
On Constructing the Minimum Orthogonal Convex Polygon for the
Fault-Tolerant Routing in 2-D Faulty Meshes 1

Jie Wu

Department of Computer Science and Engineering

Florida Atlantic University

Boca Raton, FL 33431

Zhen Jiang

Department of Computer Science

Information Assurance Center

West Chester University

West Chester, PA 19383

1This was supported in part by NSF grants CCR 0329741, CNS 0422762, CNS 0434533, ANI 0073736, and
EIA 0130806. Contacting address: jie@cse.fau.edu



Abstract

The rectangular faulty block model is the most commonly used fault model for designing fault-tolerant

and deadlock-free routing algorithms in mesh-connected multicomputers. The convexity of a rectangle

facilitates simple and efficient ways to route messages around fault regions using relatively few or no

virtual channels to avoid deadlock. However, such a faulty block may include many non-faulty nodes

which are disabled, i.e., they are not involved in the routing process. Therefore, it is important to

define a fault region that is convex and, at the same time, to include a minimum number of non-faulty

nodes. In this paper, we propose an optimal solution that can quickly construct a set of minimum

faulty polygons, called orthogonal convex polygons, from a given set of faulty blocks in a 2-D mesh (or

2-D torus). The formation of orthogonal convex polygons is implemented using either a centralized or

distributed solution. Both solutions are based on the formation of faulty components each of which

consists of adjacent faulty nodes only, followed by the addition of a minimum number of non-faulty

nodes to make each component a convex polygon. This provides a solution to an open problem raised

in [16]. Extensive simulation has been done to determine the number of non-faulty nodes included

in the polygon, and the result obtained is compared with the best existing known result. Results

show that the proposed approach can not only find a set of minimum faulty polygons but also does

so quickly in terms of the number of rounds in the distributed solution.

Index Terms: 2-dimensional meshes (tori), fault tolerance, fault model, orthogonal convex polygons,

routing.



ACRONYMS

2-D meshes 2-dimensional meshes

EW (WE) East-to-West (West-to-East)

NS (SN) North-to-South (South-to-North)

FB Faulty Block

FP Faulty Polygon

MFP Minimum Faulty Polygon

CMFP Centralized Solution of Minimum Faulty Polygon

DMFP Distributed Solution of Minimum Faulty Polygon

NOTATION

u, v Nodes u and v

ID Node Identifier with an Encoded Address (x, y)

(E, S, W, N) Boundary Entry with East, South, West, and North Boundary Node Information

V [1..n] Boundary Array

minx(C) Minimum Coordinate of Component C along X Dimension

maxx(C) Maximum Coordinate of Component C along X Dimension

miny(C) Minimum Coordinate of Component C along Y Dimension

maxy(C) Maximum Coordinate of Component C along Y Dimension

1 Introduction

Mesh-connected multicomputers, especially those with low-degree, are one of the simplest and least ex-

pensive structures for building a system using hundreds and even thousands of processors. Low-degree

mesh-connected multicomputers include meshes and tori (which are meshes with wraparound connec-

tions). Dally [5] and Agarwal [1] recommended the use of low-degree networks, such as 2-dimensional

(2-D) and 3-dimensional (3-D) meshes (tori), over high-degree networks, such as hypercubes, for better

performance and cost-effectiveness. In a mesh-connected multicomputer, processors (also called nodes)

exchange data and coordinate their efforts by sending and receiving messages through the underlying

mesh network. Thus, the performance of such a system depends heavily on the end-to-end cost of
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communication mechanisms. Routing is the process of transmitting data from one node to another

node in a given system. As the number of nodes in a mesh-connected multicomputer increases, the

chance of failure also increases. At the same time, applications that run on such a system are often

critical and may have real-time constraints. Therefore, the ability to tolerate failure is becoming in-

creasingly important, especially for routing [6]. In this paper, we focus on 2-D meshes (tori) and, in

the subsequent discussion, we use meshes to represent both meshes and tori.

In designing a fault-tolerant routing algorithm, one of the most important issues is to select an

appropriate fault model. A good fault model should accurately reflect fault situations in a real system.

It should be defined in such a way that fault information can be easily established and maintained.

The model should not be too complex and, at the same time, not overly simplified so that certain

objectives, such as optimization and deadlock-free requirements, are still obtainable. Most of the

literature on fault-tolerant routing uses disjoint rectangular blocks [2, 3, 4, 7, 11, 20, 21] to model

node faults (link faults can be treated as node faults) and to facilitate routing in 2-D meshes. First,

a node labelling scheme that identifies nodes (faulty and non-faulty) that cause routing difficulties is

defined and such nodes are called unsafe nodes. Connected unsafe nodes form a faulty rectangular

region. Such a region is also called a rectangular faulty block, or simply a faulty block. A faulty block

can be easily established and maintained through message exchanges among neighboring nodes.

