
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214 0?/?? pp???–???
DOI: 10 .26599/TST.2020 .9010002
Volume xx, Number x, xxxxxxx 20xx

Challenges and Opportunities in Algorithmic Solutions for
Re-Balancing in Bike Sharing Systems

Jie Wu ∗

Abstract: In recent years, the booming of the bike sharing system (BSS) has played an important role in offering a

convenient means of public transport. The BSS is also viewed as a solution to the first/last mile connection issue

in urban cities. The BSS can be classified into dock and dock-less. However, due to imbalance in bike usage over

spatial and temporal domains, stations in the BSS may exhibit overflow (full stations) or underflow (empty stations).

In this paper, we will take a holistic view of the BSS design by examining the following four components: (1) system

design, (2) system prediction, (3) system balancing, and (4) trip advisor. We will focus on system balancing,

addressing the issue of overflow/underflow. We will look at two main methods of bike re-balancing: with trucks and

with workers. Discussion on the other three components that are related to system balancing will also be given.

Specifically, we will study various algorithmic solutions with the availability of data in spacial and temporal domains.

Finally, we will discuss several key challenges and opportunities of the BSS design and applications as well as the

future of dock and dock-less BSS in a bigger setting of the transportation system.

Key words: Algorithmic solutions, bike re-balancing, bike sharing system (BSS), data analytics

1 Introduction

In recent years, the booming of the bike sharing sys-
tem (BSS) has played an important role in offering a
convenient means of publication transport. The BSS is
also viewed as a solution to the first/last mile connec-
tion issue, getting people between public transport hubs
(such as subway stations and bus stops) and home, in
large urban cities, such as New York City (NYC) and
Shanghai. As an integral part of smart city, BBS offers
healthy lifestyle for citizens and green transportation in
urhan cities. A recent survey has showed that 40% of
BSS users drive less [1], which is very desirable in a
crowed urban city.

The BSS can be classified into dock and dock-less.
Sample dock BSSs include Citi Bike (NYC), Cap-

• Jie Wu is with the Department of Computer and Informa-
tion Sciences, Temple University, Philadelphia, 19122, USA.
Email: jiewu@temple.edu.

∗To whom correspondence should be addressed.
Manuscript received: 29-Dec-2019; Accepted: 03-Jan-2020

ital Bikeshare (DC), Indego (Philadelphia), GoBike
(Bay Area), public bicycles (Shanghai, Beijing, and
Hangzhou), BikeMi (Milan), BuBi (Budapest), and EBI
(Esztergom). Dock-less BSSs include LimeBike, Spin,
JUMP (bikes and electric scooters); Bird (electric scoot-
ers) in the U.S.; Mobike, ofo, and Hellobike in China;
and U-Bicycle and OV-fiets in Europe [2]. As of May
2018, more than 1,600 bike-sharing programs were in
operation worldwide, providing more than 18 million
bicycles for public use for transport [3] with China,
Italy, Unuted States, Germany, and Spain being the top-
5 counties that use BSSs.

In a typical BSS, there are several stations scattered
in a given region. Each station has a capacity limit in
terms of the number of slots used to hold bikes. Users
make use of the BSS through a pair of activities: rent-
ing a bike from one station and returning the bike to
the same or another station. Because of variations in
bike demand, imbalance may occur in bike usage at
stations over spatial and temporal domains. Fig. 1
shows bike rent and return distributions in NYC across
two domains: spatial (different locations in Manhattan)

2 Tsinghua Science and Technology, January 2020, xx(x): 000-000

(a) AM rush hours: 8:00 - 10:00 AM (b) PM rush hours: 5:00 - 7:00 PM

Fig. 1 The users’ demands in morning and evening rush
hours in Manhattan.

and temporal (morning and evening). The usage dis-
crepancies at different stations in the BSS may result
in overflow (full stations that exceed the station capac-
ity to hold a return bike) or underflow (empty stations
with no bike to rent). Therefore, bike re-balancing -
moving bikes from an overflow station to a underflow
station - is needed (Fig. 2). Note that Fig. 2 shows
bike re-balancing in a dock BSS. Overflow/underflow
also occurs in dock-less BSSs. The author witnessed
a phenomenon of overflow/underflow of a dock-less
BSS in Shanghai in the summer of 2018. This over-
flow/underflow frequently occurs at subway entrances
with heavy traffic flows at different time slots of a day
(as shown in Fig. 3).

In this paper, we will take a holistic view of address-
ing bike re-balancing by looking at four components:
(1) system design, (2) system prediction, (3) system bal-
ancing, and (4) trip advisor. The focus is on system
balancing, addressing the issue of overflow/underflow.
Discussion on the other three components that are re-
lated to system balancing will also be given. In sys-
tem balancing, we will consider two groups of solutions
for bike re-balancing: the first uses tracks for bike re-
balancing and the other recruits workers with incentive.
We will discuss various algorithmic solutions related to
bike re-balancing. The focus will be on some open chal-
lenges.

The remainder of the paper is organized as follows:
Section 2 discusses some key design issues related to
bike-balancing at each design stage of four components.
Section 3 focuses on bike re-balancing using tracks and
Section 4 studies bike re-balancing by recruiting work-
ers with incentive. Section 5 discusses extensions from

overflow underflow

bike re-balancing

Fig. 2 Bike re-balancing between an overflow and under-
flow station.

solutions for one dimensional domain to two dimen-
sional domains. Section 6 presents some future direc-
tions on challenges and opportunities in BSSs, with a
focus on bike re-balancing. Section 7 discuss the role
of bike sharing in a bigger setting of the transportation
system. Section 8 concludes the paper.

2 Four System Components

We first discuss four components of a BSS, focusing
on issues related to bike re-balancing.

2.1 System design

System design [4–6] includes the selections of the
number of stations, station location, station capacity,
and the number of bikes in circulation. Clearly, with
the increase in the number of stations and their capacity,
the need for bike re-balancing will be reduced. How-
ever, such an increase will incur cost for BSS operators.
Therefore, sensible balance is needed on cost and effect
in the system design phase.

At first glance, system design resembles the classic
facility location problem [7]: it consists of a set of po-
tential facility sites (i.e., stations in a BSS) and a set of
demand points (i.e., users in a BSS) that must be ser-
viced. The goal is to pick a subset of facilities to open
(i.e., the number and locations of stations in a BSS) to
minimize the sum of the distance from each bike de-
mand location to its nearest facility and plus the to-
tal cost of the stations. However, the dynamic of sta-
tions where bikes are returned makes the BSS system
design more challenging. This is because the capacity
of each station varies even if we can accurately predict
rent locations, as in the classic facility location problem.
Bike re-balancing can be viewed as an external means
to make the service level of a BSS more predictable and
accountable.

