th branch.

2) Traverse each tree again from lowest to highest and
identify each branch that is not a descendant of another
branch of size k or less.

3) Extract the branch as a new max branch before contin-
uing the traversal process.

Fig. 1 shows the branch size for each rule shown in Table
1. When k = 3, [R1], [R2, R3, R4], and [R6] are three max
branches identified through the tree traversal process starting
from the root of each tree. It is clear that the complexity for
extracting the max branches is O(n). Now we can present the
greedy algorithm.

Theorem 1: The complexity of Greedy Algorithm One is
O(n+ k log n+ k

2).
Proof: The cost of Step 1 is O(n) for constructing max

branches and maintaining a topological sorting order for each
max branch. Steps 2 and 3 together cost O(n) because one
scan of each max branch is sufficient. Step 4 costs O(n) for
heap construction. For the loop in Steps 5 to 9, the max heap
in Step 6 costs O(log n); one max branch update in Step 7
costs O(k), and the heap update in Step 8 costs log n. As
there are at most k iterations in Step 5, the overall cost for
Step 5 is O(k(log n+ k)). Adding all the costs together, we
obtain the result. ⇤

Note that k in general is relatively small compared to n.
If k = O(

p
n) as in many practical cases, the complexity

becomes linear O(n).
Theorem 2: Greedy Algorithm One has an approximation

ratio of 2 compared to the optimal result on the total weight.
Proof: By way of algorithm construction, it is easy to verify

that all combinations of rules as cache units are considered
in the branch selection algorithm, subject to the dependency
and cache capacity constraints. The branch selection strictly
follows the unit benefit value of each unit. Also, it is clear

Definition Explanation

Unit cost C Each rule has a unit cost
Weight W Rule hits
Unit benefit Δ"/ΔC Ratio of rule weight to rule cost

Greedy Solution One

l Steps
¡ Select the branch with the

maximum unit benefit (Δ"/ΔC)
¡ Update unit benefit values of

other branches
¡ Use a heap to maintain max unit

benefit for each max branch

l Time complexity
O($ + & log $ + &2)
¡ n: rule number
¡ k: cache size

l Approximation ratio: 2
¡ First i items vs i+1th item

k=3
Optimal unit benefit
(43+13+7)/3=21

k=5
Optimal unit benefit
(43+13+7+12+20)/5=19

2. Solutions (cont’d)
Greedy Solution Two (Segment)
l Definition

¡ Segment
l Cut off a branch

¡ Deny rule
l A dummy rule to forward to the

software switch
l Cut branches with low-weights
l Unit benefit (Δ"/ΔC+1)

l We only consider segments
without a fork
¡ To avoid non-polynomial number of

choices

deny rule segment

R ...

branch

R

max branch max segment
(a) Branch in a max branch

deny rule segment

R ...

branch

R

max branch max segment
(b) Segment a max segment

Fig. 2: Topological sorting order for a max branch (a) and a
max segment (b) in non-increasing order from left to right.

The remainder of the paper is organized as follows. Sections
2 and 3 discuss two greedy solutions, one for the basic model
using a branch for caching and the other one for an enhanced
model that cuts a branch with a dummy rule, together with
complexity and performance analysis. Section 4 reviews an
optimal solution based on dynamic programming. Section 5
conducts a simulation study. Section 6 concludes the paper.

II. GREEDY SOLUTION ONE

Given a rule set in a forest of trees (see Fig. 1), a tree branch

consists of a rule and all its descendants. Due to the space limit
of the cache, we can only accommodate a branch of a size
up to k (cache size). A max branch is a branch that meets
the following conditions: (1) the branch size is k, or (2) if its
branch size is less than k, then it is not a branch of another
branch with a size of k or less. In Table 1, when k = 3, the
max branches are [R1], [R2, R3, R4], and [R5]; when k = 5,
the max branches are [R1] and [R2, R3, R4, R5, R6]. Note that
when k = 3, R6 does not belong to any branch, i.e., it cannot
be cached. This represents the fact that not all rules can be
cacheable due to the dependency condition.

Based on the definitions of the branch and the max
branch (see their topological sorting order representations
in Fig. 2(a)), we have the following properties: the set of
max branches includes all eligible branches that can be
placed in the cache. Each rule in a max branch together
with its descendants form a branch. For example, in max
branch [R2, R3, R4, R5, R6], R2 forms branch [R2], R3 forms
[R2, R3], R4 forms [R2, R3, R4], R5 forms [R5], and R6

forms [R2, R3, R4, R5, R6].
Now, we calculate the unit benefit for each branch in a

max branch. Each rule has a unit cost, C, with a weight, W .
Our goal is to find a branch that maximizes the unit benefit,
defined as the ratio of rule weight to rule cost (�W/�C).
The challenge lies in the fact that once a candidate branch
is selected and removed for future consideration, unit benefit
values of other branches in the same max branch need to
be updated. Therefore, we need to find an appropriate data
structure to control the complexity.