The convexity of each faulty block facilitates a simple fault-tolerant and deadlock-free routing

using either relatively few virtual channels [4, 11, 13] or no virtual channel [18]. The convex feature

of a faulty block is a necessary condition for progressive routing, where the routing process never

backtracks. The absence of backtracking in turn is a necessary condition for minimal routing (also

called shortest path routing [9, 19]), where the destination is reached through a minimal path from

the source. The fault-tolerant minimal routing algorithm for 2-D meshes has been developed in [17]

using the faulty block model. There are several studies ([3, 12, 14]) on fault-tolerant routing that can

handle non-rectangular fault regions, such as H-shape, L-shape, T-shape, U-shape, and +-shape fault

regions.

Despite all the desirable features of the faulty block model, a major problem is that a faulty block

may include many non-faulty nodes treated as faulty nodes (with the unsafe label). A non-faulty node

in the faulty block will not be used in any routing process. This leads to the loss of the communication

ability of such a node. In the worst case, a majority of nodes in a faulty block are non-faulty. Although

some efforts have been made either to enhance the faulty block definition to include fewer non-faulty

nodes in a faulty block [10] or to activate some boundary non-faulty nodes in a faulty block as in

[2, 11], the above problem still exists.

In this paper, we try to solve the above problem by providing an approach to find a set of disjoint

convex polygons that cover all the faulty nodes with a minimum number of non-faulty nodes included
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in these polygons. In this way, the fault situation in the networks can be desribed accurately in this

new fault model without including any redundant non-faulty node. It is the fundamental block of

providing a fault-tolerant routing so that a robust network communication can be obtained at the

most degree without extra loss of communication ability of nodes in a situation when some faults

occur in the networks.

A convex region (polygon) is defined as a region (polygon) P for which a line segment connecting

any two points in P lies entirely within P . If we change the “line segment” in the standard convex

region definition to “horizontal or vertical line segment”, the resultant region is called an orthogonal

convex region (polygon) ([8, 16]). Clearly, a faulty block is a special orthogonal convex region. In 2-D

meshes, the boundary lines of a region are either horizontal or vertical, therefore, each region is a

polygon. In the subsequent discussion, we use the terms polygon and region interchangeably.

The challenge here is not only to conduct a theoretical study on the feasibility of finding such a

smallest orthogonal convex polygon but also to search for a practical and efficient distributed imple-

mentation in a system where each processor knows only the status of its neighbors. In [16], a simple

and efficient distributed algorithm is presented that determines a set of small orthogonal convex poly-

gons to cover all the faults in a given faulty block. This approach consists of two phases. First,

a set of disjoint faulty blocks are constructed from a given set of faulty nodes. Each faulty block

may contain many non-faulty nodes. Then, each faulty block is partitioned into one or many disjoint

orthogonal convex polygons by removing some non-faulty nodes from the block. It is shown in [16]

that a resultant region generated after removing non-faulty nodes from the given faulty block is the

minimum orthogonal convex polygon (simply called a faulty polygon) that covers all the faults in the

region. Note that there may be several polygons generated from a given faulty block. In addition, it is

shown that the number of non-faulty nodes covered in these faulty polygons (from a given faulty block)

is no more than that of the minimum orthogonal convex polygon that includes all the faulty nodes

in the original faulty block. However, for certain cases, a faulty polygon can be further partitioned,

and more non-faulty nodes in the region can be removed. Therefore, such a faulty polygon is called

sub-minimum faulty polygon. This brings the following open problem: For a given faulty block, find

a set of disjoint orthogonal convex polygons that covers all the faults in the faulty block and contains

a minimum number of non-faulty nodes. Clearly, each faulty polygon is minimum (called minimum

faulty polygon) in the sense that it cannot be replaced by a set of faulty polygons that include fewer

non-faulty nodes.

In this paper, we first provide a centralized solution for the open problem and, then, an efficient

distributed solution is provided. This approach again consists of two phases. In the first phase, a set

of components are formed, where each component consists of adjacent faulty nodes with no non-faulty

node. In the second phase, a minimum number of non-faulty nodes are added to make each component
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a convex polygon. Extensive simulation has been done to determine the number of non-faulty nodes

included in the polygon, and the result obtained is compared with the best existing known result.

