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Abstract—To improve the user experience in multi-party online

applications, i.e., low gaming lag in online gaming, the maxi-

mum latency between any pair of users should be minimized.

Considering the multiple preferences of users, i.e., which group

a user can join, we address the User Latency Minimization

(ULM) problem by performing an optimal matchmaking. This

paper proves that the ULM problem is NP-hard if users have

more than two preferences. We prove that the ULM problem

has the sub-modular property and we apply the classic greedy

algorithm with an approximation ratio of 1 + lnn, where n is

the number of users with multiple preferences. Furthermore,

we observe that a matchmaking priority for users in different

locations exists and thus we propose a revised greedy algorithm

with an approximation bound and discuss its performance in

the tree structure and the general structure. Specifically, the

revised greedy algorithm achieves an approximation ratio of

m/2 with lower complexity in the tree structure, where m is

the number of preferences in the general structure. Finally, we

develop a distributed greedy approach which converges quickly.

Extensive trace-driven experiments from Internet measurements

demonstrates that our schemes achieve good performances.

Index Terms—Geometric optimization, interactive application,

network combinatorial optimization.

I. INTRODUCTION

Nowadays, multi-party interactive application, such as on-
line gaming and video/audio conferencing, is very popular due
to the popularity of laptops, tablets, and smart phones, and
recent advances in cellular networks. The interactive applica-
tion means that all users interact with each other and thus,
there is communication between any pair of users. Among
the interactive applications, online games remain the most
popular application category in both the iOS and Android
ecosystems [1] in terms of downloads, usage, and revenue
earned. In particular, multi-user games are becoming increas-
ingly popular to both game users and developers. Users find
that the unpredictability that arises from playing against human
opponents keeps them engaged for much longer periods while
game developers find that more engaged users generate a lot
more ads and in-game sales revenues. In 2016, the Supercell
(a game company) reported an annual revenue of around 2.11
billion Euro [2]. Another game, called King of Glory, has 160
million monthly active users [3].

One fundamental challenge in interactive applications is that
clients are geographically distributed, and each client needs
to receive a stream from all the other clients in real time.
Appealing to increasingly discriminating game users requires
careful attention to their chief concerns known as lag, the per-
ceived time between an action and its effect [4]. In this paper,

TABLE I
COMPARISON OF DIFFERENT MATCHMAKING STRATEGIES.

Matchmaking strategy
First Second Third

Group A 2, 4, 5 4, 5 3, 4, 5
Group B 1, 3 1, 2, 3 1, 2
Max. latency 14 11 9
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Fig. 1. The illustration of different matching strategies.

we focus on the Peer-to-Peer (P2P) network model, which is
common in online games. In the P2P environment, the primary
contributor to the lag is the direct communication between
participants game machines over the Internet. To reduce lag
and hence improve the game experience, it is critical to design
efficient schemes from hardware to software, e.g., increasing
bandwidth and designing streaming techniques.

The objective of this paper is to minimize the maximum
pair latency of users in every group, called the User Latency
Minimization (ULM) problem. Instead of trying to improve
the hardware or software, this paper tries to reduce the
latency from another angle based on the observation that
each user might have multiple preferences, i.e., potential
groups to join, and different matchmaking assignments lead
to different maximum latencies. Note that there is no special
player number requirement in each group except the maximum
number, which is the new trend in battle royale game [5].
Therefore, we propose an optimal matchmaking in multi-party
online applications to reduce the latency. The ULM problem is
challenging for the following two reasons: (1) each assignment
will have an influence on all users in that group; (2) the
matchmaking assignment a user may correlate with future
other users’ assignments and thus it is hard to evaluate its
correctness.

A motivational example is shown in Fig. 1, where there
are five users. Fig. 1(a) shows the network topology, and the



corresponding link weight is the communication latency. Fig.
1(b) shows the minimum latency between them by searching
all shortest-paths. Note that among the five users, there are two
users who can be assigned to the group A or B. Table. I shows
three matchmaking strategies. The first one has a maximum
delay of 14, and the second one has a maximum delay of 11.
The reason is due to grouping of large latency users, i.e., users
2 and 5 have a large latency. However, even users are grouped
based on distances, like in matchmaking strategy 2. It is still
not optimal. Another matchmaking strategy is that users 1 and
2 are grouped, and the remaining users are grouped into the
other group. In this case, the maximum latency is 9.