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 3

Fig. 3 Overflow in a dock-less BSS in Shanghai (June 2018).

2.2 System prediction

System prediction deals with data collection and pre-
diction of bike demands over spatial and temporal do-
mains. The prediction process is rather complex. It in-
volves user mobility modeling [8] and traffic prediction
[9] across both spatial and temporal domains. To reduce
complexity, some researchers used the cluster-based ap-
proach [10], which groups similar stations into clusters
to reduce the computation complexity.

Bike usage prediction deals with not only more pre-
dictable common contextual factors, such as time and
space, but also opportunistic contextual factors, such as
special social and traffic events. Some events propagate
along the physical vicinity (e.g., a special social event at
a physical location) as well as the logical one (through
a social network). In this case, the traffic prediction at
different stations may be correlated. All of these will
bring uncertainty in traffic prediction, making bike re-
balancing more challenging.

2.3 System balancing

System balancing deals with bike re-balancing over
both spatial and temporal domains. One common ap-
proach is to partition the two-dimensional domain into
a sequence of slices of the one-dimensional domain. For
example, if the two-dimensional domain is sliced based
on the time, then each slice deals with only the spatial
domain, i.e., balancing bikes across the physical space
with a fixed time slot.

System balancing usually has two approaches: ded-
icated truck service [11–17] or incentive-based worker
recruitment [18–21]. In dedicated truck service, one or
more trucks are used to move around stations to pick-
up and drop-off bikes at different stations according to
their overflow and underflow situations. In incentive-
based worker recruitment, an incentive mechanism is
used to recruit individual workers to re-balance bikes
on a per-bike basis. One particular interesting model is

2 -2 -1

-2 30

0 -2 -1

-2 30

2
0

0 0 0

0 00
0

0 0 -1

-2 00
3

(a) step 0 (b) step 1

(c) step 3 (d) step 6

Fig. 4 A sample bike re-balancing using a truck sweeping
along a given Hamiltonian circle.

to recruit workers from BSS users who are willing to go
through a small detour in their regular bike journey.

2.4 Trip advisor

Trip advisor [22], operated by the BSS operator, can
serve two purposes. On one hand, it provides BSS users
some guidance on the availability of nearby stations for
rent/return. It can also give advice on route selection
to avoid traffic or to avoid the distributed trip selection
game among users.

Trip advisor can also suggest bike selection to BSS
users to balance individual bike usage at different sta-
tions [23]. For example, when two bike return stations
are equivalent to a bike user, the trip advisor can rec-
ommend the user to return the bike to the station with
fewer bikes to increase the overall system utility and
enhance the long-term service level [23]. On the other
hand, trip advisor can also recommend choices that may
lead to bike re-balancing, provided there is little or no
deviation from the optimal choice made for the user.

3 Bike Re-balancing Through Trucks

In dedicated truck service, one or more trucks are
used to move around stations to pick-up and drop-off
bikes at different stations according to their overflow
and underflow situations. To simplify our discussion,
we assume that one truck is used with a capacity of l at
a particular time slice. A station with +m (−m) stands
for overflow (underflow) by m slots as shown in Fig. 4.
−l ≤ m ≤ l is always true; otherwise, we can split a
station into multiple adjacent stations in such a way that
−l ≤ m ≤ l holds for each new station. Overall, over-
flow and underflow stations are balanced, i.e., the total
amount of + values equals that of − values.

4 Tsinghua Science and Technology, January 2020, xx(x): 000-000

3.1 Constructing a legitimate Hamiltonian circle

A typical solution involves first finding a certain
Hamiltonian circle among overflow/underflow stations
as a starting point. One sweep is used to visit each sta-
tion to reset each station value to 0 through bike pick-
up for a positive station or bike drop-off for a negative
station as shown in Fig. 4. This problem is more chal-
lenging than the classic Hamiltonian circle problem, as
during the routing process (i.e., finding a Hamiltonian
circle), the truck itself cannot be negative (the number
of bikes carried by the truck falls below zero) or exceed
the truck capacity (i.e., more than l). For example, if
l = 4 in Fig. 4, then if the truck goes to the station with
3 bikes after completing its first move with 2 bikes, then
2 + 3 exceeds the truck capacity, generating an illegiti-
mate route.

Among existing approaches, two methods parti-
tion a given Hamiltonian circle into positive-pieces,
negative-pieces, and zero-pieces. The positive-pieces
and negative-pieces are used alternatively in the visit
sequence to keep the load within the truck capacity. To
identify these pieces, a construction process starts from
a given node, called start node, which can be either pos-
itive or negative node (zero nodes are not involved), and
then connects these pieces following the clockwise di-
rection of the given Hamiltonian circle to form a legit-
imate Hamiltonian circle that satisfies the truck’s capa-
bility constraint. The following is the construction pro-
cess that identifies each piece and its label: if the start
node is a positive + (negative −), follow the circle to
find the next station to connect until the load summa-
tion reaches a predefined threshold l

′
(−l′) or reaches

a negative (positive) value. In the former case, the pro-
cess is complete and the corresponding piece is called a
positive (negative) piece, and in the latter case, location
is either shifted back one station or the current station is
partitioned into two virtual stations in such a way that
the load summation becomes zero by connecting one
virtual station; such a piece is called positive zero (neg-
ative zero). Positive and negative zero pieces can be
simply called zero pieces if their signs do not play any
role in a solution.

3.2 MATCH method

In the method proposed in [24], called MATCH here,
l
′

is set to l/2. Fig. 5 (a) shows such a partition with s3
as the start node, assuming that l

′
= 3. The given Hamil-

tonian circle is then partitioned into positive-, negative-
, and zero-pieces in one sweep. MATCH performs a

3
3

1

2

-1
1

-1

-2

-3

-3 s1 s2
s3

s4
s5s6

s7

s8

s9

s10

start station

*
*

*

*

*

*

!"
!#

!$

!%

!$&

!#&

!"&

(a) MATCH

3
3

1

2

-1
1

-1

-2

-3

-3 s1 s2
s3

s4
s5s6

s7

s8

s9

s10
start

station

!"

!#

!$

!%

(b) GREED

Fig. 5 Constructing a legitimate Hamiltonian circle by par-
titioning a given circle into positive (white), negative (dark),
and zero (gray) pieces.

minimum-weight perfect matching between positive and
negative pieces (zero pieces are not included). Here,
positive and negative pieces form matching pairs, pi and
p
′

i for i = 1, 2, 3, in which the distance of each pair de-
fined is based on the geographic distance between two
closest nodes (called bridge nodes denoted by ∗), one
each from the pair. The path is constructed beginning
from the start node and following the given circle. The
only constraint is that when a piece is visited, its match-
ing piece is co-visited at the same time. This is done
through traversing the matching pair using two gateway
nodes on the pair. However, the selected start node may
not be legitimate, as load summation at the truck may
become negative. It is proved that l

′
is defined in such a

way that we can always find a legitimate start node with
the same circle constructed from the random start node.