This paper is organized as follows: In Section 2 we provide some preliminaries including the

definition of an orthogonal convex polygon, its application in fault-tolerant and deadlock-free routing

in 2-D meshes, and a distributed formation of a sub-minimum faulty polygon. In Section 3, we propose

an optimal solution for constructing minimum faulty polygons. An efficient distributed solution is

also provided. In Section 4, simulation results on the average number of rounds needed to construct

minimum faulty polygons and the number of non-faulty nodes in the polygons are given. Finally, in

Section 5, we provide our conclusions and ideas for future work.

2 Preliminaries

2.1 Orthogonal convex polygons

We consider only node faults and assume that faulty nodes just cease to work. Also, each non-faulty

node knows the status of its neighbors only; that is, there is no priori global information of fault

distribution. A 2-dimensional (2-D) n × n mesh with n2 nodes has an interior node degree of 4 and a

network diameter of 2(n−1). Each node u has an address (ux, uy), where ux, uy ∈ {0, 1, ..., n−1}. Two

nodes u: (ux, uy) and v: (vx, vy) are connected if their addresses differ in one and only one dimension,

say dimension x. Moreover, |ux − vx| = 1. Similarly, if they differ in dimension y, then |uy − vy| = 1.

In the following, we give the definition of an orthogonal convex region.

Definition 1 [16]: A fault region is orthogonal convex if and only if the following condition holds:

For any horizontal or vertical line, if two nodes on the line are inside the region, all the nodes on the

line that are between these two nodes are also inside the region.

The difference between a standard convex region and an orthogonal convex region is that the line

in the latter is restricted to only horizontal and vertical, whereas the line in the former can be along

any direction in a standard convex region. In 2-D meshes, each orthogonal convex region is also an

orthogonal convex polygon. Clearly, T-shape, L-shape, and +-shape (the shadowed region in Figure

1) fault regions are orthogonal convex polygons, whereas U-shape and H-shape fault regions are non-

orthogonal convex polygons. For example, orthogonal convex region {(2, 4), (3, 4), (4, 3)} is an L-shape

polygon (the shadowed region in Figure 2).

Note that an orthogonal convex polygon is the same as a solid fault in the solid fault model [3].

It is shown in [3] that only four virtual channels are needed around a convex region to support fault-

tolerant and deadlock-free routing. However, finding an algorithm for computing a smallest solid fault

was not included in [3]. Wang [15] independently proposed a routing-sensitive convex region where
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WE−bound EW−bound

SN−boundNS−bound

Figure 1: Routing of messages around disabled regions.

each convex region has two versions (shapes), one for west-east routing and the other for east-west

routing.

2.2 Fault-tolerant and deadlock-free routing

We first show the application of orthogonal convex polygon in achieving fault-tolerant and deadlock-

free routing in 2-D meshes. It is assumed that faults in a given 2-D mesh are contained in a set of

disjoint faulty polygons. Chalasani and Boppana’s extended e-cube routing [3] is used to illustrate the

routing process. The e-cube routing (also called x-y routing) sends a message in a row (x-direction)

until the message reaches a node that is in the same column as its destination and, then, sends the

message in the column (y-direction). Consider a routing process from node (1,3) to node (6,4), the

message is first routed along the row to node (6,3) and, then, the message follows the column to

reach destination (6,4). The extended e-cube routing follows the base e-cube routing until it hits a

faulty polygon, and then, sends the message around the region (and the message is in an “abnormal”

mode), clockwise or counterclockwise based on a set of rules (to be discussed shortly), until it becomes

“normal” again, i.e., the region no longer has effect on the routing process.

Messages are classified into one of four types: EW (East-to-West), WE, NS, or SN. A message is

initially labelled as EW-bound or WE-bound, depending on its direction of travel along the row. Once

a message completes its row hops, it becomes a NS-bound or SN-bound message. For the routing

example from node (1,3) to node (6,4), the message is WE-bound initially. The message becomes

SN-bound once it reaches node (6,3). Once a message hits a faulty polygon, it has to route around

the region. Figure 1 shows ways to route around a faulty polygon for different types of messages.

The orientation (clockwise or counterclockwise) is a don’t care for an NS- or SN-bound message. The

orientation for a WE-bound (EW-bound) message is the following: clockwise (counterclockwise) if the
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(2,3)(1,3)

(5,2) (6,2)

(6,4)

Figure 2: A routing example from source (1,3) to destination (6,4).

message is in a row above its row of travel; counterclockwise (clockwise) if the message is in a row

below its row of travel, and don’t care (don’t care) if the message is in the same row of travel.