The solution is to maintain a special branch that corre-
sponds to the maximum unit benefit for each max branch.
Then we build a heap that consists of all these special
branches.

Max branches
1) Calculate the branch size for each node through a simple

traversal of each tree from lowest to highest in the
topological sorting order.

Algorithm 1 Greedy Algorithm One
1: Construct max branches with each max branch arranged

in a topological sorting order.
2: Calculate unit benefit values for all branches in the max

branches.
3: Find a special branch, called the max unit benefit branch,

that has the maximum unit benefit in each max branch.
4: Maintain a heap for all max unit benefit branches.
5: repeat
6: Determine the branch that has the maximum unit ben-

efit in the heap.
7: Remove the branch and update the corresponding max

branch, including its new max unit benefit branch.
8: Update the heap accordingly based on the new max

unit benefit branch selected by b).
9: until the cache exceeds its capacity

10: Suppose Steps 5 to 9 stop at round i+ 1, i.e., the first i
branches have not exceeded the cache capacity. Then, we
select the larger of the two in terms of weight: the first i
branches or the (i+ 1)th branch.

2) Traverse each tree again from lowest to highest and
identify each branch that is not a descendant of another
branch of size k or less.

3) Extract the branch as a new max branch before contin-
uing the traversal process.

Fig. 1 shows the branch size for each rule shown in Table
1. When k = 3, [R1], [R2, R3, R4], and [R6] are three max
branches identified through the tree traversal process starting
from the root of each tree. It is clear that the complexity for
extracting the max branches is O(n). Now we can present the
greedy algorithm.

Theorem 1: The complexity of Greedy Algorithm One is
O(n+ k log n+ k

2).
Proof: The cost of Step 1 is O(n) for constructing max

branches and maintaining a topological sorting order for each
max branch. Steps 2 and 3 together cost O(n) because one
scan of each max branch is sufficient. Step 4 costs O(n) for
heap construction. For the loop in Steps 5 to 9, the max heap
in Step 6 costs O(log n); one max branch update in Step 7
costs O(k), and the heap update in Step 8 costs log n. As
there are at most k iterations in Step 5, the overall cost for
Step 5 is O(k(log n+ k)). Adding all the costs together, we
obtain the result. ⇤

Note that k in general is relatively small compared to n.
If k = O(

p
n) as in many practical cases, the complexity

becomes linear O(n).
Theorem 2: Greedy Algorithm One has an approximation

ratio of 2 compared to the optimal result on the total weight.
Proof: By way of algorithm construction, it is easy to verify

that all combinations of rules as cache units are considered
in the branch selection algorithm, subject to the dependency
and cache capacity constraints. The branch selection strictly
follows the unit benefit value of each unit. Also, it is clear

Segment in a max segment

Converting a folk into
multiple segments

Greedy Solution Two
l Steps

¡ Select the max segment with the
maximum unit benefit

¡ Update unit benefit values of other
segments

¡ Use two heaps to maintain segments

l Time complexity:
¡ O(kn)

loss when a fork is converted into multiple segments (see one
example in Fig. 3 (b)).

Theorem 4: The unit benefit loss in terms of the ratio of unit
benefit of the fork and the unit benefit of the corresponding
multiple segments is 6/5.

Proof: Consider a fork with l branches with weight �W

and cost �C. The unit benefit of the fork is �W/(�C + l),
where l deny rules are used. The unit benefit of the segments
is �W/(�C + l + 1). Clearly, the fork to segment ratio is
1 + 1/(�C + l). Since each branch needs at least one unit,
the minimum �C is l + 1. The minimum l is 2. Therefore,
the maximum ratio is 6/5.

Theorem 5: The Combined Greedy Algorithm has an
approximation ratio of 24/5 compared to the optimal scheme
in terms of total weight.

Proof: We prove that for a segment with a deny rule, its
total weight �W will be at least half the weight of the optimal
scheme when the greedy method is used based on the unit
benefit. We only need to calculate the “waste” introduced by
the slot used for the deny rule. Suppose the weight of the rule
used by the deny rule is more than �W , then, the slot for the
deny rule would have been selected in an early round because
this slot plus one deny rule will generate a segment with a unit
benefit of over �W/2. That is, there is no waste of “space”
used for the deny rule. If the weight of the rule used by the
deny rule is no more than �W , then, the optimal solution
with the weight of the rule used by the deny rule included
has a weight of no more than 2�W . Combining the results
for Theorem 2 and Theorem 4, we have an approximation
ratio of 2⇥ 2⇥ 6/5 = 24/5. ⇤

