Approximation Algorithms for
Dependency-Aware Rule-Caching in
Software-Defined Networks

Jie Wu, Yang Chen and Huanyang Zheng

Center for Networked Computing

I][I Temple University, USA

1. Introduction of Rule Caching

Rule caching

Install packet-processing rules in switches
Switch types

Switches ~ |

Switch types | Pros Cons
Hardware Fast Small in capacity
(>400 Gbps) (2K~10K)
Software Large in capacity | Slow (40 Gbps)
oo | " |
. packets |
Hardware: Ternary s TCAM ——»
Content Addressable | ! e
Memory (TCAM) | I | traffic
I
Software: Software-based : |
switches | Software | |
| |
| |

General Rule Matching Problem

Rule Table

Rule | Code | Priority | Weight

R, | 000 6 10 R,

R, | 00* 5 60 . t

*

R, | 0*~ | 4 30 00

R, | 11* 3 5 Ry

R. | 1*0 2 10 000

Ry | 10* 1 120 R,

Rule dependency graph

Use of wild card * o reduce rule number
Directed acyclic graph: rule and all its decedents (to be in cache)
Maximum traffic-hit by placing no more than k rules

NP-hard [
[1] Cacheflow: Dependency-aware rule-caching for software-gdefined networks (SOSR'16)

Efficient Rule Caching

Assumption

Prefix coding to reduce rule
humber (optimal coding 12! is hard)

All rules form a forest of
trees

Constraint
Descendant constraint

000
1000

Limited number of cached
rules k

Objective

Maximize number of rules hits

TCAM forwarding table

Action

ort 1
10** | Port 2
11> | Por

{it
= Miss

—

> _\

Software switch >
—(forwarding table

¥4

[2] Explicit path control in commodity data centers: Design and applications (ToN'16)

A Motivating Example

TCAM forwarding table

tte—TActton—

Rie—t+-Acton—

k=3

With maximum hit

2. Solutions

Greedy Solution One (Branch)

c ey branch
Definition —
Branch (which includes fork) . K _
-
A rule and all its descendants max branch
Max branch Branch in a max branch

If it meets either of the two conditions:

(1) Branch size is k

(2) If size < k, not a branch of another branch with a size of

k or less

Maintaining max branches will include all cacheable branches

Definition Explanation

Unit cost C Each rule has a unit cost
Weight W Rule hits

Unit benefit AW /AC | Ratio of rule weight to rule cost

Greedy Solution One

Steps

Select the branch with the
maximum unit benefit (AW /AC)

Update unit benefit values of
other branches

Use a heap to maintain max unit
benefit for each max branch

Time complexity

O(n + klogn + k?)
n: rule number

k: cache size k=5

Approximation ratio: 2 Optimal unit benefit
First i items vs i+1™h item (43+13+7913+20)/5=19

2. Solutions (cont'd)

Greedy Solution Two (Segment)
Definition
Segment
Cut off a branch

Deny rule

A dummy rule o forward to the
software switch

Cut branches with low-weights
Unit benefit (AW /AC+1)

We only consider segments
without a fork

To avoid non-polynomial number of
choices

deny rule segment

\
W77 |
=
Y
max segment
Segment in a max segment

N y,

(a) A fork (b) Three segments
Converting a folk into

multiple segments

Greedy Solution Two A

Steps 7 ~

Select the max segment with the .. /A"
maximum unit benefit
max s(R) max s(R)

UPdGTe un”’ benef” VGIU@S Of OTher max segment max segment max segment
segments

o Constructing the global heap
Use two heaps to maintain segments (g-heap) from the max heaps

Time COIT\pIeXiTY: of local heaps (I-heaps)

‘ —-
d | '
=2 A + eny rule Action Miss

Software

Optimal unit benefit
withalengenytaales

{30235

Software switch
forwarding table

2. Solutions (cont'd)

Combined Greedy Solution

Insight
Combine the two greedy @ R 0 @ Ry: 4

solutions .
(20 R5:1110
+deny rule

Use branch and segments
with the same criterion

Maximum unit benefit R;:100%
Each maintains its own
heap R»:1000
Time complexity
O(kn) k=3
Approximation ratio Optimal unit benefit

with deny rules
24/5 (43+20)/(2+1)=21

2. Solutions (cont'd)

Dynamic Programming (DP) Solution

m rules congdining Vi
v,and all its firs
- I / [X X] \
d-1 children 7. 4 d
descendan / | N
/ N