In this paper, we first prove that the proposed ULM problem
can be solved optimally if each user has at most 2 preferences.
If a user has more than 2 preferences, the ULM problem is NP-
hard. Then, we prove that ULM has the sub-modular property
and thus, the classic greedy algorithm with an approximation
ratio of 1+lnn can be applied to the ULM problem, where n is
the number of users with multiple preferences. Furthermore,
we observe the unique properties in the ULM problem and
thus propose a revised greedy algorithm. The discussion of
the revised greedy algorithm begins from the tree network
structure. We observe that some users’ matchmakings are
dominated by other users’ matchmaking results; therefore,
different users have different assignment priorities based on
their locations and thus the matchmaking assignment is more
likely to be good, and the running time can be reduced at the
same time. The revised greedy algorithm has an approximation
ratio of m/2, where m is the number of groups. In general
topology, we prove from theorems and experiments that the
revised greedy algorithm can improve the performance of the
classic greedy algorithm. In addition, we propose a distributed
greedy algorithm which can converge to a close-to-optimal
solution quickly.

The contributions of this paper are summarized as follows:
• To our best knowledge, we are the first to consider this

optimal matchmaking to reduce the maximum latency in
an online multi-party interactive application.

• We first prove that the proposed problem has the sub-
modular property and thus, the classic greedy algorithm
with an approximation bound can be applied.

• We observe the unique properties in the ULM problem
and propose a revised greedy approach, which further im-
proves the performance regarding latency minimization.

• We propose a distributed greedy algorithm which can
converge to a close-to-optimal solution quickly.

The remainder of the paper is organized as follows. The
related works are in Section II. The problem statement is
introduced in Section III. The sub-modular proof and the
corresponding classic greedy algorithm are provided in Section
IV. The new observations of the ULM problem and the revised
greedy algorithm are presented in Section V. The distributed
implementation algorithm is presented in Section VI. The
experimental results from real Internet traces are shown in
Section VII. We conclude the paper in Section VIII.

II. RELATED WORKS
With the popularity of multi-party interactive applications,

the delay minimization problem has drawn much attention
from researchers [6–11]. The network environment can be
roughly grouped into two categories: (1) the client/server
model [7, 9, 12] and (2) the P2P model [10, 13–15]. The
P2P model is common in the real-time strategy genre due to
its suitability for games with large numbers of tokens. This
paper falls within the second category.

Client/server environment: Hu et al. [7] considered how
to optimally place servers so that the end-to-end delay of
clients is minimized. The geometric property is considered and
the problem is formulated as a Euclidean k-median problem.
Given servers’ locations, Hajiesmaili et al. [9] discussed the
optimal server selection problem. They argued that selecting
the closest server may not be the optimal due to the char-
acter of the interactive application. That is, the delay is not
determined locally but by pairs of users. They proposed a
greedy approach to update the configuration iteratively. In
[12], the authors discussed the optimal streaming due to the
multicast communication character in the online gaming. Pre-
vious works only considered how to optimize users’ distances,
but bandwidth consumption was not considered. Therefore,
they proposed a bandwidth minimization algorithm to discuss
where and how to split the data streaming paths.

Peer-to-peer environment: Chen et al. [10] designed a
scheme to deliver videos with low end-to-end delays. The
bandwidth of each link is considered to optimize the QoS over
arbitrary network topologies where bottlenecks can be any-
where in the network. In [13], authors proposed a bandwidth-
fair N-Tree algorithm to balance the bandwidth consumption
in each link. In [14], they argued the delay among users were
dynamically changed. Therefore, their approach identified and
ranked potential detour paths between any two users and
dynamically selects the most suitable one based on network
and client conditions. However, according to the real Internet
trace measurement [15], the Internet has triangle inequality
violations, and thus detour design is challenging.

To our best knowledge, the existing works do not discuss the
matchmaking due to users’ multiple preferences. This paper
is the first to theoretically discuss the optimal user matching
problem in multi-party online gaming.

