Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Channel Dynamics Matter: Forwarding Node Set Selection in Cognitive Radio Networks

Ying Dai, Jie Wu, and Andrew Daniels

Department of Computer and Information Sciences, Temple University

MOTIVATION

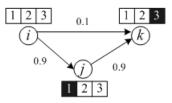
INTRODUCTION

WoWMoM 2014

YING DAI

MOTIVATION PROBLEM

Model


PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Routing in Cognitive Radio Networks (CRNs): Primary Users + Secondary Users

- Reliability becomes the main concern.
- Opportunistic routing is a promising solution.
 Nodes do not stick to a particular route.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

• Question: Are the previous works on opportunistic routing directly applicable on CRNs?

PROBLEM

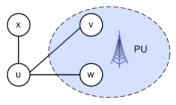
Problem

INTRODUCTION

WoWMoM 2014

YING DAI

MOTIVATION PROBLEM


Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

- Question: Are the previous works on opportunistic routing directly applicable on CRNs?
- The answer is negative.
- One problem is the forwarding node set selection.
 - \circ PUs have to be taken into consideration.

Problem

YING DAI INTRODUCTION

WoWMoM 2014

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

- Activities of primary users in CRNs are unknown and unpredictable.
- An optimal solution is unrealistic in such a dynamic environment.
- *Challenge*: How to select the forwarding node set in CRNs?

Ying Dai

INTRODUCTION

Motivation Problem

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

• To select forwarding sets for each sender, the neighbor nodes need to be prioritized first.

OVERVIEW

Select

Forwarding Set

 After defining the weights for each neighbor, the basic algorithm, the greedy algorithm with one backtrack scheme, and the maximum weighted independent set algorithm are proposed.

Prioritize

Neighbor Nodes

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Forwarding Node Prioritization

• Two factors need to be considered:

 \circ Interference from primary users;

• Interference from other nodes.

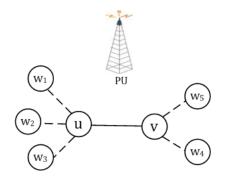
Ying Dai

INTRODUCTION

Motivation Problem

Model

PRIORITIZATION SELECTION ALGORITHMS


Performance Evaluation

CONCLUSION

Forwarding Node Prioritization

 Two factors need to be considered:
 Interference from primary users;

 $\,\circ\,$ Interference from other nodes.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Forwarding Node Prioritization

• We use a conflict probability of adjacent links to a link uv to help define the weight of a forwarding node:

$$C_{uv}(m) = \sum_{w \in N_v} \frac{1}{|M_{uw}|} E_{uw}(m) + \sum_{w \in N_u} \frac{1}{|M_{vw}|} E_{vw}(m),$$

where N_v is the set of neighbor nodes for v; M_{uv} denotes the channels available on link uv, and $M_{uv} = M_u \bigcap M_v$; $E_{uw}(m)$ is a step function with a value of 1 when a channel $m \in m_{uw}$ and is 0 otherwise.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Forwarding Node Prioritization

• Based on the definition of $C_{uv}(m)$, we now define the *receiving ability* of node v from its sender u:

$$R_{uv} = \sum_{m \in M_{uv}} \frac{1}{C_{uv}(m)}.$$

• Obviously, node v, with more channels that are less likely to be used by adjacent links, has a better value of R_{uv} .

WoWMoN 2014

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Forwarding Node Prioritization

• Finally, for $\forall v \in N_u$, the weight of v to be selected as a FN of u is:

$$W_{uv} = R_{uv} (\sum_{w \in N_v} |M_{vw} - M_{uv}|).$$

- $|M_{vw} M_{uv}|$ is the number of elements left in M_{vw} after removing the elements in M_{uv} from M_{vw} .
- Nodes that have more non-conflict channels and more links to forward the packets will have a larger weight.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

BASIC GREEDY ALGORITHM

- Candidates: The forwarding nodes are selected from the downstream neighbors, in terms of ETX (estimated transmission count) metrics.
- The ETX of a single link is:

$$\frac{1}{(1-p_r) \times 1 - p_f}$$

 p_r and $p_f\colon$ the loss probabilities of the link in the forward and reverse directions.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

BASIC GREEDY ALGORITHM

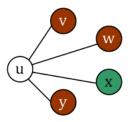
- Intuitively, the easiest way to select a forwarding set is to apply the greedy algorithm.
- To calculate the forwarding node (FN) set F_u of u: \circ Select the node with the largest weight from the remaining candidates.
- Advantages: Simple, less complicated, and relatively reliable.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model


PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

GREEDY ALGORITHM WITH ONE BACKTRACK

- The basic greedy algorithm is very straightforward and easy to implement.
- However, it is likely that the size of the FN set selected by the greedy algorithm is too small.