Consider again the routing process from (1,3) to (6,4). The message is routed along the row

towards east and it is WE-bound. Suppose there is a faulty polygon {(2,4), (3,4), (4,3)} (see Figure

2). Once it reaches the boundary of the faulty polygon at node (2,3), the message is routed along

the faulty polygon. Since node (2,3) is in a row that is below the row of travel (or the row of the

destination), the message is routed around the faulty polygon counterclockwise as shown in Figure

2. Once the message reaches node (5,2) it becomes “normal” again. The rest of the routing process

follows the base e-cube routing along the row to node (6,2), and then, along the column to reach node

(6,4).

To ensure freedom from deadlock and livelock, four virtual channels, vc0, vc1, vc2, vc3, are used for

channels around faulty polygons. Note that more virtual channels are needed if the region is concave.

The use of these virtual channels is as follows: EW-bound messages use vc0 for all hops around faulty

polygons, WE-bound messages use vc1, NS-bound messages uses vc2, and SN-bound messages use vc3.

Other details related to the extended e-cube routing can be found in [3].

2.3 Distributed formation of sub-minimum faulty polygon

Wu’s sub-minimum faulty polygon construction [16] is based on two labelling schemes:
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• Labelling scheme 1: All faulty nodes are unsafe, and all non-faulty nodes are safe initially. A

non-faulty node is changed to unsafe if it has a faulty or unsafe neighbor in both dimensions;

otherwise, it remains safe.

• Labelling scheme 2: All faulty nodes are marked disabled. All safe nodes are marked enabled.

An unsafe node is initially marked disabled, but it is changed to enabled if it has two or more

enabled neighbors.

Based on the above labelling schemes, a faulty node must be unsafe and disabled. For a non-faulty

node, there are three possible cases: (1) safe and enabled, (2) unsafe and enabled, and (3) unsafe and

disabled. The labelling scheme 1 corresponds to a growing phase that includes non-faulty nodes in the

block and, as a result, rectangular faulty blocks are generated. The labelling scheme 2 corresponds to

a shrinking phase that removes non-faulty nodes from rectangular faulty blocks.

Figure 3 (a) shows rectangular faulty blocks generated from ten faulty nodes (black nodes). Gray

nodes are unsafe nodes. Other safe non-faulty nodes are not shown. Figure 3 (b) shows two orthogonal

convex polygons generated from Figure 3 (a). Gray nodes are unsafe and disabled nodes (i.e., non-

faulty nodes contained in the polygon), and white nodes are unsafe but enabled nodes (i.e., non-faulty

nodes that are originally in rectangular faulty block, but are removed from the orthogonal convex

polygon). Clearly, the right polygon in Figure 3 (b) is not minimum and it can be further partitioned

into three polygons as shown in Figure 3 (c).

Wu [16] shows that under the condition that each polygon cannot be further partitioned (such as

the left polygon in Figure 3 (b)), the polygon is minimum. That is, the polygon contains the minimum

number of non-faulty nodes unless the original faulty block can be further partitioned.

3 Minimum Orthogonal Convex Polygon

We start with a centralized solution for determining minimum faulty polygons, followed by a dis-

tributed solution. Both solutions consist of two phases. First, faulty nodes are grouped into a set

of components, where faulty nodes in each component are adjacent. Then, a minimum number of

non-faulty nodes are included to make each component a polygon.

3.1 Centralized solutions

In the centralized solution, first we define the notion of node adjacency.

Definition 2: For a given node (x, y), the adjacent nodes of (x, y) are (x − 1, y − 1), (x − 1, y),

(x − 1, y + 1), (x, y − 1), (x, y + 1), (x + 1, y − 1), (x + 1, y), and (x + 1, y + 1).
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(a) (b) (c)

Figure 3: (a) Rectangular faulty blocks, (b) sub-minimum faulty polygon, and (c) minimum faulty

polygon.

In phase 1, a merge process is used that groups faulty nodes into components, where each com-

ponent consists of adjacent faulty nodes only. Clearly, a sub-minimum faulty polygon may include

multiple components. In addition, for each component, four coordinates minx, miny, maxx, and maxy,

representing the minimum and maximum coordinates of any nodes in this component along X and Y

dimensions, are maintained in merge process.

In phase 2, there are two possible solutions. One is based on applying labelling schemes 1 and 2 on

each component. The other is based on the definition of orthogonal convex polygon to “fill in” each

concave region of a component with non-faulty nodes.