III. PROBLEM STATEMENT

The network model, the proposed problem, and the corre-
sponding hardness are provided in this section.
A. Problem Formulation

This paper discusses a multi-party online applications for
geo-distributed users through the Internet. Each user has a
coordination in the 2-D network. To simplify the illustration,
we assume the network is discretized into grids. The distance
between the users is calculated based on grids, and the
calculation error is bound by the discretization level, i.e., the
grid size. For each user, there is a gaming profile/preference
profile, which indicates the potential game groups that a user
would like to join. Note that there may be multiple preferences
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for a user. Let us denote that there are a total of m different
groups in the network, G = {g1, g2, · · · , gm}, where a user
has at least one potential game group. m is usually much
smaller than n. Note that we use capital letters to represent
different groups in the figures, e.g., g1 = A. The number of
users with multiple potential game groups is n. Without loss
of generality, let us denote users as U = {u1, u2, · · · , un} and
their corresponding gaming profiles as V = {v1, v2, · · · , vn},
e.g., v1 = {A,B}. There is a matchmaking assignment vector
H = {h11, h12, · · · , hnm}, where hik = 1 (hik = 0) means
that the user i is (not) matched into group k, gk. In addition,
we use a decision vector D to denote all the matchmaking
decisions that we have made, i.e., D = {H|hik = 1}.

To ensure a good gaming experience, the lag, the perceived
time between an action and its effect [4], should be minimized
or controlled within a threshold. The latency of a pair of users
is determined by their communication latency in a session
during a multi-party online game, which can be approximately
estimated through their Internet latency. The Internet latency
can be further approximately estimated by their geo-distance
metrics based on [16, 17], e.g., the shortest path, the absolute
value of their coordination differences, and the area of the
coordination differences between them. The shortest-path can
be calculated using existing approaches, as in [18]. Note that
in the remainder of this paper, the communication latency of a
pair of users ui and uj , denoted as lij , is approximated by the
shortest-path between the grids that the pair of users ui and
uj belong to. The other latency estimation metrics are similar
and we evaluate them in the experiments.

A network illustration is shown in Fig. 2, where there are
some users located in the network waiting for a matchmaking
in a specific time slot. The capital letters in the grids indicate
the groups that they can join. For example, a user located at
(8, 2) should be matched into group B. Another user who is
located at (3, 5) can be matched into groups A or B or C. The
shortest-path between a pair of users is denoted by a dashed
arrow in Fig. 2.

Different matchmaking assignments for users who have
multiple potential game preferences has a huge influence on
the latency minimization. Therefore, we propose the User La-
tency Minimization (ULM) problem which tries to minimize
the maximum latency in the network based on the proposed
network model. It is mathematically formulated as follows:

min maxxk

ij
lij

s.t.
X

hik = 1, hik = {0, 1},

xk

ij
� hik + hjk � 1, xk

ij
 hik,

xk

ij
 hjk, xk

ij
= {0, 1}, 8i, j, k.

(1)

The objective means that the maximum latency of any pair
of users in the same group should be minimized. The first
constraint ensures that each user is only assigned into one
group. The second and third constraints jointly ensure that
xk

ij
= 1 only if users ui and uj are grouped into the same

group, gk, i.e., hik = 1 and hjk = 1.

B. NP-hardness Proof

The proposed ULM problem is a combinatorial optimiza-
tion. We have proved the hardness of the ULM problem. If
there exists a case where a user has more than 2 potential
selections, the ULM problem is NP-hard.

Theorem 1. The ULM problem is NP-hard when users have
more than 2 preferences.
Proof. Firstly, the ULM problem belongs to NP class because
for a given matchmaking, H , we can verify if all constraints
are satisfied simultaneously in polynomial time. Now, we show
it is NP-hard by a reduction of the 3SAT problem.

The 3SAT problem [19] is as follows: Given a set of clauses
C1, C2, ..., Cm in a 3 Conjunctive Normal Form (CNF) from
variables y1, y2, ..., yn, we must check if all the clauses are
simultaneously satisfiable.

We relax the equality constraint of the ULM problem into
an inequality, e.g.,

P
hik � 1. Since the solution space of

the ULM problem is within the relaxed ULM problem, if we
can solve the ULM problem in polynomial time, the relaxed
ULM is also solved in polynomial time. Therefore, the ULM
problem is at least as hard as the relaxed ULM problem. In
the following proof, we prove the relaxed ULM problem is
NP-hard. For explanation simplicity, we use a new variable z
to denote integer variables h and x in Eq. 1.