In Fig. 5 (a) with the initial start node s3,
the visitation sequence generated by MATCH is
(s3, s7, s8, s4, s5, s6, s9, s2, s10, s1, s3)

∗. The number
of bikes on the truck (i.e., load summation) after vis-
iting each station is (1, 0,−2, 0,−1, 0,−3, 0,−3, 0).
This sequence is not legitimate as it contains negative
values, with -3 being the smallest. A legitimate start
node can be found by shifting the initial start node on
the newly constructed circle from s3 to s1 based on the
smallest value -3 (i.e., shifting back one station on the
new circle). The resulting sequence becomes (s1, s3,

s7, s8, s4, s5, s6, s9, s2, s10, s1). The load summation
sequence becomes (3, 4, 3, 1, 3, 2, 3, 0, 3, 0), which is
clearly legitimate with all non-negative values and all
values being less than l, the truck capacity. The com-
plexity of MATCH is O(n3), where n is the number of

∗The traversal between matching pairs p3 and p
′
3 through two

gateways s3 and s7 generates the following visitation order: s3,
s7, s8, s7, s3, and s4. By the keeping only first visit record, we
have the following sequence: (s4, s7, s8, s5).

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 5

stations. MATCH guarantees an approximation ratio of
6.5 [24], compared to the optimal solution to a problem
that is NP-hard.

3.3 GREED method

In another method in [25], called GREED here, a dif-
ferent approach is used to connect pieces, where l

′
is set

to l (= 6) in Fig. 5 (b). The legitimate Hamiltonian cir-
cle starts with any positive station as a start node which
will generate either a positive piece or a positive zero
piece. If a positive piece is generated, the process finds
the closest negative station along the circle to connect.
If that negative station ends up with a negative piece,
the process will find the closest positive station and the
same process continues. If the negative station ends up
with a negative zero piece, the closest negative station
is sought again. This process continues by alternating
positive and negative pieces. Note that positive zero
pieces will not change the load summation of the truck.
In the above process, once a piece is visited, it is re-
moved from the circle so that the remaining non-visited
stations still form a Hamiltonian circle with an updated
adjacency relationship. For example, once p1 finds the
matching negative piece p3 in Fig. 5 (b), both p1 and
p3 are removed and the remaining pieces p2 and p4 are
then connected forming a positive zero piece with start
node s3. The visiting sequence generated by GREED
is (s1, s2, s5, s6, s7, s8, s3, s4, s9, s10, s1). The load
summation sequence is (3, 6, 5, 6, 5, 3, 4, 6, 3, 0). The
complexity of GREED is lower which is O(n2). How-
ever, the algorithm does not guarantee any approxima-
tion ratio. To find a good start node, multiple start nodes
can be used and then select the best start node is selected
based on the GREED result.

3.4 HYBRID method

Comparing MATCH with GREED, it is shown in [25]
that MATCH outperforms GREED in a relatively sparse
mode (i.e., a small number of stations) as its primary
factor or a small geographical area as its secondary fac-
tor while GREED is better in a dense mode or a large
geographical area. One possible extension is to com-
bine MATCH and GREED to form a two-level hybrid
solution. In general, a BSS may not have a uniform
distribution of stations. Instead, stations in a dense
population area are clustered. In the hybrid solution,
called HYBRID, MATCH is used for intra-cluster bike
re-balancing and GREED is used for inter-cluster bike-
balancing.

Beijing City Suburb

(a) A sample distribution of dock stations in Beijing [26]

MATCH GREED HYBRID
City 2.064 1.108 0.881
City+Suburb 3.016 1.923 1.080
City (Sparse) 1.435 1.781 1.342
City + Suburb (Sparse) 2.597 2.575 1.827

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b) MATCH, GREED, vs HYBRID

Fig. 6 Performance comparison.

Fig. 6 shows a performance comparison among
MATCH, GREED, and HYBRID based on the a real
set of data (i.e., distribution of bike stations in Beijing).
In Fig. 6 (a), it is shown that stations in the center city
are unevenly distributed among roughly five clustered
centers. When including the suburbs, there are seven
clusters. The map is first divided by a mesh. The size of
each square is 0.4 (longitude) × 0.3 (latitude) (in km).
The threshold is set as 1, i.e., a grid has a station if
there is at least one station. As a result, 550 stations are
found. A sparse sampled map is generated with a mesh
size of 0.8 × 0.6 and a threshold of 4. As a result, 76
stations are included in the sparse sampled data set. The
capacity of the truck is set as 20. The re-balancing target
of each station is randomly set by following Poisson dis-
tribution with a mean of 7. The sign of the re-balancing
target (+ or −) is randomly decided with equal possi-
bility. The last station’s target is set to guarantee that
the sum of targets among all stations is 0.

Fig. 6 (b) shows the results in terms of total travel dis-
tance of bike re-balancing, one for center-city (Beijing)
and the other for the whole city, by including both cen-
ter city and its suburbs. The simulation results show that
HYBRID has 57.3% (6.48% for sparse sampled map)
and 20.5% (24.6%) less distance in the center city and
64.2% (29.6%) and 43.8% (29.0%) less distance in the
entire city compared to MATCH and GREED, respec-
tively. The number in each entry represents the average
travel distance in km for per re-balancing bike, where
the total number of re-balancing bikes is a summation
of absolute values in all re-balancing targets divided
by 2. Obviously, travel distance is relatively large for

6 Tsinghua Science and Technology, January 2020, xx(x): 000-000

! !′
#

	+

walk
ride

(a) Source incentive

𝑢 𝑢′
𝛼 𝑙 − 𝛼

	+ 	−

(b) Source and destination incentive

Fig. 7 Incentive worker recruitment with monetary re-
wards based on walking distance.

cases with suburbs, and more trucks should be used to
cover different geographic regions, as will be discussed
in Section 6.

4 Bike Re-balancing Through Workers

Bike re-balancing through workers with incentive fo-
cuses on recruiting individual workers, which can be
BSS users. As each worker can only move one bike at a
time, we use +/− sign to denote an overflow/underflow
spot (for dock-less BSS) or a station (for dock BSS).
Usually, the BBS operator gives monetary incentives for
workers. Here, we focus on approaches where workers
are BSS users who plan to use bikes on their journey
anyway and are willing to take a detour with either mon-
etary reward or one or multiple free-rides. We use u and
u
′

to represent a user’s current location and his/her in-
tended destination.