In the first solution of phase 2, for each component, a virtual faulty block is constructed by applying

the labelling scheme 1. In the virtual faulty block, four corners are (minx,miny), (minx,maxy),

(maxx,miny), and (maxx,maxy). Such a rectangle can be simply represented by two opposite corners

[(minx,miny), (maxx,maxy)]. Applying labelling scheme 2, minimum faulty polygons are derived, one

for each virtual faulty block.

Figure 4 shows an example of two components and the corresponding virtual faulty blocks. In

Figure 4 (a), white nodes are unsafe but enabled nodes in the sub-minimum faulty polygon. In

Figure 4 (b) and (c), white nodes are unsafe but enabled nodes in the virtual faulty block, but removed

from the minimum faulty polygon. Gray nodes are unsafe and disabled nodes. Virtual faulty blocks

(Figures 4 (b) and (c)) are encircled by rectangles with dashed lines and minimum faulty polygons are

represented by rectangles with thick lines. The final diagram (Figure 4 (d)) is constructed by “piling”

all the diagrams on top of each other, with the following superseding rule for node status:
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Minimum Orthogonal Convex Polygons (Centralized Solution based on Labelling Schemes

1 and 2)

1. Construct components using the merge process. Each component C maintains minimum and

maximum coordinates along X and Y dimensions: minx(C), miny(C), maxx(C), and maxy(C).

2. Apply labelling scheme 1 to each component C to generate a virtual faulty block. Basically, all

nodes inside the boundary of X : [minx(C),maxy(C)] and Y : [miny(C),maxy(C)] other than

those of C are treated as non-faulty nodes, and then become unsafe after the labelling process.

3. Apply labelling scheme 2 to enable some non-faulty but unsafe nodes in the virtual faulty block.

4. Use the superseding rule to resolve conflicting node status for final status of each non-faulty

node.

• Superseding rule: black nodes overwrite gray and white nodes, and gray nodes overwrite white

nodes.

Note that using the sub-minimum faulty polygon construction, two components in Figure 4 will

be placed in one faulty block after the labelling scheme 1. Also, the white node on the north-west

corner will be enabled. The resultant polygon (shown in Figure 4 (a)) still includes two components

plus one gray node and three white nodes in Figure 4 (d) and it is not minimum.

Theorem: Each polygon P derived based on the proposed process is a minimum faulty polygon.

Proof: We need only to prove that there exists no set of disjoint convex polygons that covers all the

faulty nodes in polygon P , and that in addition, the number of non-faulty nodes included in these

polygons is less than that of P .

Suppose P is constructed out of k components C1, C2, ..., Ck, and the corresponding polygons are

P1, P2, ..., Pk . Based on the definition of component, each Pi (1 ≤ i ≤ k) cannot be partitioned. Let

P
′

1, P
′

2, ..., P
′

m be any set of disjoint faulty polygons that covers all faults in P . Then for each Pi, there

is a P
′

j (1 ≤ j ≤ m) that covers all faults in Pi. Since Pi is derived from labelling schemes 1 and 2

on Ci and it cannot be further partitioned (see in Theorem 2 in [16]), P
′

j includes also all non-faulty

nodes in Pi. Therefore, P : P1, P2, ... Pi contains no more non-faulty nodes than those of P
′

1
, P

′

2
, ...

P
′

m.

The first solution is based on emulating labelling scheme 1 (growing each component into a virtual

9



virtual faulty block

(c)(a) (d)(b)

Figure 4: Centralized solution: (a) components, (b) and (c) faulty polygons, and (d) “piling” all faulty

polygons.

faulty block) and labelling scheme 2 (shrinking each virtual faulty block into a minimum faulty poly-

gon). In the second solution, non-faulty nodes are directly added to the concave region of a component

to convert it to a convex polygon. The correctness of this approach is clear since it is equivalent to

the labelling schemes 1 and 2 applied on each component. We first define the notion of concave row

section and concave column section.

Definition 3: Given a component, for a horizontal (vertical line) where two end nodes on the line are

inside the component, each section of the line that is outside the component is called a concave row

(column) section.

To find minimum faulty polygons, we only need to disable all nodes on the concave row (column)

section. To identify all concave row (column) sections, we need to “scan” each component twice,

horizontal (from minx to maxx) and vertical (from miny to maxy). Each non-faulty node is enabled

by default, the final status of each non-faulty node is decided based on the same superseding rule

discussed in the last subsection.