For each clause in the 3SAT instance, we reduce each clause
into an inequality constraint of the relaxed ULM problem as
follows: (1) If the literal in the clause is in negation form of
a variable, say x̄i, then add (1 � zi) into the inequality. (2)
If the literal, say yi, is not in the negation form, then simply
add zi into the inequality. For example, if we have a clause
{y1 _ ȳ2 _ y3} in the 3SAT instance, we have a constraint
z1 + (1 � z2) + z3 � 1 in the ULM problem, which is a
special instance of the relaxed ULM problem. On the one
hand, in any SAT solution, a true literal corresponds to 1 in the
relaxed ULM program, since the clause is satisfied. Therefore,
the sum in each clause inequality is no smaller than 1. On the
other hand, any relaxed ULM solution gives a 3SAT solution,
for any solution to this ULM instance, at least one variable
value in each inequality will make the corresponding literal
true. So, it is a legal assignment, which must also satisfy all
the clauses. Therefore, the relaxed ULM problem is NP-hard.
And thus the ULM problem is NP-hard.
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Note that the 2SAT problem is not NP-hard, which means
that when the number of groups is 2, i.e., m = 2, the ULM
can be solved optimally.

IV. GENERAL PROPERTY AND APPROACH

In this section, we first prove that the ULM problem owns
the sub-modular property and thus, we can apply the well-
known approximation algorithm to the ULM problem.

A. Sub-modular Property

There is a high complexity in trying every combination and
backtracking if a matchmaking combination leads to a bad
result. Instead, we try to gradually ”expand” the matchmaking
assignment. However, during the expanding procedure, the
error might increase. We prove that the error can be bounded,
which is the insight of the sub-modular property.

Given a non-empty finite set, S, and a function, f , defined on
the power set 2S of S, 2S ! R. The definitions of them are as
follows: Nonnegative: f is called nonnegative if f(S) � 0 for
all S ✓ S. Monotone: f is called monotone if f(S)  f(S0)
for all S ✓ S0 ✓ S. Sub-modular: f is called sub-modular if
f(S[{s1})+f(S[{s2}) � f(S[{s1, s2})+f(S) for every
set S, where s1, s2 2 S\S. Then, we prove the ULM problem
has the nonnegative, monotone and sub-modular properties.

Theorem 2. The objective function f(D) of the ULM problem
is nonnegative, monotone, and sub-modular.
Proof. In the ULM problem f(·) is the maximum latency in
all groups. According to the definition of latency, proportional
to the shortest path between a pair users, the latency has a
minimal value 0 and it cannot be negative. Therefore, f(D)
is nonnegative. If there exists D0, D00, D0 ✓ D00 ✓ D, the
corresponding assigned user sets are U 0, U 00 and U 0 ✓ U 00 ✓
U , respectively. Let us denote the user sets in gk as U 0

k
,

and U 00
k

for the corresponding of D0
k

and D00
k

, respectively.
Clearly, D0

k
✓ D00

k
and U 0

k
✓ U 00

k
, otherwise, there is a

contradiction of D0 ✓ D00. Then, let us denote fk(·) as
the objective value in gk. Based on the inclusion relation,
f(D0

k
) = maxui,uj2U 0 lij  fk(D00

k
) = maxui,uj2U

00
k
lij and

f(D) = maxk2[1,m] fk(Dk). Therefore, f(D0)  f(D00) and
f(D) is monotone.

Based on the calculation of fk(Dk), for any group,
fk(Dk [ hi0j0) = max{fk(Dk), max

ui,uj2{Uk[ui0}
lij}. (2)

Let us denote h1
i0j0 and h2

i00j00 as two new matchmaking
assignments. ui0 and ui00 are corresponding users and ui0 and
ui00 2 U\U . If the following inequation is true,

Algorithm 1 Min-Max (MM) Algorithm

Input: The location and gaming profile of users.
Output: The matchmaking decision vector D.

1: D = ; and U = ;
2: while |U | < |U| do

3: I = 1, idx = {�1,�1}
4: for i from 1 to n do

5: if ui 2 U\U then

6: for j from 1 to m do

7: if gj 2 vi and fj(D[{hij})�fj(D) < I then

8: I = fj(D [ {hij})� fj(D), idx = {i, j}
9: Set hij = 1 , D = {D,hij} and U = {U, ui}.

f(D[{h1
i0j0})+f(D[{h2

i00j00}) � f(D[{h1
ij
, h2

i00j00})+f(D),
(3)

the ULM is a sub-modular. When ui0 and ui00 belong to
different groups, the two sides of above function are equal
since ui0 and ui00 have no influence to each other. Therefore,
we focus on the following condition, where ui0 and ui00 belong
to the same group, gk, that is,

fk(Dk [ {h1
ij
}) + fk(Dk [ {h2

i0j0})
� fk(Dk [ {h1

ij
, h2

i0j0}) + fk(Dk),
(4)

