Approximation Algorithms for
Dependency-Aware Rule-Caching in
Software-Defined Networks

Jie Wu, Yang Chen and Huanyang Zheng

Center for Networked Computing

I][I Temple University, USA



1. Introduction of Rule Caching

Rule caching

Install packet-processing rules in switches
Switch types

Switches ~ |

Switch types | Pros Cons
Hardware Fast Small in capacity
(>400 Gbps) (2K~10K)
Software Large in capacity | Slow (40 Gbps)
oo | " |
. packets |
Hardware: Ternary s TCAM  ——»
Content Addressable | ! e
Memory (TCAM) | I | traffic
I
Software: Software-based : |
switches | Software | |
| |
| |




General Rule Matching Problem

Rule Table

Rule | Code | Priority | Weight

R, | 000 6 10 R,

R, | 00* 5 60 . t

*

R, | 0*~ | 4 30 00

R, | 11* 3 5 Ry

R. | 1*0 2 10 000

Ry | 10* 1 120 R,

Rule dependency graph

Use of wild card * o reduce rule number
Directed acyclic graph: rule and all its decedents (to be in cache)
Maximum traffic-hit by placing no more than k rules

NP-hard [
[1] Cacheflow: Dependency-aware rule-caching for software-gdefined networks (SOSR'16)



Efficient Rule Caching

Assumption

Prefix coding to reduce rule
humber (optimal coding 12! is hard)

All rules form a forest of
trees

Constraint
Descendant constraint

000
1000

Limited number of cached
rules k

Objective

Maximize number of rules hits

TCAM forwarding table
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Software switch >
—( forwarding table
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[2] Explicit path control in commodity data centers: Design and applications (ToN'16)



A Motivating Example

TCAM forwarding table
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With maximum hit



2. Solutions

Greedy Solution One (Branch)

c ey branch
Definition —
Branch (which includes fork) . K _
-
A rule and all its descendants max branch
Max branch Branch in a max branch

If it meets either of the two conditions:

(1) Branch size is k

(2) If size < k, not a branch of another branch with a size of

k or less

Maintaining max branches will include all cacheable branches

Definition Explanation

Unit cost C Each rule has a unit cost
Weight W Rule hits

Unit benefit AW /AC | Ratio of rule weight to rule cost




Greedy Solution One

Steps

Select the branch with the
maximum unit benefit (AW /AC)

Update unit benefit values of
other branches

Use a heap to maintain max unit
benefit for each max branch

Time complexity

O(n + klogn + k?)
n: rule number

k: cache size k=5

Approximation ratio: 2 Optimal unit benefit
First i items vs i+1™h item (43+13+7913+20)/5=19



2. Solutions (cont'd)

Greedy Solution Two (Segment)
Definition
Segment
Cut off a branch

Deny rule

A dummy rule o forward to the
software switch

Cut branches with low-weights
Unit benefit (AW /AC+1)

We only consider segments
without a fork

To avoid non-polynomial number of
choices

deny rule segment

\
W77 |
=
Y
max segment
Segment in a max segment

N y,

(a) A fork (b) Three segments
Converting a folk into

multiple segments



Greedy Solution Two A

Steps 7 ~

Select the max segment with the .. /A"
maximum unit benefit
max s(R) max s(R)

UPdGTe un”’ benef” VGIU@S Of OTher max segment  max segment max segment
segments

o Constructing the global heap
Use two heaps to maintain segments (g-heap) from the max heaps

Time COIT\pIeXiTY: of local heaps (I-heaps)

‘ —-
d | '
=2 A + eny rule Action Miss

Software

Optimal unit benefit
withalengenytaales

{30235

Software switch
forwarding table



2. Solutions (cont'd)

Combined Greedy Solution

Insight
Combine the two greedy @ R 0 @ Ry: 4

solutions .
(20 R5:1110
+deny rule

Use branch and segments
with the same criterion

Maximum unit benefit R;:100%
Each maintains its own
heap R»:1000
Time complexity
O(kn) k=3
Approximation ratio Optimal unit benefit

with deny rules
24/5 (43+20)/(2+1)=21



2. Solutions (cont'd)

Dynamic Programming (DP) Solution

m rules congdining Vi
v,and all its firs
- I / [ X X ] \
d-1 children 7. 4 d
descendan / | N
/ N

, / I N

m rules
containing v;
___ and all its
first d
children
descendants

m-m’rules
. . containing v; and
Time complexity allits first d- 1

5 children
Olk*n) descendants

m’rules
containing v;qand
all its children
descendants



Dynamic Programming Solution (cont'd)

T[R,d] Initialization
Subtree of rule R, and its O[R;,0,m] = {Wz‘ if m > 1 andi#0
first d children's subtrees 0 otherwise
Depth-first-search
Formulation
O[R d m] O[R;,d, m| = max {O[Ri,d — 1, m],
Optimal cache-hits by o Jnax {O[Ridad(Rid)am/] + O[Ri,d—l,m—m/]]}

caching m rules in T[R,d]
O[Ro., d(Ro).K]
Our objective

Ro: tree root
d(Rp): all Ry's children

Rid: d-th child of R,’



7. Simulation

Comparison algorithms [

Dependent

Branch without using heap Execution Cache Cache-hit

Cover time / miss
Segment without using heaps
Our algorithms

Branch
Rule update frequency

Segment
Combined
DP (optimal)

[1] Cacheflow: Dependency-aware rule-caching for software-defined networks (SOSR'16)



Settings

Data sets
CAIDA packet trace

52 3 “A]i .’:j:.‘:
g F*.:y"
N » ey
. | : #~dlll Center for Applied Internet Data Analysis
orwarding rules | UG

Stanford Backbone packet trace
for'war'ding rules Stanford\ University IT
Metrics
Execution time
Cache-hit ratio with TCAM size
Cache-hit ratio with number of packets

Variables
TCAM cache size: k= 63~2000




Execution time/sec

Simulation Results

~6 min
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Number of forwarding rules TCAM cache size (log scale) Number of packets/100k (log scale)
(a) Algorithm execution time. (b) Cache hit traffic and TCAM size. (c) Cache hit traffic and the number of packets.
CAIDA packet trace

DP has a much larger execution time than others
Branch is faster than Dependent because of using heaps

Our four algorithms achieve at least a 79.8% hit ratio with
2,000 cache size, which is just 1.1% of the total rule table.

DP achieves the best cache-hit ratio.



Simulation Results (cont'd)
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(a) Algorithm execution time. (b) Cache hit traffic and TCAM size. (c) Cache hit traffic and the number of packets.

Stanford backbone trace
More rules result in a much larger execution time

Our three greedy algorithms achieve better ratios than CAIDA
one with the same TCAM size because of deeper dependencies

For 30 million packets, DP's cache-hit ratio reaches 90.2%,
Combined reaches 89.4%, Segment reaches 83.7% and Branch
reaches 81.9% with 2,000 cache size.



8. Conclusion

Hardware and software switches

Caching technology
Wildcard (*) rule matching
Rule dependency constraints
Deny rule
limited number of rules in TCAM
Objective
Maximize cache-hit ratio
Solutions
Three greedy algorithms with approximation ratios
Optimal DP solution
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