3.2 Distributed solutions

The distributed solution is more involved. The first challenge is the construction of a component. This

is done by boundary nodes of a component, i.e., nodes outside any faulty components but adjacent to

this component. If a boundary node is at the north-side of a component, it is called a north boundary

node with respect to the component. Other adjacent nodes towards south, east, and west are defined

in a similar way. Note that each node may have multiple boundary status (e.g., a node can be a

south and north boundary node if it is at the south and north of the component). Boundary nodes
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Minimum Orthogonal Convex Polygons (Centralized Solution based on Concave Row and

Column Sections)

1. Construct components using the merge process. Each component C maintains minimum and

maximum coordinates along X and Y dimensions: minx(C), miny(C), maxx(C), and maxy(C).

2. Identify all concave row and column sections by scanning each component twice, one horizontally

from minx to maxx and one vertically from miny to maxy.

3. Assign disable status to all nodes in concave row and column sections.

4. Use the superseding rule to resolve conflicting node status for final status of each node.

form a “ring” surrounding the faulty component. A boundary node is the south-west outer corner

(see the triangle node in Figure 5 (a)) if it has a west boundnary neighbor and a south boundary

neighbor. A boundary node is the south-west inner corner (see the triagnle node in Figure 5 (c)) if it

is an east and a north boundary node at the same time. Note that south-west outer corner belongs

to the boundary ring, but it is not an east, south, west, or north boundary node. Once the boundary

ring is constructed, it is assumed that each node knows the next boundary node (along the clockwise

direction).

We assume that both the west-most south-west outer corner and the west-most south-west inner

corner (if any) initiate the ring construction process and these corners are also called the initiators.

The initiation message goes around the faulty component in a clockwise direction (see Figure 5, where

an initiator is represented by a triangle). The situation for multiple initiations will be discussed later.

The next challenge is the distributed method of determining the status of each non-faulty node.

Since a concave row/column section may overlap with another faulty component (as will be seen later

with an example), the centralized approach based on labelling schemes 1 and 2 cannot be directly

applied. A disabled node in a concave row/column section of one faulty component can be a faulty

node in another faulty component. Therefore, such a node cannot participate in neighbor information

exchange as required in labelling schemes 1 and 2. Instead of involving all nodes in the concave row and

column section, we use only boundary nodes that are end nodes of concave row/column sections, since

a boundary node cannot be a faulty node in any faulty component. Each concave row/column section

is defined during the boundary ring construction. The following information needs to be piggybacked

with the initiation message:
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(b)

column i

b1

b2

b3

b4

concave region

(c)

initiator

concave column section

(a)

initiator

boundary ring

concave row section

Figure 5: Distributed solution for (a) and (b) open concave region, and for (c) closed concave region.

• Initiator ID (x, y)

• Boundary 2-D array V [1..n](E,S,W,N)

Initiator ID is used as the message id, and it is also used to determine when the message should

terminate (i.e., when a node receives a message with its own id). Boundary array (n× 4 2-D array) is

used to determine concave row and column sections, where E,S,W,N are used to store east, south,

west, and north boundary node information. This array includes row number for the most recently

visited north and south boundary node at each column and column number for the most recently

visited east and west boundary node at each row. Basically, in a given n × n 2-D mesh, one entry is

used for south (north) boundary nodes on each row (from row 1 to row n) and one entry is used for

east (north) boundary nodes on each column (from column 1 to column n). Initially, all entries in the

boundary array are initialized to “-” (undefined). It should be stressed that during the ring formation,

multiple boundary nodes of the same type (east, south, west, or north) may appear. There is only

one entry for each type per row (column). During the ring formation of the example in Figure 5 (b),

there are four boundary nodes, b1 (north), b2 (south), b3 (north), and b4 (south), in column i. V [i](S)

stores the row number of b1 and later the row number of b3. Similarly, V [i](N) stores the row number

of b2 which is later substituted by the row number of b4.

In the following algorithm, one end node of each concave row (column) section is selected to be

in charge of notification of disable status to all nodes in the corresponding section (see gray nodes in

Figure 6). Such an end node is also called notification end node which is responsible for notification

and maintains the positions of two end nodes of the corresponding concave section.

In the example of Figure 5 (b), the initiation message visits node b1 first and stores its row
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south boundary west boundary

east bounary 
north boundary

(d)(c)(b)(a)

Figure 6: Four different cases of concave sections: (a) and (c) concave row section, and (b) and (d)

concave column section.

Concave Row and Column Section (Distributed Solution)

1. Upon receiving the initiation message, the current node does the following if it is an east, south,

west, or north boundary node:

• Update the corresponding entry V [1..n](E,S,W,N) based on the type of boundary node

and the current node position. In case of multiple boundary status, multiple entries are

updated.