In the example shown in Tab. 1, max s(R1), max s(R2),
max s(R3), max s(R4), max s(R5), and max s(R6) are [R1],
[R2, R3, R4], [R3, R4], [R4], [R5], and [R6], respectively.
Clearly max s(R4) has a maximum unit benefit of 21.5 with
deny rule R

⇤
3 : 100 ⇤ (SS). max s(R2) and max s(R3)

are updated to [R2, R3] and [R3] after the removal of R4,
respectively. max s(R5) is the next candidate with a maximum
unit benefit of 20. max s(R5) does not have the deny rule
as R5 is the head of a rule chain. The next candidate is
max s(R3) with a unit benefit of 13 because no new deny
rule is used as its immediate predecessor, R4, is already in
the cache. In this case, deny rule R

⇤
3 : 100 ⇤ (SS) is replaced

by deny rule R
⇤
2 : 1000. If k = 5, maxS(R6) : [R6] is

selected with a unit benefit of 12. Again, no new deny rule is
needed as its immediate successors, R4 and R5, are already
in the cache. Therefore, for the Combined Greedy Algorithm,
the deny rule is not needed when its immediate predecessor
or all its immediate successors of max s(R) in the rule set
are already in the cache.

IV. DYNAMIC PROGRAMMING SOLUTION

This section introduces an dynamic programming (DP)
solution to maximize the number of rule hits. Since rule
dependencies form a forest rather than a tree, a dummy root
with a weight of zero is introduced. We start with sorting
all rules in a depth-first order. For example, in Fig. 1, such

Fig. 4: Constructing the global heap (g-heap) from the max
heaps of local heaps (l-heaps).

an order can be {R0, R1, R6, R5, R4, R3, R2} with dummy
root R0. Let T [R,m] be the subtree induced by rule R, its
first m children (in terms of the depth-first order), and all
descendants of these m children. For example, in Fig. 1,
T [R6, 0] only includes R6, T [R6, 1] includes R5 and R6, and
T [R6, 2] includes R2, R3, R4, R5, and R6. Let d(R) be the
number of children of R.

Let O[R, d,m] denote the optimal cache-hits in the sense
that we cache m rules out of T [R, d]. These m rules follow
only the dependencies within T [R, d] and will ignore the other
dependencies. By definition, O[R0, d(R0), k] is our objective.
Let Wi denote the cache-hit of Ri. The initialization is:

O[Ri, 0,m] =

⇢
Wi if m � 1 and i 6= 0
0 otherwise (1)

The optimal recurrence pattern is:

O[Ri, d,m] = max
n
O[Ri, d� 1,m],

max
0m0m

h
O[Rid, d(Rid),m

0] +O[Ri, d�1,m�m0]
io

(2)

In Eq. 2, Rid is the d-th child of Ri. Note that O[Ri, d,m]
either ignores its descendants under the d-th child or uses these
descendants. For the latter case, we additionally require that
the composition of O[Rid, d(Rid),m0] and O[Ri, d�1,m�m0]
follow the dependencies within T [Ri, d]. Ri is cached if and
only if all the rules in T [Ri, d] are cached.

The time complexity of the dynamic programming solution
is O(k2n). This is because Eq. 2 takes O(k) to calculate,
and we need to compute Eq. 2 for each rule Ri and each
m (0 m k). Consequently, the DP solution has a
larger time complexity than the greedy solution one, but has a
better performance than the greedy solution one. However, the
dynamic programming solution may not be able to incorporate
deny rules. This is because deny rules lead to an exponential
number of combinations, as in Eq. 2.

V. IMPLEMENTATION

A. Real Traffic Traces and Settings

Simulations are conducted based on the publicly available
CAIDA packet trace of 2016 from the Equinix datacenter in
Chicago [10] and the real-world Cisco router configuration on
a Stanford backbone router [11].

CAIDA: The packet traces have a total of 20 million
packets sent over 30 minutes on high-speed Internet backbone

Constructing the global heap
(g-heap) from the max heaps
of local heaps (l-heaps)

k=2

Optimal unit benefit
without deny rules
(20+7)/2=13.5

Optimal unit benefit
with deny rules
43/(1+1)=21.5

+deny rule Rule Action
10** Port 1
100* Software

Hit

1000

Miss

Software switch
forwarding table

1010

Miss

1110

2. Solutions (cont’d)
Combined Greedy Solution
l Insight

¡ Combine the two greedy
solutions

¡ Use branch and segments
with the same criterion

l Maximum unit benefit
l Each maintains its own

heap

l Time complexity
¡ O(kn)

l Approximation ratio
¡ 24/5

+deny rule

k=3

Optimal unit benefit
with deny rules
(43+20)/(2+1)=21

2. Solutions (cont’d)

Dynamic Programming (DP) Solution

l Time complexity
¡ O(k2n)

m rules containing
vi and all its first
d-1 children
descendants

m rules
containing vi
and all its
first d
children
descendants

1 d...

m’ rules
containing vid and
all its children
descendants

m-m’ rules
containing vi and
all its first d- 1
children
descendants

Dynamic Programming Solution (cont’d)

l T[R,d]
¡ Subtree of rule R, and its

first d children’s subtrees
¡ Depth-first-search

l O[R,d,m]
¡ Optimal cache-hits by

caching m rules in T[R,d]
¡ O[R0, d(R0),k]

Our objective
l R0: tree root
l d(R0): all R0’s children

l Initialization

l Formulation

¡ Rid: d-th child of Ri

loss when a fork is converted into multiple segments (see one
example in Fig. 3 (b)).