Based on Eq. 2, we prove that the InEq. 4 is true in
all cases. (1) if maxui,uj2{Uk[ui0} lij  fk(Dk) and
maxui,uj2{Uk[u

00
i } lij  fk(Dk). In this case, the two sides

of InEq. 4 are the same and equal to 2fk(Dk). Therefore,
InEq. 3 is true. (2) if maxui,uj2{Uk[ui0} lij � fk(Dk)
and maxui,uj2{Uk[ui00} lij � fk(Dk), the left side of
InEq. 3 is maxui,uj2{Uk[ui0} lij + maxui,uj2{Uk[ui00} lij
� maxui,uj2{Uk[{ui0 ,ui00} lij + fk(Dk) and InEq. 3
is true. (3) if maxui,uj2{Uk[ui0} lij � fk(Dk) or
maxui,uj2{Uk[ui00} lij � fk(Dk), two sides of InEq. 4 equal
to maxui,uj2{Uk[{ui0 ,ui00} lij + fk(Dk) and InEq. 4 is true.
InEq. 4 is always true and f(D) is sub-modular.

According to the results in [20], we have a 1 + lnn
approximation algorithm, as shown in Algorithm 1, which
starts with an empty set. In each iteration, we check all the
unassigned users and add the matchmaking which minimizes
the marginal gain of the objective function, i.e.,

hij  arg min
ui2U\U

{f(D [ hij)� f(D)} (5)

An illustration of the Algorithm 1 is shown in Fig. 3, where
users in locations 7 and 14 needs to be matched and the current
maximum latency is 4. If the user in location 7 is matched to
group A, the maximum latency increase is the least, i.e., 1. If
the user in location 14 is matched to group A, the maximum
latency increases the least, which is 0. Therefore, the user in
location 14 is assigned to group A first. Then, we re-calculate
the minimum cost increase for the user in location 7. Since
it is still better to match this user to group A than to group
B. The min-max algorithm will assign user in location 7 to
group A in the second round. Finally, the maximum latency
is 6. The optimal matchmaking has a maximum latency of 5
as shown in Fig. 3(b).
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V. REVISED GREEDY ALGORITHM

In this section, we will discuss observations for the ULM
problem and then propose a revised greedy algorithm. The
performance of the revised greedy algorithm is analyzed under
(1) the tree topology and (2) the general topology with loops.

A. Tree topology

The tree topology assumption justification is based on the
previous researches [21, 22] that the Internet topology can
be considered as a tree or can be approximated into the tree
structure with a bounded performance loss.
Definition 1. A user that is dominated by a group if his/her
matchmaking does not have an influence on the maximum
latency in that group.

We begin with a special tree-topology, i.e., the line topology,
to present the property in tree topology and the idea of the
revised greedy algorithm, followed by the general topology.
An illustration of the line network is shown in Fig. 4.
Observation 1. A user is dominated if there are users in the
same group on his/her two sides in the line topology.

In the line topology, the maximum latency of a particular
group is determined by the boundary users, e.g., the right-
most user and the left-most user in that group. The reason
is that any user’s distance with the boundary users is always
smaller than the distance between the boundary users. From
the Observation 1, all users within a pair of boundary users in a
group, called the group range, are dominated. The domination
property can be used to simplify and guide the matchmaking,
i.e., we can conduct matchmaking for dominated users without
losing optimality.

Fig. 4 shows an illustration of the Observation 1, where
boundary users and the group range are marked with corre-
sponding colors. For example, whatever a user in location 7
is matched to groups A or B, users with the same group are
on both sides. Therefore, this user is dominated by groups A
and B. The user in location 5 is dominated by group A but
not by group B. Therefore, if this user is matched to group B,
the maximum latency of group B will increase. The solution
space can be reduced without losing optimality based on this
observation, i.e., assigning the user in location 7 to group A/B
and assigning the user in location 5 to group A.
Definition 2. A boundary location for a group is a location
where the matchmaking for the user in that location can
increase the maximum latency most.
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Fig. 5. The analysis of the boundary-first algorithm

Algorithm 2 Boundary-First (BF) Algorithm

Input: The location and gaming profile of each user.
Output: The matchmaking decision vector D.