4.1 Incentive method for individual workers

In [21], a monetary incentive approach is studied in
a dock-less BSS (and also can be used in a dock BSS),
where a bike user is asked to walk to a location that is
within l distance from u. The monetary award is based
on the walking distance from u, with the amount as ei-
ther a linear or quadratic function of the distance. The
following global optimization program is formulated:
given a fixed amount of total budget and bike demands
over spatial and temporal domains, how do we set the
amount of the monetary award for each location to max-
imize the service level of the system? It is assumed that
for each walking distance upper bounded by l (as shown
in Fig. 7 (a)), users set their monetary award threshold
for each distance in advance. Users will accept the re-

quest if the monetary award meets the threshold. The
pricing distribution is calculated through reinforcement
learning based on past data. This approach can be ex-
tended by providing incentives at both source and des-
tination [27] as shown in Fig. 7 (b), as long as the total
walking distance at source (α) and destination (l − α)
is bounded by l, where α is a tunable parameter. In
fact, this extension is more powerful than the original
approach. Instead of solving the overflow problem as in
[21], the extension basically recruits a worker to solve
a pair of overflow and underflow spots. The only dif-
ference is that in the extension reinforcement learning,
the pricing at both source and destination needs to be
considered.

4.2 Incentive method for a group of workers

In [28], a more general incentive approach is studied
to address bike re-balancing among overflow and un-
derflow stations in a dock BSS (and also in a dock-less
BSS). Here, the approach deals with multiple workers
through matching, rather than each individual worker
assignment. Fig. 8 shows a simple example with one
user and two overflow stations and two underflow sta-
tions. The user walks from u to rent a bike at one of two
overflow stations, returns at one of two underflow sta-
tions, and finally walks to his/her intended destination
u
′
. Obviously detour occurs, compared to a straight line

between u and u
′
, i.e., the shortest distance between

u and u
′
. In this case, there are four possible choices

for the user: (s1, s3), (s1, s4), (s2, s3), and (s2, s4).
When there are multiple users, the problem becomes
3-dimensional perfect matching among users, overflow
stations, and underflow stations. For example, if there
are two users, u1 and u2, the number of possible match-
ing becomes 23 = 8. In general, multiple-dimensional
perfect matching is an NP-hard problem. In [28], a two-
round of the perfect bipartite matching is used to ap-
proximate the 3-dimensional perfect matching problem
with a 3-approximation using the geometric properties
of locations. This approximation is done by first match-
ing overflow and underflow stations and then by match-
ing users to overflow-underflow pairs.

5 Complexity in the Spatial and Temporal
Domains

So far, our discussion has focused on one slice that
deals with the spatial domain only. Adding the temporal
domain will significantly increase the complexity of the
problem.

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 7

+

+

−

−
u u’

s1 s3

s2 s4

Fig. 8 Incentive worker recruitment through minimizing to-
tal detour using 3-dimensional perfect matching.

5.1 Time-space view

Let us first take a time-space view of the system from
the classic distributed computer system [29]. Fig. 9
shows such a view with three stations. Each station has
its value (i.e., the number of bikes) as its local state. A
bike rented from a station and the corresponding bike
returned to another station completes a bike journey,
even if the bike can be returned to the same station. The
classic distributed computer system modeling and anal-
ysis can still be applied here, where global state (total
number of bikes) equals the summation of local sta-
tions (all bikes available for rent), plus bikes in tran-
sit (on road by either normal bike users, on trucks, or
being ridden by workers for bike re-balancing). Our
bike re-balancing scheme can also be represented using
a similar view. As shown in Fig. 9, each slanted arrow
line corresponds to a bike re-balancing event between
two stations. Each slice corresponds to a time period
represented by a vertical dotted line. Ideally, each re-
balancing event does not go across two slices (called a
“cut” in the distributed computing community). If we
set the re-balancing activity granularity to a relatively
long period, say one or two hours, each re-balancing ef-
fort can be done within that time frame for a relatively
small region under the study period. Thus, the cut issue
can be mitigated and hence ignored.

5.2 Reducing re-balancing frequency through look
ahead

One main challenge in extending the single slice so-
lution to cover multiple slices lies in the global determi-
nation of re-balancing frequency and the corresponding
target for each re-balancing. The idea used here is to
reduce the re-balancing frequency. For example, setting
frequency to k means that re-balancing is applied at ev-
ery k slices. That is, the system conducts re-balancing
in the current slice, but with the k-slice view (called
k-hop look ahead), such that once the target is set and
done in the current slice, it can last at least k slices;
otherwise, the frequency k needs to be reduced either

t t + 1

time

s1

s2

s3

Fig. 9 A time-space view of bike re-balancing with slanted
arrow lines representing bike re-balancing activities between
pairs of stations.

uniformly for all slices or at each re-balancing activ-
ity. However, this one-policy-fits-all approach does not
work well since demand varies across time and space.
Another approach called greedily look-ahead, which is
inspired by a method in [11], uses look-ahead data to
make the best target move at the current slice such that
the target configuration will last the longest in the num-
ber of slices, given that all future data is known. This
greedily look-ahead approach may still be outperformed
in some cases as shown later. Note that the complexity
of both k-hop look ahead and greedily look ahead is
O(kn log n), where n is the number of stations and k
is the number of look ahead slices.

Fig. 10 (a) illustrates why in k-hop look ahead, it is
better in general to have a larger k, even if all moves are
done at the current slice. We assume that all new up-
dates (i.e., load re-balancing) are completed in the cur-
rent slice before bike rent (−) and bike return (+) occur
at the end of the current slice. Rent and return activ-
ities are represented by a short outward vertical arrow
line for bike rent and a short inward vertical arrow line
for bike return in the figure. Suppose the initial state of
three stations is (s1, s2, s3) = (1, 2, 3). The current ac-
tivity vector at slice t is (−2, 0, 0), meaning 2 bikes will
be rented out at station s1 at the end of slice t. Clearly,
either s2 or s3 should move one bike to station s1. How-
ever, when k = 1 without the look ahead feature, s3 has
the same position as s2 in terms of the priority. If s3 is
selected to move one of its three bikes and the activity
vector at slice t+1 turns out to be (0, 1,−3), s2 has to
move one of its bikes to s3 at slice t + 1. On the other
hand, when k = 2 with one slice look ahead, it is clear
that it is better to move one bike from s2 to s1 to save
one move.