Theorem 4: The unit benefit loss in terms of the ratio of unit
benefit of the fork and the unit benefit of the corresponding
multiple segments is 6/5.

Proof: Consider a fork with l branches with weight �W

and cost �C. The unit benefit of the fork is �W/(�C + l),
where l deny rules are used. The unit benefit of the segments
is �W/(�C + l + 1). Clearly, the fork to segment ratio is
1 + 1/(�C + l). Since each branch needs at least one unit,
the minimum �C is l + 1. The minimum l is 2. Therefore,
the maximum ratio is 6/5.

Theorem 5: The Combined Greedy Algorithm has an
approximation ratio of 24/5 compared to the optimal scheme
in terms of total weight.

Proof: We prove that for a segment with a deny rule, its
total weight �W will be at least half the weight of the optimal
scheme when the greedy method is used based on the unit
benefit. We only need to calculate the “waste” introduced by
the slot used for the deny rule. Suppose the weight of the rule
used by the deny rule is more than �W , then, the slot for the
deny rule would have been selected in an early round because
this slot plus one deny rule will generate a segment with a unit
benefit of over �W/2. That is, there is no waste of “space”
used for the deny rule. If the weight of the rule used by the
deny rule is no more than �W , then, the optimal solution
with the weight of the rule used by the deny rule included
has a weight of no more than 2�W . Combining the results
for Theorem 2 and Theorem 4, we have an approximation
ratio of 2⇥ 2⇥ 6/5 = 24/5. ⇤

In the example shown in Tab. 1, max s(R1), max s(R2),
max s(R3), max s(R4), max s(R5), and max s(R6) are [R1],
[R2, R3, R4], [R3, R4], [R4], [R5], and [R6], respectively.
Clearly max s(R4) has a maximum unit benefit of 21.5 with
deny rule R

⇤
3 : 100 ⇤ (SS). max s(R2) and max s(R3)

are updated to [R2, R3] and [R3] after the removal of R4,
respectively. max s(R5) is the next candidate with a maximum
unit benefit of 20. max s(R5) does not have the deny rule
as R5 is the head of a rule chain. The next candidate is
max s(R3) with a unit benefit of 13 because no new deny
rule is used as its immediate predecessor, R4, is already in
the cache. In this case, deny rule R

⇤
3 : 100 ⇤ (SS) is replaced

by deny rule R
⇤
2 : 1000. If k = 5, maxS(R6) : [R6] is

selected with a unit benefit of 12. Again, no new deny rule is
needed as its immediate successors, R4 and R5, are already
in the cache. Therefore, for the Combined Greedy Algorithm,
the deny rule is not needed when its immediate predecessor
or all its immediate successors of max s(R) in the rule set
are already in the cache.

IV. DYNAMIC PROGRAMMING SOLUTION

This section introduces an dynamic programming (DP)
solution to maximize the number of rule hits. Since rule
dependencies form a forest rather than a tree, a dummy root
with a weight of zero is introduced. We start with sorting
all rules in a depth-first order. For example, in Fig. 1, such

Fig. 4: Constructing the global heap (g-heap) from the max
heaps of local heaps (l-heaps).

an order can be {R0, R1, R6, R5, R4, R3, R2} with dummy
root R0. Let T [R,m] be the subtree induced by rule R, its
first m children (in terms of the depth-first order), and all
descendants of these m children. For example, in Fig. 1,
T [R6, 0] only includes R6, T [R6, 1] includes R5 and R6, and
T [R6, 2] includes R2, R3, R4, R5, and R6. Let d(R) be the
number of children of R.

Let O[R, d,m] denote the optimal cache-hits in the sense
that we cache m rules out of T [R, d]. These m rules follow
only the dependencies within T [R, d] and will ignore the other
dependencies. By definition, O[R0, d(R0), k] is our objective.
Let Wi denote the cache-hit of Ri. The initialization is:

O[Ri, 0,m] =

⇢
Wi if m � 1 and i 6= 0
0 otherwise (1)

The optimal recurrence pattern is:

O[Ri, d,m] = max
n
O[Ri, d� 1,m],

max
0m0m

h
O[Rid, d(Rid),m

0] +O[Ri, d�1,m�m0]
io

(2)

In Eq. 2, Rid is the d-th child of Ri. Note that O[Ri, d,m]
either ignores its descendants under the d-th child or uses these
descendants. For the latter case, we additionally require that
the composition of O[Rid, d(Rid),m0] and O[Ri, d�1,m�m0]
follow the dependencies within T [Ri, d]. Ri is cached if and
only if all the rules in T [Ri, d] are cached.