1: D = ; and U = ;
2: while |U | < |U| do

3: I = 0, idx = �1.
4: // if the network is a tree topology
5: // Conduct matchmaking for dominated users.
6: // Check boundary nodes from boundary locations.
7: for i from 1 to n do

8: if ui 2 U\U then

9: for j from 1 to m do

10: if gj 2 vi and fj(D[{hij})�fj(D) > I then

11: I = fj(D [ {hij})� fj(D), idx = i.
12: j  argmingj2vi{fj(D [ {hij})� fj(D)}
13: Set hij = 1 , D = {D,hij} and U = {U, ui}.

Observation 2. A user in the boundary location of a group
has a higher priority in the matchmaking procedure.

The reason of the Observation 2 is that an inner user has a
high probability of being dominated by a user in the boundary
location. In Fig. 4, location 1 is the boundary location for
group B and location 10 is the boundary location for group
A in the current matchmaking assignment. Note that the
boundary location is the right-most/left-most location of a
group in the line topology.

Based on the Observations 1 and 2, we propose the
boundary-first algorithm as follows: in each round, we first
conduct matchmaking to all dominated users. If there still
exists unmatched users, the boundary-first algorithm iteratively
finds users in the boundary location of each group. Among
these users in the boundary locations, we find the user whose
improper assignment can lead to the largest latency increase
and conduct matchmaking to him/her so that his/her match-
making increases the maximum latency least. The boundary-
first algorithm is shown in Algorithm 2.

A running example of the Algorithm 2 is shown in Fig.
5. Before matching any users with multiple preferences, the
maximum latency is 3. In the first round, the user in location
9 is selected to matchmaking, since his/her worst assignment,
i.e., matchmaking to the group A, will lead to a maximum
latency increase of 5. Through checking, if he/she is assigned
to the group C, the maximum latency increase is 0, which
is the minimum. Similarly, in the second round, the user in
location 1 should be assigned, since the improper assignment
to this user will lead to a maximum latency increase of 6, i.e.,
matchmaking to group C. The best matchmaking for him/her
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is group A, and the maximum latency increases 1. In the third
round, the user in location 5 should be assigned to the group
A or C, which does not matter in terms of the result. We use
the group C as an example. The maximum latency is 5 in the
end. The optimal matchmaking has a result of 4.
Theorem 3. In the line topology, the boundary-first algorithm
has an approximation ratio of m/2 with identical link latency.

Proof. Since the maximum latency of a group is proportional
to the group range in the line topology, we use the group
range to represent the maximum latency of a group in this
proof. Assume the length of the network is L. (1) If the
initial maximum group range is no smaller than L/2, the
boundary-first algorithm will not match users into the group
with the maximum range due to its greedy matchmaking
criterion. Therefore, the maximum range is unchanged and the
boundary-first algorithm is optimal. (2) If the initial maximum
group range is no larger than L/2, the boundary-first algorithm
will balance the increase of each group range in a greedy
manner, i.e., always increasing the group with a small range.
Therefore, in the end, the maximum group range should be
no larger than L/2 except in the case that the minimum
increase leads to a maximum group range whose length is
larger than L/2. In the latter case, it returns to the case
(1). The group range of the optimal solution, called OPT ,
must satisfy the condition that OPT � L/m. The reason
is that if OPT < L/m, it is impossible to matchmake all
users. Therefore, the approximation bound of the boundary-
first algorithm is m/2 in the line topology.

The insight of the Theorem 3 is that because the Algorithm
2 is a round-by-round optimization and thus, the cooperation
between multiple rounds is ignored. The opportunity of coop-
eration increases as the group number also increases.

The boundary-first algorithm in the line topology can be
applied into a general tree topology with some modifications.
For each unmatched leaf node, boundary-first algorithm checks
whether it has an influence on the maximum latency for each
group. If not, the checking passes to its parent node. Other-
wise, there must be a line topology with the maximum length
that needs to be matched. After finding the line topology, the
remaining steps are the same as the line topology. An example
of the explanation is shown in Fig. 6, where link latencies
between nodes are the same, so that the hop-count represents
the latency. User 4 is involved into the maximum latency of
groups A and C. User 5 is involved into the maximum latency
of groups A and B. User 6 is involved into the maximum

latency of groups B and C. After finding these boundary
nodes, we transfer the tree topology to m lines as shown
on the right of Fig. 6. The tree-topology optimization can be
considered as jointly optimizing multiple co-related lines. In
each round, we select the line whose improper matchmaking
can lead to the maximum latency increase to optimize. Since
the maximum latency of tree is determined by one of the lines,
Theorem 3 holds.
B. General topology with loops