, / I N

m rules
containing v;
___ and all its
first d
children
descendants

m-m’rules
. . containing v; and
Time complexity allits first d- 1

5 children
Olk*n) descendants

m’rules
containing v;qand
all its children
descendants

Dynamic Programming Solution (cont'd)

T[R,d] Initialization
Subtree of rule R, and its O[R;,0,m] = {Wz‘ if m > 1 andi#0
first d children's subtrees 0 otherwise
Depth-first-search
Formulation
O[R d m] O[R;,d, m| = max {O[Ri,d — 1, m],
Optimal cache-hits by o Jnax {O[Ridad(Rid)am/] + O[Ri,d—l,m—m/]]}

caching m rules in T[R,d]
O[Ro., d(Ro).K]
Our objective

Ro: tree root
d(Rp): all Ry's children

Rid: d-th child of R,’

7. Simulation

Comparison algorithms [

Dependent

Branch without using heap Execution Cache Cache-hit

Cover time / miss
Segment without using heaps
Our algorithms

Branch
Rule update frequency

Segment
Combined
DP (optimal)

[1] Cacheflow: Dependency-aware rule-caching for software-defined networks (SOSR'16)

Settings

Data sets
CAIDA packet trace

52 3 “A]i .’:j:.‘:
g F*.:y"
N » ey
. | : #~dlll Center for Applied Internet Data Analysis
orwarding rules | UG

Stanford Backbone packet trace
for'war'ding rules Stanford\ University IT
Metrics
Execution time
Cache-hit ratio with TCAM size
Cache-hit ratio with number of packets

Variables
TCAM cache size: k= 63~2000

Execution time/sec

Simulation Results

~6 min
100 ‘ ‘ ‘ ‘ 100 | | | |
—-4-Branch l
300 |-&-Segment . __e---- . I e —— o ----0----
Combined X o7 g\"/ - i ;---------:,---------i, --------- H
-& DP ° 80" - - g 804 A oS #r A
200 Cover T . ©
Dependent P e’ o =
B T -2-Branch,Dependent
© , z -4-Branch,Dependent o) I ;
100 | s 80 4 -5 Segment g o -5 Segment
(@) b % Combined O Combined
2 -o DP - DP
PN A | 40 | | Cover 40 | | Cover
2000 4000 6000 8000 10000 12000 63 125 250 500 1000 2000 6.25 125 25 50 100 200
Number of forwarding rules TCAM cache size (log scale) Number of packets/100k (log scale)
(a) Algorithm execution time. (b) Cache hit traffic and TCAM size. (c) Cache hit traffic and the number of packets.
CAIDA packet trace

DP has a much larger execution time than others
Branch is faster than Dependent because of using heaps

Our four algorithms achieve at least a 79.8% hit ratio with
2,000 cache size, which is just 1.1% of the total rule table.

DP achieves the best cache-hit ratio.

Simulation Results (cont'd)

~70 min 100 | | | | 100 : : :
—2-Branch ‘ ‘ ‘ o) i i ______

4000 |-&-segment ,& . ST ettt < ‘____e--——o— @----@---=-9
2 Combined 2 - - == . o -y 1> e —e— S — - —g
33000 ~© DP o 80 , g 80T :
E Cover ‘§ ©
p Dependent = =
.2 2000 g & o /7 -4-Branch,Dependent g 60 ~-Branch,Dependent
§ 5 60 4 -&-Segment S -&-Segment
5 1000 | , 8 ’ Combined 3] Combined

< -o DP -o DP
08 —ne@e=== Q- ‘ 40 ‘ ‘ Cover 40 ‘ ‘ Cover
5630 11250 22500 45000 90000 180000 63 125 250 500 1000 2000 9.375 18.75 375 75 150 300
Number of forwarding rules (log scale) TCAM cache size (log scale) Number of packets/100k (log scale)
(a) Algorithm execution time. (b) Cache hit traffic and TCAM size. (c) Cache hit traffic and the number of packets.

Stanford backbone trace
More rules result in a much larger execution time

Our three greedy algorithms achieve better ratios than CAIDA
one with the same TCAM size because of deeper dependencies

For 30 million packets, DP's cache-hit ratio reaches 90.2%,
Combined reaches 89.4%, Segment reaches 83.7% and Branch
reaches 81.9% with 2,000 cache size.

8. Conclusion

Hardware and software switches

Caching technology
Wildcard (*) rule matching
Rule dependency constraints
Deny rule
limited number of rules in TCAM
Objective
Maximize cache-hit ratio
Solutions
Three greedy algorithms with approximation ratios
Optimal DP solution

Q&A