• The current node is a notification end node for concave row or column section

– if the current node is an east (west) boundary and the west (east) boundary of the

same row has a record with no smaller (no larger) a column number (see Figures 6 (a)

and (c)), or

– if the current node is a south (north) boundary and the north (south) boundary of the

same column has a record with no smaller (no larger) a row number (see Figures 6 (b)

and (d)).

• If the current node is a notification end node, it records the positions (stored in V ) of two

end nodes of the corresponding concave row (column) section.

2. Pass on the initiation message to the next node in the boundary ring with the updated boundary

array.

13
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Figure 7: Notification in a concave column section with blocking polygons.

information in V [i](N) (which is initiated to “-”) . When b2 is visited, its row information is stored in

V [i](S) (which is also initiated to “-”). Since the row number of b2 is smaller than the row number of

b1 (i.e., V [i](S) < V [i](N)), no action is needed. When b3 is visited, its row information is stored in

V [i](N) (i.e., the row number of b1 is replaced). Again, no action is needed since V [i](S) < V [i](N).

Finally, when b4 is visited, its row information is stored in V [i](S). Since the row number of b4 is

no smaller than the row number of b3 (i.e., V [i](S) ≥ V [i](N)), b4 is the notification end node for a

concave section in column i. The row positions of two end nodes are recorded in V [i](S) and V [i](N).

Various optimizations are possible on reducing memory space by combining V [i](S) with V [i](N)

and V [i](E) with V [i](W ), and removing redundant portions in different concave sections by also

holding the second most recently visited boundary node information. Details are more involved and

are skipped here.

One more challenge is that a concave region (consists of concave row and/or column) may actually

contain faults (it is fault-free only with respect to the current component) and the corresponding faulty

polygons are called blocking polygons. In the absence of blocking polygons, forwarding status along

the concave row (column) section is straightforward along a row (column); otherwise, the message

that carries node status must route around blocking polygons. Figure 7 (a) shows an example where

a concave column section in a concave region (component 1) has to bypass two blocking polygons,

components 2 and 3. Note that, when routing around blocking polygons, node status for portions (of

the section) that also belong to concave regions of blocking polygons (such as that of component 3 in

Figure 7 (a)) is determined multiple times (i.e., colored twice in Figure 7 (a), one by component 1 and

one by component 3). The end result of concave region is shown in Figure 7 (b).
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Figure 8: An example.

In a component, there are many south-west corners (inner or outer). It is possible that many or all

of them can initiate the process. Therefore, the procedure starts whenever a new south-west corner is

formed and we have the following overwriting rule in the priority order of (a) and (b): When a node

receives more than one initiation message, (a) the one with a smaller x value in initiator ID overwrites

the rest and, then, (b) the one with a smaller y value in initiator ID overwrites the rest. A south-west

corner is “awakened” by an incoming initiation message if it has not started its process and its ID

overwrites that of the incoming message. In this way, the west-most south-west (inner or outer) corner

will dominate even if it is not the initiator originally.

Figure 8 shows an example of one component with ten faulty nodes (black nodes). Gray nodes

in the figure correspond to notification end nodes of concave row/column sections. The remaining

disabled nodes are not shown. Based on the distributed solution, node (1, 2) is a south boundary node

responsible for concave column section [1, 2..2] (a column section with one row). In fact, node (1,

2) has three statuses: north, west, and south boundary node; this node updates three entries in the

boundary array with the same timestamp. Node (2, 3) is a north boundary node for column section [2,

3..4]. Node (2,3) is also an east boundary node. Nodes (3, 3), (3, 4), and (3, 5) are all west boundary

nodes for concave row sections [2..3, 3], [2..3, 4], and [3..3, 5], respectively.

4 Simulation

A simulation has been conducted in a 100×100 mesh to test the effectiveness of the new faulty polygon

model. To simplify the simulation, we assume that the number of faults is no more than 800. After the
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occurrence of faults, faulty blocks, sub-minimum faulty polygons, and minimum faulty polygons (in

both centralized and distributed solutions) are constructed through rounds of information exchanges

and updates between neighbors. We consider two fault distributions, assuming all faults are sequen-

tially added to the network: First, we randomly generate the positions of these faults in the random

fault distribution model. Second, to test cases with large faulty components, a clustered fault distribu-

tion model is adopted here. In this model, all points have the same failure rate initially. After a fault

(x, y) is inserted, the failure rate of its adjacent neighbors (eight in all) is doubled. Therefore, there

are two different failure rates, one for nodes that are not adjacent neighbors of existing faults and the

other for nodes that are adjacent neighbors of existing faults. Under the clustered fault distribution

model, faults tend to form clusters.