The time complexity of the dynamic programming solution
is O(k2n). This is because Eq. 2 takes O(k) to calculate,
and we need to compute Eq. 2 for each rule Ri and each
m (0 m k). Consequently, the DP solution has a
larger time complexity than the greedy solution one, but has a
better performance than the greedy solution one. However, the
dynamic programming solution may not be able to incorporate
deny rules. This is because deny rules lead to an exponential
number of combinations, as in Eq. 2.

V. IMPLEMENTATION

A. Real Traffic Traces and Settings

Simulations are conducted based on the publicly available
CAIDA packet trace of 2016 from the Equinix datacenter in
Chicago [10] and the real-world Cisco router configuration on
a Stanford backbone router [11].

CAIDA: The packet traces have a total of 20 million
packets sent over 30 minutes on high-speed Internet backbone

loss when a fork is converted into multiple segments (see one
example in Fig. 3 (b)).

Theorem 4: The unit benefit loss in terms of the ratio of unit
benefit of the fork and the unit benefit of the corresponding
multiple segments is 6/5.

Proof: Consider a fork with l branches with weight �W

and cost �C. The unit benefit of the fork is �W/(�C + l),
where l deny rules are used. The unit benefit of the segments
is �W/(�C + l + 1). Clearly, the fork to segment ratio is
1 + 1/(�C + l). Since each branch needs at least one unit,
the minimum �C is l + 1. The minimum l is 2. Therefore,
the maximum ratio is 6/5.

Theorem 5: The Combined Greedy Algorithm has an
approximation ratio of 24/5 compared to the optimal scheme
in terms of total weight.

Proof: We prove that for a segment with a deny rule, its
total weight �W will be at least half the weight of the optimal
scheme when the greedy method is used based on the unit
benefit. We only need to calculate the “waste” introduced by
the slot used for the deny rule. Suppose the weight of the rule
used by the deny rule is more than �W , then, the slot for the
deny rule would have been selected in an early round because
this slot plus one deny rule will generate a segment with a unit
benefit of over �W/2. That is, there is no waste of “space”
used for the deny rule. If the weight of the rule used by the
deny rule is no more than �W , then, the optimal solution
with the weight of the rule used by the deny rule included
has a weight of no more than 2�W . Combining the results
for Theorem 2 and Theorem 4, we have an approximation
ratio of 2⇥ 2⇥ 6/5 = 24/5. ⇤

In the example shown in Tab. 1, max s(R1), max s(R2),
max s(R3), max s(R4), max s(R5), and max s(R6) are [R1],
[R2, R3, R4], [R3, R4], [R4], [R5], and [R6], respectively.
Clearly max s(R4) has a maximum unit benefit of 21.5 with
deny rule R

⇤
3 : 100 ⇤ (SS). max s(R2) and max s(R3)

are updated to [R2, R3] and [R3] after the removal of R4,
respectively. max s(R5) is the next candidate with a maximum
unit benefit of 20. max s(R5) does not have the deny rule
as R5 is the head of a rule chain. The next candidate is
max s(R3) with a unit benefit of 13 because no new deny
rule is used as its immediate predecessor, R4, is already in
the cache. In this case, deny rule R

⇤
3 : 100 ⇤ (SS) is replaced

by deny rule R
⇤
2 : 1000. If k = 5, maxS(R6) : [R6] is

selected with a unit benefit of 12. Again, no new deny rule is
needed as its immediate successors, R4 and R5, are already
in the cache. Therefore, for the Combined Greedy Algorithm,
the deny rule is not needed when its immediate predecessor
or all its immediate successors of max s(R) in the rule set
are already in the cache.

IV. DYNAMIC PROGRAMMING SOLUTION

This section introduces an dynamic programming (DP)
solution to maximize the number of rule hits. Since rule
dependencies form a forest rather than a tree, a dummy root
with a weight of zero is introduced. We start with sorting
all rules in a depth-first order. For example, in Fig. 1, such

Fig. 4: Constructing the global heap (g-heap) from the max
heaps of local heaps (l-heaps).

an order can be {R0, R1, R6, R5, R4, R3, R2} with dummy
root R0. Let T [R,m] be the subtree induced by rule R, its
first m children (in terms of the depth-first order), and all
descendants of these m children. For example, in Fig. 1,
T [R6, 0] only includes R6, T [R6, 1] includes R5 and R6, and
T [R6, 2] includes R2, R3, R4, R5, and R6. Let d(R) be the
number of children of R.