On the other hand, look ahead may not always gen-
erate a better result. Fig. 8 (b) shows another ex-
ample using the greedily look ahead approach, which
makes a re-balancing move at the current slice so that

8 Tsinghua Science and Technology, January 2020, xx(x): 000-000

t t + 1

s1

s2

s3

1

2

3

+1

−3

−2

1

1

1

(a) An example of 2-hop look ahead outperforming 1-
hop look ahead

t t + 1 t + 2

s1

s2

s3

1

0

1

−1

1

1

+2

−1

−1

−1

1

(b) An example of 1-hop look ahead outperforming greedily look ahead

Fig. 10 Illustration of various look ahead schemes.

it can last with the maximum number of slices with-
out re-balancing, given that all future activity vectors
are known a priori. In Fig. 10 (b), station state is ini-
tially (1, 0, 1), with activity vectors being (−1, 2, 0),
(−1, 0, 0), and (0,−1,−1) for slices t, t+1, and t+2,
respectively. Using the greedily look ahead approach,
the re-balancing involves moving one bike from s3 to
s1 so that the resulting configuration can survive two
slices. However, at slice t + 2 with state (0, 2, 0), s2
has to move at least one bike to s3 to meet the demand.
If we look at only one slice, i.e., k = 1, no action is
needed at slice t, one bike moves from s2 to s1 at slice
t+ 1, and no action is needed at slice t+ 2.

5.3 Extensions to look ahead

To develop more sophisticated greedy solutions, the
k in k-hop look ahead can be dynamically adjusted.
When the re-balance at the current slice can only last
k
′

(< k) slices, re-balancing is needed after k
′
. If k

is the value either used in a feasible k-hop look ahead
or derived from the greedily look ahead, we can con-
sider greedily look and act ahead. The main difference
in this approach is that it can not only look ahead but
also act ahead in the next k slices instead of limiting
actions within the current slice only. In the example of
Fig. 10 (b), the algorithm can pre-assign actions at fu-
ture slices, for example, moving one bike from s2 to
s1 for slice t + 1 when it starts its view for slice t.

However, the complexity of such an algorithm will in-
crease since actions at multiple slices need to be decided
jointly with dynamic programming as a possible solu-
tion. More work is needed to gain insights on solution
complexity as well as cost-effective trade-offs.

6 Challenges and Opportunities

This section studies future challenges and oppor-
tunities associated with BSSs, focusing on bike re-
balancing. Finally, a comparison is drawn between dock
and dock-less BSS in terms of their applications and fu-
ture developments.

6.1 Model extensions

So far, the models we have discussed have various
constraints. For example, in Fig. 10 we assume that
all bike re-balancing activities can be done in one slice
without any “cut”. In addition, normal bike usage may
not be completed in one slice (as shown in Fig. 10) with
different global state values after each slice: 3 after slice
t, 2 after slice t + 1, and 0 after slice t + 2. In reality:
there are at least four models that can be constructed de-
pending on the activity completion time, before or be-
yond the current slice, for each bike re-balancing activ-
ity and for each normal bike usage activity.

The capacity of trucks and workers will also affect the
availability of bikes at each station when re-balancing
activities go beyond one slice. In fact, such capacity
will affect the value of the global state, making the ser-
vice level less predictable from slice to slice. In addi-
tion, it is still open as to how to partition spatial and
temporal domains so that other efficient solutions, other
than slicing, can be explored.

6.2 Scalable design

As the size of a BSS increases in density and in the
spatial domain, it is natural to study the scalability is-
sue of different solutions. Solutions based on worker
recruitment are scalable by design so we focus on so-
lutions based on the number of trucks used. Results in
Fig. 10 show scalability issues for a large coverage area
and for a large number of stations. Fig. 11 shows an-
other simple example to illustrate the challenges in scal-
able design. Suppose there are two populated regions
separated by a given distance. Two trucks are used to
individually cover regions. The question is whether to
keep two regions separate with two trucks or merge two
regions with one truck. Obviously, the former will save
travel distance, resulting in a larger service frequency to

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 9

(a) Two individual circles

(b) One merged circle

Fig. 11 A simple example to illustrate subtle decisions with
clustering.

stations, while the latter will reduce the cost (of using
only one truck). This problem has been addressed in
[30] on a UAV application under the ocean for sensor
data collection applications. The problem in the BSS is
newer, with a different setting and objective, and hence,
worthy of further study.

The partition approach is a viable solution to ad-
dress the scalability issue. One approach is based on
geometric partitioning [31], assuming that stations and
traffic are uniformly distributed, and more importantly,
rent and return pairs exhibit locality so that most pairs
fall within individual partition grids. A more effective
method is clustering [32], such as k-means or balanced
k-means, which can deal with non-uniform station dis-
tribution and non-uniform traffic distributions.

6.3 Gaming and incentive among BSS operators
and workers

Game theoretical approaches [33] can be explored,
especially for worker recruitment approaches. In gen-
eral, BSS operators and workers form a Stackelberg
game, while homogeneous and heterogeneous workers
can form different sub-games with a Nash equilibrium.
In game theoretical analysis, pricing [20] plays an im-
portant role on gaming analysis, especially the pricing
design in relation to detour distance.

The incentive mechanism is a key in worker recruit-
ment. Using the problem in [28] as an example as il-
lustrated in Section IV B, Fig. 12 shows how the so-
lution for detour minimization on one slice can be ex-
tended to multiple slices. Note that the ability of detour
minimization also depends on the number of available
workers. The more available workers, the more likely it
is for the BSS operator to find suitable matches between
workers and stations so that detour distance can be fur-

ther reduced. Given a fixed size of the worker pool W ,
we assume that each worker has a probability p of join-
ing the crowdsourcing activity for bike re-balancing. If
it is assumed that each bike re-balancing activity will
receive a fixed monetary or non-monetary (e.g., one or
multiple free rides) award for each worker, then detour
distance will play an important role in a user’s will-
ingness to participate (represented by p). That is, the
p value changes over the rounds (moving slices along
the time in Fig. 12), and a small detour at slice t will
increase the value p for slice t + 1, which in turn in-
creases the worker pool p · |W | at slice t+ 1. A larger
worker pool will generate a better set of matchings be-
tween workers and stations, resulting in smaller detours
at slice t+1. Further investigation of the impact of this
reinforcement incentive is another direction for future
research.

6.4 Algorithmic solutions vs. ML with data ana-
lytic

This paper focuses on class algorithmic solutions.
The main purpose is to gain more insights from these
solutions. There are many other approaches, for exam-
ple, various optimization approaches, including integer
and linear programming [14, 16, 34, 35], which is usu-
ally more powerful; and machine learning [11, 13, 21],
which is more effective with the support of a large data
set.