Figure 9 shows the average number of non-faulty nodes contained in faulty blocks (FB), sub-

minimum faulty polygons (FP), and minimum faulty polygons (MFP) in the whole network. The

results under the random fault distribution model are shown in Figure 9 (a) and those under the

clustered fault distribution model are shown in Figure 9 (b). The faulty polygon (FP or MFP) covers

all the faults in the FB model but contains fewer non-faulty nodes than does FB. Under the FP model,

50% of non-faulty nodes contained in FB can be enabled. Under the MFP model, 90% of non-faulty

nodes contained in FB can be enabled.

Figure 10 shows the average size of FB, FP, and MFP by the number of faulty and non-faulty

nodes they contain. The results under the random fault distribution model are shown in Figure 10 (a)

and those under the clustered fault distribution model are shown in Figure 10 (b). The average size of

both FP and MFP is smaller than that of FB. The average size of MFP is the least of the three (FB,

FP, and MFP). Because of the scattered distribution of faults under the random fault distribution

model, most faulty blocks (under FB or FP model) contain no more than four nodes and most virtual

faulty blocks (under MFP model) contain only one faulty node. Under the clustered fault distribution

model, the size of each faulty block becomes large and the average size can be six times that of the

random faulty distribution model. However, the average size of MFP does not increase much, even

when the number of faults reaches 800.

Figure 11 shows the average number of rounds of information exchanges between neighbors for

status determination in the networks under FB, FP, and MFP (the centralized solution CMFP and

the distributed solution DMFP) model. More specifically, under the FB model, numbers of rounds

are needed for applying the labelling scheme 1. Under the FP model, extra rounds are needed for

applying labelling scheme 2. Under the CMFP model, we “emulate” labelling schemes 1 and 2 on faulty

components, where a virtual faulty block is generated from each component. Rounds of information

exchanges are needed when labelling schemes 1 and 2 are applied on each faulty component. Under

the DMFP model, we use the boundary ring construction followed by notification from one end node
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Figure 9: Average number of non-faulty but disabled nodes contained in faulty blocks (FB), sub-

minimum faulty polygons (FP) and minimum faulty polygons (MFP) in the whole network: (a) the

random fault distribution model and (b) under the clustered fault distribution model.
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Figure 10: Average size of FB, FP, and MFP: (a) the random fault distribution model and (b) under

the clustered fault distribution model.

18



0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 #
 o

f 
ro

un
ds

Number of faulty nodes

FB
FP

CMFP
DMFP

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

A
ve

ra
ge

 #
 o

f 
ro

un
ds

Number of faulty nodes

FB
FP

CMFP
DMFP

Figure 11: Average number of rounds for status determination under FB, FP, and MFP (the centralized

solution CMFP and the distributed solution DMFP): (a) under the random fault distribution model

and (b) under the clustered fault distribution model.
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in each concave row/column section. Rounds of information propagation are needed in boundary ring

construction and the notification process. That is, the number of rounds for status determination

of FB or FP depends on the maximum size of faulty blocks and that of MFP (CMFP or DMFP)

depends on the maximum size of faulty components. Because in the presence of a large number of

faulty nodes, the average size of faulty blocks is significantly larger than that of components, the

number of rounds needed needed for MFP (DMFP or CMFP) is much less than that of FB or FP. In

MFP, the construction of DMFP needs more rounds than that of CMFP, because the boundary ring

construction needs to circle around each faulty component and to notify nodes in the concave region.

However, the number of rounds in DMFP is still much less than that of FB or FP. This result confirms

the effectiveness of our minimum faulty polygon (MFP) model since the process is more parallel in

nature and the status of nodes in MFP can be determined more quickly.

5 Conclusion

In this paper, we provided a solution to an open problem posed in [16]. That is, given a set of faulty

nodes, find a set of disjoint orthogonal polygons to cover these faulty nodes such that the number of

non-faulty nodes in these orthogonal polygons is minimized. We proposed a centralized solution and

its distributed counterpart. Simulation has been conducted to compare the proposed fault model with

previous ones, including the rectangular faulty block and sub-optimal orthogonal convex polygon, in

terms of the average size of the block and the average number of non-faulty nodes included in the

block. Results have shown that the proposed approach can not only find a set of minimum faulty

polygons but also does so quickly in terms of the number of rounds in the distributed solution. Our

future work will focus on extending the proposed method to higher dimension meshes (tori).
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