Let O[R, d,m] denote the optimal cache-hits in the sense
that we cache m rules out of T [R, d]. These m rules follow
only the dependencies within T [R, d] and will ignore the other
dependencies. By definition, O[R0, d(R0), k] is our objective.
Let Wi denote the cache-hit of Ri. The initialization is:

O[Ri, 0,m] =

⇢
Wi if m � 1 and i 6= 0
0 otherwise (1)

The optimal recurrence pattern is:

O[Ri, d,m] = max
n
O[Ri, d� 1,m],

max
0m0m

h
O[Rid, d(Rid),m

0] +O[Ri, d�1,m�m0]
io

(2)

In Eq. 2, Rid is the d-th child of Ri. Note that O[Ri, d,m]
either ignores its descendants under the d-th child or uses these
descendants. For the latter case, we additionally require that
the composition of O[Rid, d(Rid),m0] and O[Ri, d�1,m�m0]
follow the dependencies within T [Ri, d]. Ri is cached if and
only if all the rules in T [Ri, d] are cached.

The time complexity of the dynamic programming solution
is O(k2n). This is because Eq. 2 takes O(k) to calculate,
and we need to compute Eq. 2 for each rule Ri and each
m (0 m k). Consequently, the DP solution has a
larger time complexity than the greedy solution one, but has a
better performance than the greedy solution one. However, the
dynamic programming solution may not be able to incorporate
deny rules. This is because deny rules lead to an exponential
number of combinations, as in Eq. 2.

V. IMPLEMENTATION

A. Real Traffic Traces and Settings

Simulations are conducted based on the publicly available
CAIDA packet trace of 2016 from the Equinix datacenter in
Chicago [10] and the real-world Cisco router configuration on
a Stanford backbone router [11].

CAIDA: The packet traces have a total of 20 million
packets sent over 30 minutes on high-speed Internet backbone

7. Simulation
l Comparison algorithms [1]

¡ Dependent
l Branch without using heap

¡ Cover
l Segment without using heaps

l Our algorithms
¡ Branch
¡ Segment
¡ Combined
¡ DP (optimal)

[1] Cacheflow: Dependency-aware rule-caching for software-defined networks (SOSR’16)

15 min

Rule update frequency

CacheExecution
time

Cache-hit
miss

Settings
l Data sets

¡ CAIDA packet trace
l 12,000 forwarding rules

¡ Stanford Backbone packet trace
l 180,000 forwarding rules

l Metrics
¡ Execution time
¡ Cache-hit ratio with TCAM size
¡ Cache-hit ratio with number of packets

l Variables
¡ TCAM cache size: k= 63~2000

2000 4000 6000 8000 10000 12000
Number of forwarding rules

0

100

200

300

Ex
ec

ut
io

n
tim

e/
se

c

Branch
Segment
Combined
DP
Cover
Dependent

(a) Algorithm execution time.

63 125 250 500 1000 2000
TCAM cache size (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(b) Cache hit traffic and TCAM size.

6.25 12.5 25 50 100 200
Number of packets/100k (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(c) Cache hit traffic and the number of packets.

Fig. 5: CAIDA packet trace.

links. Since CAIDA does not publish the policy used to pro-
cess these packets, we build a policy by extracting forwarding
rules based on the destination IP addresses of the packets in
the trace. We obtain around 12,000 IP destination-based rules.

Stanford Backbone: The policy has around 180K Open-
Flow rules that match on the destination’s IP address. We
follow the processing method in [6] and generate a packet
trace that matches the routing policy by assigning a traffic
volume to each rule drawn from a Zipf distribution [12]. The
resulting packet trace had around 30 million packets randomly
shuffled over 30 minutes.

B. Comparison Algorithms and Metrics

Two baseline algorithms, Dependent (set) and Cover (set),
in [6] and our four proposed algorithms are included. The
Greedy Algorithm One, Two, and the Combined Algorithm
are denoted as Branch, Segment, and Combined, respec-
tively. The difference between Dependent and Branch is that
Branch includes how to split dependent rules and ensure the
complexity bound. The Cover algorithm in [6] relaxes the
rule dependency constraints by creating a small number of
deny rules that cover many low-weight rules, but it does not
guarantee the performance.

Three comparison metrics are employed: (i) Execution time.
It measures the time of running the algorithms to decide which
rules are preferred to be cached in the TCAM hardware.
The time unit is seconds. (ii) Cache-hit traffic ratio on the
variability of the TCAM size. We observe the cache-hit traffic
ratio over the total traffic when the TCAM size changes
from 125 to 2,000 entries. (iii) Cache-hit traffic ratio on the
variability of the number of packets. We verify the efficiency
of our three algorithms by applying the real trace set. We
randomly select packets to test the metrics. Additionally,
to further improve the performance without increasing the
complexity, we use the following simple enhancement: when
the cache is not full, our algorithms will continue filling the
cache using the remaining rules based on the topological order
until either the cache is full or the rule set is exhausted.