One future challenge is how to integrate merits from
different approaches. Currently, the machine learning
(ML) approach is widely used in many subareas of
bike re-balancing, including the determination of pric-
ing in the incentive approaches [18,21] and user mobil-
ity and traffic prediction [8, 9]. Many ML approaches
use a blackbox approach without providing much in-
sights that can benefit future design. One possible di-
rection is to apply algorithmic and ML co-design to ad-
dress a complex problem. For example, ML can be used
for future data and traffic prediction while algorithmic
solutions are applied using data and traffic information.

Another important issue is the robustness of a so-
lution. By robustness, we mean the degree of devia-
tion from the intended performance when there is per-
turbation of data. One solution can be low efficient
but robust, while another solution is efficient but non-
robust. Quantification of robustness for both algorith-
mic and ML solutions for bike re-balancing remains
under-exploited, which deserves more research.

10 Tsinghua Science and Technology, January 2020, xx(x): 000-000

· · ·

time
slice 𝑡

worker
pool (𝑊)

detour
in 𝑡

detour → 𝑝

𝑡 + 1 → 𝑡

𝑝 ⋅ |𝑊|

Fig. 12 Reinforcement incentive through slice iterations.

6.5 Integration of different system components

There are three other system components that affect
the performance of bike re-balancing in addition to sys-
tem balancing. They are system design, system predic-
tion, and trip advisor. We will discuss here design issues
that affect the performance of bike re-balancing.

System design includes deciding the location and ca-
pacity of stations (which usually indirectly determine
the total number of bikes in circulation) in addition to
the number of stations in a dock BSS. The number and
capacity of stations as well as the number of bikes de-
termines the cost of a BSS. More stations, capacity per
station, and bikes will reduce the frequency of bike re-
balancing will increase the cost of maintaining stations
and bikes. However, having too many stations without
increasing the number of bikes will also inadvertently
increase the frequency of underflow per station. Given
a fixed amount of expenditure, there is a trade-off be-
tween the cost on stations, the cost on bikes, and the
cost on bike re-balancing.

System prediction clearly plays a key role in system
design as well as system balancing. Almost all algorith-
mic and ML approaches rely on data available through
either data collection or data predictions. The effective-
ness of bike re-balancing depends on the accuracy of
prediction. For example, a typical look ahead solution
uses look ahead data that may or may not be accurate.
In general, the quality of data deteriorates over time,
especially ones used for multi-slice look ahead. The
question is how to incorporate this data accuracy decay
in the algorithmic design. The discount factor used in a
typical reinforcement learning [21] can be applied. As
data collection and prediction both incur cost, it is im-
portant to know the data granularity for each solution to
achieve a good balance between its cost and effective-
ness.

Trip advisor can act as an assistant to bike re-

balancing with little or no service level degradation for
the user. For example, when a user can pick up or return
a bike from two equivalent sites, the advisor can make
a judicial decision for the user that will benefit the BSS
performance, e.g. rent a bike from an overflow station
and return a bike to the underflow station. However,
giving the user advice that may hurt the user’s interest
is more subtle, as it involves moral and legal issues, un-
less some kind of incentive is applied to compensate the
user’s loss.

6.6 Dock vs. dock-less BSS

Currently, both dock and dock-less BSSs exist in dif-
ferent urban cities in various countries. The U.S. has
more dock BSSs while China has mostly of dock-less
BSSs. It is clear that the dock-less BSS is more con-
venient to the user since they can pick up and drop off
at any location, provided a sufficient number of bikes is
available. However, the dock-less BSS creates various
challenges to BSS operators in terms of management
and maintenance. For example, it is reported in [36]
that the bike-share oversupplies in China, resulting in
huge piles of abandoned and broken bicycles (similar to
the one shown in Fig. 3).

Here we focus on technical issues related to the co-
existence of BSSs - dock and dock-less. One possi-
ble collaboration occurs among different BSS opera-
tors. For example, one truck can be used for bike re-
balancing among different companies. This problem
poses some unique challenges as each company owns
different stations. Bikes from one company must be re-
turned to the station of the same company. However, the
truck can serve multiple companies and the correspond-
ing Hamiltonian circle would consist of stations from
different companies. Truck load can be shared among
bikes from different companies as well.

7 A Bigger Picture

This section starts with a new classification of the
transportation system and provides personal predictions
on some future trends. We also include transportation
systems with the goal of shared mobility, which in-
cludes all modes of travel that offer short-term access
to transportation on an on-needed basis [37].

7.1 Classification

We first classify the transportation system into active
and passive modes. An active system, such as a bus,
taxi, or autonomous shuttle, moves around even when

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 11

Fig. 13 The vision of folded cars in the MIT’s CityCar
project [40].

there is no demand from a user. The movement tra-
jectory can be either fixed (such as a subway, bus, or
autonomous shuttle [38]), on-demand (such as taxi for
ride-hailing and Uber and Lyft for ride-sharing), or hy-
brid. There exist several hybrid modes, either in the
actual system or in the research project. One mode is
a restricted version of on-demand movement where the
vehicle travels only along a subset of routes, e.g., ev-
ery other street and avenue in Manhattan to save overall
travelling distance at the expense of the user who may
have to travel one street/avenue at both source and des-
tination. Another mode is a flexible version of a bus
where the vehicle follows a fixed route with controlled
deviation based on demand [39]. A passive system,
such as a ZipCar, bike, or scooter, remains motionless
when there is no demand from a user. In a typical pas-
sive system, the vehicle is operated by the user, with and
without power, such as e-scooters vs. regular scooters
and motorcycles/e-bikes vs. bicycles.

The BSS belongs to the passive mode of the trans-
portation system. the ZipCar, bike, and scooter systems
are similar in terms of their functions. Therefore, re-
balancing issues and their solutions discussed in this
paper also apply to both ZipCar and scooters. However,
while bikes and scooters address the first/last mile issue,
the ZipCar solves the first/last ten-mile issue. These is-
sues are different in scale and quantity.

7.2 Future of BSSs

Because of various government regulations, various
forms of transportation systems aiming for shared mo-
bility exist. For example, many cities put caps on the
number of total vehicles/bikes a company can provide.
Several Chinese cities have implemented license plate
control. The chance is high for BSS to last for a long
time. Traditional bikes are likely to be replaced by
small-sized scooters (which are popular in Germany

and France). Man-powered bikes and scooters will
be superseded by e-bikes or two-wheeled e-scooters.
Therefore, future BSSs may well be called scooter-
sharing systems (SSSs). In the case of dock and dock-
less BBSs, dock-less BSSs have largely disappeared in
some cities in the US, including Washington, D.C. They
are still going strong in the bicycle kingdom - China, but
Ofo, the largest dock-less BSS in China, has recently
suffered financially due to challenges in bike manage-
ment and fierce competition [41].