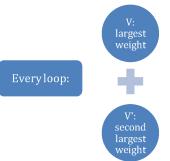
• We provide one backtrack scheme for the greedy algorithm.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model


PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

GREEDY ALGORITHM WITH ONE BACKTRACK

• During every loop in which one node is selected into the FN set by the greedy algorithm, we keep a backtrack node for it.

• When necessary, the backtrack scheme will go back one step, replace one element, and rerun the greedy algorithm from that point.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

PERFORMANCE EVALUATION

CONCLUSION

GREEDY ALGORITHM WITH ONE BACKTRACK

• The greedy algorithm for selecting F_u for node u with backtrack list L_B maintained is:

• Every time a node is selected with the maximum weight, maintain a backup node with the second maximum weight;

 \circ The backup node is later used for backtrack.

• Overlap is *possible* between the two lists, F_u and L_B .

Ying Dai

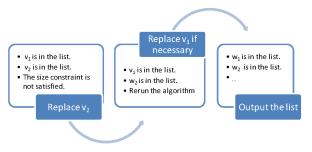
INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation


CONCLUSION

GREEDY ALGORITHM WITH ONE BACKTRACK

• When the F_u cannot meet the requirement, e.g, the size requirement τ , the backtrack algorithm is used.

 \circ Starting from the end of the FN list, replace with the corresponding backup node;

 $\,\circ\,$ Repeat the greedy algorithm until the size constraint is satisfied.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

Prioritization Selection Algorithms

Performance Evaluation

CONCLUSION

GREEDY ALGORITHM WITH ONE BACKTRACK

Some highlights are:

- We use the size requirement, which can be extended for other requirements.
- We only maintain one backtrack list here. Of course, more backtrack lists can be maintained, if one cannot find the appropriate FN set.
- The complexity of this backtrack scheme is low, since only one node is maintained for each node in the FN set.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

MAXIMUM WEIGHTED INDEPENDENT SET ALGORITHM

- The previous two algorithms cannot ensure that the selected FN set is the one with the maximum weight.
- Next part \rightarrow the algorithm that gives the optimal result as of the overall weight.

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

MAXIMUM WEIGHTED INDEPENDENT SET ALGORITHM

The process of the Maximum Weighted Independent Set Algorithm is:

- Construct a graph among the cadidate nodes.
- Dvide the graph into *modules*.
- Recursively find the maximum weighted indepdent set.

Ying Dai

INTRODUCTION

Motivation Problem

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

MAXIMUM WEIGHTED INDEPENDENT SET ALGORITHM

First, here are two definitions:

DEFINITION

Given node u, its neighbor set $N_u,$ and the distance threshold $\sigma,$ we define a graph $G_u(\sigma),$ where

- **1** v is a vertex in $G_u(\sigma)$, iff $v \in N_u$, v is smaller of ETX to the destination than u and satisfies ETX constraint;
- 2) an edge exists between two vertices, v and w, in $G_u(\sigma)$ iff $d_{vw} > \sigma,$

DEFINITION

Given a $G_u(\sigma)$, suppose U is a subset of the vertex in $G_u(\sigma)$. For a node v, which is a vertex of $G_u(\sigma)$ and $x \notin U$, x "distinguishes" U if x has both a neighbor and a non-neighbor in U. U is a *module* if it is indistinguishable for the vertices outside U.

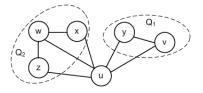
WoWMoN 2014

Ying Dai

INTRODUCTION

MOTIVATION PROBLEM

Model


PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

MAXIMUM WEIGHTED INDEPENDENT SET ALGORITHM

• An example for modules in a graph:

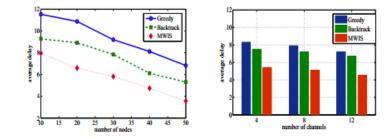
- The node x distinguishes the node set $\{z, w\}$, since x has both a neighbor and a non-neighbor in $\{z, w\}$. x cannot distinguish the node set $\{y, v\}$ since neither y nor v is x's neighbor.
- Two modules: $Q_1 = \{y, v\}$ and $Q_2 = \{z, w, x\}$.

Ying Dai

INTRODUCTION

Motivation Problem

Model


PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

PERFORMANCE EVALUATION

• We compare the three algorithms by varying different network parameters:

CONCLUSION

YING DAI INTRODUCTION

WoWMoM 2014

MOTIVATION PROBLEM

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

- We consider the FN set selection problem in CRNs under the opportunistic routing.
- Three algorithms are proposed: the basic algorithm, the greedy algorithm with one backtrack scheme, and the maximum weighted independent set algorithm.
- The simulation results show desirable performance of our algorithms.

Ying Dai

INTRODUCTION

Motivation Problem

Model

PRIORITIZATION SELECTION ALGORITHMS

Performance Evaluation

CONCLUSION

Thank you!