Since the rule coding has been studied in [8], it is out of our
scope. As rules are inserted/deleted dynamically based on the
changes in policy/traffic demands, rule caching should adapt
quickly (i.e., not offline), if not immediately, in most of current
systems. A long adaption time is intolerable, for example,

15 minutes update time of 180K rules to mitigate a DDos
attack [6]. There is a trade-off between caching efficiency and
program execution time.

C. Performance with the CAIDA traffic trace

Fig. 5 shows results with the CAIDA traffic trace. We find
that there are many shallow dependencies in the dependency
graph. The depth of the dependency chains varies from 1 to 5.
Many leaves’ depths are 2 or 3. These shallow dependencies
incur the advantages of our greedy algorithms not so obvious.
Fig. 5(a) shows the execution time of the six algorithms with
the variability of rules. The dynamic programming method DP,
the red line, takes the longest time. The other five take much
less time than DP, because they are greedy algorithms that
make locally optimal choices without the need to search all
possibilities. All of them take at most 30% of Algorithm DP’s
execution time. Because of the elaborate heap implementation,
Algorithm Branch is faster than Algorithm Dependent by at
most 21%, and Algorithm Segment takes only 84% time on
average compared to Algorithm Cover. As Algorithm Com-
bined selects the better choice between Branch and Segment,
it costs a little more time but the performance improves a lot.

Fig. 5(b) lists the cache-hit traffic ratio over the total traffic
on the variability of TCAM size. An advanced Pronto-Pica8
3290 switch has an ASIC that can hold 2,000 OpenFlow rules.
We use the logarithm as the x-axis to show the difference more
clearly. Algorithm DP does the best among all six algorithms
because it sacrifices more time and memory to pursue the
optimal solution. Our four algorithms achieve at least a 79.8%
hit ratio with 2,000 rules, which is just 1.1% of the total rule
table. Algorithm Branch achieves around 77.8% , Algorithm
Segment is around 84.2% and Algorithm Combined is around
86.6% against the optimal algorithm DP’s hit ratio.

Fig. 5(c) shows the results of the cache-hit traffic ratio on
the variability of the number of packets. We aim at testing
our algorithms’ universality. The performance of all four
algorithms keeps steadily. Algorithm DP still does the best
among all six algorithms. It achieves a cache-hit rate around
90.0% when the packet number varies from 0.6 to 20 million.

D. Performance with the Stanford backbone router

The performance with the Stanford backbone router is
shown in Fig. 6. The forwarding actions have fewer choices.

Simulation Results

CAIDA packet trace

l DP has a much larger execution time than others
l Branch is faster than Dependent because of using heaps
l Our four algorithms achieve at least a 79.8% hit ratio with

2,000 cache size, which is just 1.1% of the total rule table.
l DP achieves the best cache-hit ratio.

~6 min

Simulation Results (cont’d)

5630 11250 22500 45000 90000 180000
Number of forwarding rules (log scale)

0

1000

2000

3000

4000

Ex
ec

ut
io

n
tim

e/
se

c

Branch
Segment
Combined
DP
Cover
Dependent

(a) Algorithm execution time.

63 125 250 500 1000 2000
TCAM cache size (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(b) Cache hit traffic and TCAM size.

9.375 18.75 37.5 75 150 300
Number of packets/100k (log scale)

40

60

80

100

C
ac

he
-h

it
ra

tio
 (%

)

Branch,Dependent
Segment
Combined
DP
Cover

(c) Cache hit traffic and the number of packets.

Fig. 6: Stanford backbone router.

Thus, the depth of the dependency chains varies from 1 to 8
and there are fewer shallow dependencies. The performances
of our algorithms are better. Fig. 6(a) is the execution time
result depending on the forwarding rules that vary from 563
to 18,000. It has more rules than CAIDA. The growth in
number makes Algorithm DP try more possibilities while
searching for the optimal one. Then, the complexity increases
and it needs more time as shown in the red line. Reversely,
compared to Fig. 5(a), our three greedy algorithms’ times are
only 82%, 79% and 83%, respectively. This illustrates that
these algorithms have better performances in the deeper chain.