In order for BSSs to flourish long-term, the follow-
ing two issues need to be addressed: (1) shared re-
sponsibility and (2) safety and regulation. It is impor-
tant that the user acts responsibly when placing a bike
in a dock-less BSS. The question is how to encourage
people to share responsibility? One possible solution
is using a system that maintains personal credit scores.
Higher ratings correspond to preferential access to ser-
vices while lower ratings entail higher costs or blocked
access to services. When BSSs are used together with
other transportation systems, safety is an important is-
sue. In the current system, there are three different lanes
on a road: sidewalk, bike lanes, and car lanes. Some is-
sues have been reported, such as when scooter riders
blocked the sidewalk with parked scooters and rided on
the sidewalk rather than using bike lanes. The first fa-
tality involving an e-scooter was reported in September
2018 [42]. As BSS companies scale up their service to
mini-cars, like the ones in MIT’s CityCar project [40],
will a fold-able mini-car be considered a regular car in a
car lane or a bike in the bike lane, or will new regulation
be introduced for such mini-cars? These problems cer-
tainly give food for thought in the future development
of BSSs.

Looking forward, both active and passive modes of
the transportation system will likely co-exist for a long
period of time. Among the passive mode, BSSs in form
of ZipCar, bikes, or scooters will certainly play an im-
portant role. The approaches discussed in this paper on
re-balancing will still be relevant in managing such sys-
tems.

8 Conclusions

In this paper, we discussed various solutions to im-
prove bike re-balancing in both dock and dock-less bike
sharing systems (BSSs). We focused on algorithmic so-
lutions to problems that span both time and space. Sim-
ilar to the classic time-space view of a distributed com-

12 Tsinghua Science and Technology, January 2020, xx(x): 000-000

puting system with a set of communicating processes,
a BSS can be represented as a set of stations with a
given capacity. Bike re-balancing among stations can
be represented as a slanted arrow line from one sta-
tion to another station, similar to process communica-
tion in a distributed computing system. Several unique
challenges in truck-based and worker-based solutions
were examined, with discussion of various solutions
and some open problems. Finally, we discussed sev-
eral challenges and opportunities associated with bike
re-balancing, including scalable design, gaming, and in-
centive among BSS operators and workers, algorithmic
solutions vs. machine learning with data analytic, in-
tegration of different system components, and dock vs.
dock-less BSSs.

Acknowledgement

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746,
CNS 1651947, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and CNS 1439672. Author
would like to thank Yubin Duan who helped to collect data
and run the simulation. A special thanks is due to Calton
Pu who gave good suggestions on improving the vision
part of this paper.

References

[1] S. A. Shaheen, E. W. Martin, A. P. Cohen, N. D. Chan,
and M. Pogodzinski, “Public bikesharing in north america
during a period of rapid expansion: Understanding business
models, industry trends & user impacts, mti report 12-29,”
2014.

[2] Wikipedia contributors. (2019) List of bicycle-
sharing systems — Wikipedia. Available: https:
//en.wikipedia.org/w/index.php?title=List of bicycle-s
haring systems&oldid=877207320.

[3] F. Richter. Bike-sharing clicks into higher gear. Avail-
able: https://www.statista.com/chart/14542/bike-sharing
-programs-worldwide/.

[4] L. Chen, D. Zhang, G. Pan, X. Ma, D. Yang, K. Kushlev,
W. Zhang, and S. Li, “Bike sharing station placement lever-
aging heterogeneous urban open data,” in Proceedings of
the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 2015, pp. 571–575.

[5] J. C. Garcı́a-Palomares, J. Gutiérrez, and M. Latorre, “Op-
timizing the location of stations in bike-sharing programs:
A gis approach,” Applied Geography, vol. 35, no. 1-2, pp.
235–246, 2012.

[6] J. Liu, Q. Li, M. Qu, W. Chen, J. Yang, H. Xiong, H. Zhong,
and Y. Fu, “Station site optimization in bike sharing sys-
tems,” in Data Mining (ICDM), 2015 IEEE International
Conference on. IEEE, 2015, pp. 883–888.

[7] Wikipedia contributors. (2018) Facility location problem —

Wikipedia. Available: https://en.wikipedia.org/w/index.p
hp?title=Facility location problem&oldid=875216995.

[8] Z. Yang, J. Hu, Y. Shu, P. Cheng, J. Chen, and T. Mosci-
broda, “Mobility modeling and prediction in bike-sharing
systems,” in Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services.
ACM, 2016, pp. 165–178.

[9] Y. Li, Y. Zheng, H. Zhang, and L. Chen, “Traffic predic-
tion in a bike-sharing system,” in Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Ge-
ographic Information Systems. ACM, 2015, p. 33.

[10] L. Chen, D. Zhang, L. Wang, D. Yang, X. Ma, S. Li,
Z. Wu, G. Pan, T.-M.-T. Nguyen, and J. Jakubowicz, “Dy-
namic cluster-based over-demand prediction in bike sharing
systems,” in Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing.
ACM, 2016, pp. 841–852.

[11] J. Liu, L. Sun, W. Chen, and H. Xiong, “Rebalancing bike
sharing systems: A multi-source data smart optimization,”
in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 1005–1014.

[12] S. Ghosh, M. Trick, and P. Varakantham, “Robust repo-
sitioning to counter unpredictable demand in bike sharing
systems,” 2016.

[13] Y. Li, Y. Zheng, and Q. Yang, “Dynamic bike reposition: A
spatio-temporal reinforcement learning approach,” in Pro-
ceedings of the 24th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. ACM,
2018, pp. 1724–1733.

[14] J. Schuijbroek, R. C. Hampshire, and W.-J. Van Hoeve,
“Inventory rebalancing and vehicle routing in bike sharing
systems,” European Journal of Operational Research, vol.
257, no. 3, pp. 992–1004, 2017.

[15] G. Erdoğan, M. Battarra, and R. W. Calvo, “An exact al-
gorithm for the static rebalancing problem arising in bicy-
cle sharing systems,” European Journal of Operational Re-
search, vol. 245, no. 3, pp. 667–679, 2015.

[16] M. Rainer-Harbach, P. Papazek, B. Hu, and G. R. Raidl,
“Balancing bicycle sharing systems: A variable neigh-
borhood search approach,” in European Conference on
Evolutionary Computation in Combinatorial Optimization.
Springer, 2013, pp. 121–132.

[17] C. Contardo, C. Morency, and L.-M. Rousseau, Balancing
a dynamic public bike-sharing system. Cirrelt Montreal,
2012, vol. 4.

[18] A. Singla, M. Santoni, G. Bartók, P. Mukerji, M. Meenen,
and A. Krause, “Incentivizing users for balancing bike shar-
ing systems.” in AAAI, 2015, pp. 723–729.