The cache-hit ratio on the variability of TCAM size is
shown in Fig. 6(b). The basic increasing tendency is analogous
to Fig. 5(b). With more entries, the cache-hit probability of
the hardware switch becomes larger. All six lines stabilize
earlier than CAIDA. This is relative to the deeper dependency
chain and the less shallow dependencies in this data set. It
also illustrates that deeper dependencies need less forwarding
entries because applying a deeper dependency rule gains more
benefits. Additionally, the optimal solution’s performance is
undoubtedly the best and the ratio reaches 92.3% when the
TCAM entry number is 2,000. Our three greedy algorithms
achieve better ratios than the CAIDA one with the same
TCAM size. For example, Algorithm Branch’s ratio is 87.4%,
Algorithm Segment’s is 91.3% and Algorithm Combined’s is
93.0% against the Alg. DP when the TCAM size is 2,000.

Fig. 6(c) shows the performance on the variability of the
number of packets. It is similar to the CAIDA one in that
the more packets there are, the higher the cache-hit ratio
is. All our four algorithms’ performances are better than in
the CAIDA data set. For 30 million packets, Algorithm DP’s
cache-hit ratio reaches 90.2%, Algorithm Combined reaches
89.4%, Algorithm Segment reaches 83.7% and Algorithm
Branch reaches 81.9%. Thus, Algorithm DP achieves the
best performance in the rule placement at the cost of a
longer execution time and more memory space. Algorithm
Branch takes the least execution time and achieves the same
performance as Algorithm Dependent, the same situation
of Algorithm Segment against Algorithm Cover. Algorithm
Combined is the best deal because of the trade-off between
its complexity and its performance.

VI. CONCLUSION

This paper studies the efficient rule cache problem in
SDNs. The hardware switches TCAM enable fast lookups
for matching rules, but have limited memory. The software
switches have enough memory to store rules, but slow in
matching. Consequently, we need to place light-weight (high-
hit) rules in TCAM hardware and use software switches to
handle the cache-miss traffic. We propose three greedy effec-
tive algorithms. The first one with approximation 2 respects
the dependency constraint. The second one inserts deny rules
that relax the dependency constraint. The third one combines
the first and second to have an approximation of 24

5 . We also
apply dynamic programming to generate an optimal solution
without deny rules, but slow (i.e., heavy-weight), solution. We
evaluate our algorithms through real data-driven simulations.

REFERENCES

[1] R. MacDavid, R. Birkner, O. Rottenstreich, A. Gupta, N. Feam-
ster, and J. Rexford, “Concise encoding of flow attributes in sdn
switches,” ser. SOSR, 2017.

[2] B. Salisbury, “Tcams and openflow: What every sdn practitioner
must know,” See http://tinyurl. com/kjy99uw, 2012.

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past:
Scalable ethernet for data centers,” in CoNEXT, 2012.

[4] L. Peng, W. Lu, and L. Duan, “Power efficient ip lookup with
supernode caching,” in GLOBECOM, 2007.

[5] Z. Huang, G. Liu, and J. Peir, “Greedy prefix cache for ip
routing lookups,” in I-SPAN, 2009.

[6] N. Katta, O. Alipourfard, J. Rexford, and D. Walker,
“Cacheflow: Dependency-aware rule-caching for software-
defined networks,” in Symp. on SDN Research, 2016.

[7] P. He, W. Zhang, H. Guan, K. Salamatian, and G. Xie, “Partial
order theory for fast tcam updates,” IEEE/ACM Trans. Netw.,
vol. 26, no. 1, pp. 217–230, Feb. 2018.

[8] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao, and
C. Guo, “Explicit path control in commodity data centers: De-
sign and applications,” IEEE/ACM Transactions on Networking,
vol. 24, no. 5, pp. 2768–2781, 2016.

[9] H. Lim, C. Yim, and E. E. Swartzlander Jr, “Priority tries for
ip address lookup,” IEEE Transactions on Computers, vol. 59,
no. 6, pp. 784–794, 2010.

[10] “The caida anonymized internet traces 2016 dataset,”
http://www.caida.org/data/passive/passive 2016 dataset.xml.

[11] “Stanford backbone router forwarding configuration.”
http://tinyurl.com/oaezlha.

[12] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang,
“Leveraging zipf’s law for traffic offloading,” SIGCOMM Com-

put. Commun. Rev., vol. 42, no. 1, pp. 16–22, 2012.

Stanford backbone trace

l More rules result in a much larger execution time
l Our three greedy algorithms achieve better ratios than CAIDA

one with the same TCAM size because of deeper dependencies
l For 30 million packets, DP’s cache-hit ratio reaches 90.2%,

Combined reaches 89.4%, Segment reaches 83.7% and Branch
reaches 81.9% with 2,000 cache size.

~70 min

8. Conclusion

l Hardware and software switches
l Caching technology

¡ Wildcard (*) rule matching
¡ Rule dependency constraints
¡ Deny rule
¡ limited number of rules in TCAM

l Objective
¡ Maximize cache-hit ratio

l Solutions
¡ Three greedy algorithms with approximation ratios
¡ Optimal DP solution

Q & A