[19] C. Fricker and N. Gast, “Incentives and redistribution in ho-
mogeneous bike-sharing systems with stations of finite ca-
pacity,” Euro journal on transportation and logistics, vol. 5,
no. 3, pp. 261–291, 2016.

[20] A. Waserhole and V. Jost, “Pricing in vehicle sharing
systems: Optimization in queuing networks with product
forms,” EURO Journal on Transportation and Logistics,
vol. 5, no. 3, pp. 293–320, 2016.

Jie Wu: Challenges and Opportunities in Algorithmic Solutions for Re-Balancing in Bike Sharing Systems 13

[21] L. Pan, Q. Cai, Z. Fang, P. Tang, and L. Huang, “A deep re-
inforcement learning framework for rebalancing dockless
bike sharing systems,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2019, pp. 1393–1400.

[22] J. Hu, Z. Yang, Y. Shu, P. Cheng, and J. Chen, “Data-driven
utilization-aware trip advisor for bike-sharing systems,” in
Data Mining (ICDM), 2017 IEEE International Conference
on. IEEE, 2017, pp. 167–176.

[23] P. Cheng, J. Hu, Z. Yang, Y. Shu, and J. Chen, “Utilization-
aware trip advisor in bike-sharing systems based on user
behavior analysis,” IEEE Transactions on Knowledge and
Data Engineering, 2018.

[24] M. Charikar, S. Khuller, and B. Raghavachari, “Algorithms
for capacitated vehicle routing,” SIAM Journal on Comput-
ing, vol. 31, no. 3, pp. 665–682, 2001.

[25] Y. Duan, J. Wu, and H. Zheng, “A greedy approach for ve-
hicle routing when rebalancing bike sharing systems,” in
IEEE GLOBECOM, 2018.

[26] O. O’Brien. Bike share map: Beijing. Available: http://bi
kes.oobrien.com/beijing/.

[27] Y. Duan and J. Wu, “Optimizing rebalance scheme for
dock-less bike sharing systems with adaptive user incen-
tive,” in Proc. of the 20th IEEE International Conference
on Mobile Data Management (IEEE MDM 2019), 2019.

[28] Y. Duan and J. Wu, “Optimizing the crowdsourcing-based
bike station rebalancing scheme,” in Proc. of the 39th IEEE
International Conference on Distributed Computing Sys-
tems (ICDCS 2019), 2019.

[29] J. Wu, Distributed System Design. CRC press, 1998.
[30] H. Zheng, N. Wang, and J. Wu, “Minimizing deep sea

data collection delay with autonomous underwater vehi-
cles,” Journal of Parallel and Distributed Computing, vol.
104, pp. 99–113, 2017.

[31] F. Aurenhammer, “Voronoi diagrams—a survey of a funda-
mental geometric data structure,” ACM Computing Surveys
(CSUR), vol. 23, no. 3, pp. 345–405, 1991.

[32] D. Xu and Y. Tian, “A comprehensive survey of clustering
algorithms,” Annals of Data Science, vol. 2, no. 2, pp. 165–

193, 2015.
[33] J. Zhang, P. Lu, Z. Li, and J. Gan, “Distributed trip selection

game for public bike system with crowdsourcing,” in IEEE
INFOCOM 2018-IEEE Conference on Computer Commu-
nications. IEEE, 2018, pp. 2717–2725.

[34] C. Kloimüllner, P. Papazek, B. Hu, and G. R. Raidl, “Bal-
ancing bicycle sharing systems: an approach for the dy-
namic case,” in European Conference on Evolutionary
Computation in Combinatorial Optimization. Springer,
2014, pp. 73–84.

[35] I. A. Forma, T. Raviv, and M. Tzur, “A 3-step math heuris-
tic for the static repositioning problem in bike-sharing sys-
tems,” Transportation research part B: methodological,
vol. 71, pp. 230–247, 2015.

[36] A. Taylor. The bike-share oversupply in china: Huge
piles of abandoned and broken bicycles. Available:
https://www.theatlantic.com/photo/2018/03/bike-share-o
versupply-in-china-huge-piles-of-abandoned-and-broke
n-bicycles/556268/.

[37] What is shared mobility? Available: https://sharedusemob
ilitycenter.org/what-is-shared-mobility/.

[38] (2019) Rtd launches the first on-road deployment of
an autonomous shuttle (ez10) in denver. Available:
http://www.easymile.com/rtd-launches-the-first-on-road-d
eployment-of-an-autonomous-shuttle-ez10-in-denver/.

[39] J. Wu, S. Yang, and F. Dai, “Logarithmic store-carry-
forward routing in mobile ad hoc networks,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 18, no. 6,
pp. 735–748, June 2008.

[40] Wikipedia contributors. (2018) Citycar — Wikipedia.
Available: https://en.wikipedia.org/w/index.php?title=Cit
yCar&oldid=854799564.

[41] C. Campbell. (2018) The trouble with sharing: China’s bike
fever has reached saturation point. Available: http://time.c
om/5218323/china-bicycles-sharing-economy/.

[42] Wikipedia contributors. (2019) Scooter-sharing system —
Wikipedia. Available: https://en.wikipedia.org/w/index.p
hp?title=Scooter-sharing system&oldid=880835966.

Jie Wu is the Director of the Center for
Networked Computing and Laura H. Car-
nell professor at Temple University. He
also serves as the Director of International
Affairs at College of Science and Technol-
ogy. He served as Chair of Department of
Computer and Information Sciences from
the summer of 2009 to the summer of 2016

and Associate Vice Provost for International Affairs from the fall
of 2015 to the summer of 2017. Prior to joining Temple Univer-
sity, he was a program director at the National Science Founda-
tion and was a distinguished professor at Florida Atlantic Uni-
versity. His current research interests include mobile comput-
ing and wireless net- works, routing protocols, cloud and green

computing, network trust and security, and social network appli-
cations. Dr. Wu regularly publishes in scholarly journals, con-
ference proceedings, and books. He serves on several editorial
boards, including IEEE Transactions on Service Computing and
the Journal of Parallel and Distributed Computing. Dr. Wu was
general co-chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE
ICDCS 2013, ACM MobiHoc 2014, ICPP 2016, and IEEE CNS
2016, as well as program co-chair for IEEE INFOCOM 2011 and
CCF CNCC 2013. He was an IEEE Computer Society Distin-
guished Visitor, ACM Distinguished Speaker, and chair for the
IEEE Technical Committee on Distributed Processing (TCDP).
Dr. Wu is a CCF Distinguished Speaker and a Fellow of the
IEEE. He is the recipient of the 2011 China Computer Federa-
tion (CCF) Overseas Outstanding Achievement Award.