In this subsection, we do not have any assumption about
the network topology and loops may exist in the network.
The matchmaking becomes even more challenging, since we
cannot find users in boundary locations easily. We can still
use the boundary-first algorithm. However, in each round, we
need to check all unassigned users to find whose improper
assignment can increase the latency most, the same time
complexity as the min-max algorithm. Then, we perform the
best assignment for the selected user, i.e., increase the latency
the least, until all the unassigned users are matched.
Theorem 4. The boundary-first algorithm always achieves at
least the same performance as the min-max algorithm.
Proof. Theorem 4 is proven through contradiction. If the
boundary-first algorithm achieves a larger maximum latency
than the min-max algorithm, there are a pair of users, ui

and uj , which belongs to the same group, leading to a
maximum latency but the matchmaking for these two users are
different in the min-max algorithm. However, we can modify
the matchmaking of users ui and uj to the same matchmaking
as the min-max algorithm to reduce latency. It is because these
two algorithms follow the same greedy metric for a selected
user, i.e., matching the user into a group which can increase
the maximum latency least. If so, this is a contradiction of the
greedy metric. If not, it means that the matchmaking result
is worse after the modification. Without loss of generality,
we assume that modifying user uj’s matching will lead to a
worse pair, e.g., users uj and uk. Clearly, uj and uk belong
to different groups in the matching result of the min-max
algorithm, or there is a contradiction. Then, we reach into the
same situation for users uj and uk as users ui and uj in the
initial assignment. Therefore, we can prove by repeating the
aforementioned procedure until we find a contradiction.

VI. DISTRIBUTED GREEDY APPROACH

Many P2P systems, the common environment that online
applications are implemented in a distribution manner. How-
ever, it is hard for a distributed solution to guarantee the per-
formance. In this section, we adapt the Markov approximation
approach in [23] and develop a distributed solution.

A. Markov Approximation Framework

The idea of the Markov approximation framework is that
each matchmaking for n users can be considered as a state
in a Markov chain. Therefore, we build a time-reversible
Markov chains between all states. A well-designed Markov
chain ensures that it can converge to a close-to-optimal state.
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Fig. 7. An illustration of nodes geo-locations in the PlantLab trace.

Let D be a set of matchmaking result set and D is one
of the feasible matchmaking. Then if pD is the percentage of
time that the matchmaking result, i.e., f(D) stays in a Markov
chain. The objective function of Eq. 1 has the same optimal
value as the following equation,

min
X

D2D

pdf(D) s.t.
X

pD = 1. (6)

Eq. 6 is NP-hard, which cannot be solved directly. However,
it can be approximated by adding a second-order characteri-
zation. In this paper, we approximate it by using the log-sum-
approximation. That is, the Eq. 6 is approximated to,

min
X

D2D

pDf(D) +
1

�

X

D2D

pD log pD, s.t.
X

pD = 1

(7)
The Theorem in [23] shows that the optimal value between
Eqs. 6 and 7 have the following relationship,

min f? � 1

�
log |D|  f̂?  f? (8)

where f? is the optimal value of Eq. 6 and f̂? is the optimal
value of Eq. 7. Therefore, the � value and cardinality of H

bound the approximation accuracy. The optimal solution of Eq.
7 is a convex optimization problem and thus can be solved by
using Karush-Kuhn-Tucker (KKT) conditions [24]. As a result

p?
D

=
exp(��f(D))P

D2D
exp(��f 0(D))

, (9)

and therefore the optimal solution is

f̂? = � 1

�
log(

X

H2H

exp(��f(D))) (10)

B. Distributed Greedy Algorithm Design
The basic design idea to find the optimal value, f̂? is

to simulate a time-reversible Markov chain over time. The
initial state can be any feasible matchmaking. However, it
can transfer to other feasible states and will stay in the
optimal state most of the time. To build the ergodic Markov
chain whose stationary distribution is p?

D
, the following two

conditions should be satisfied:
(1) any two states are reachable from each other;
(2) the transfer probability is symmetric for all pairs of

states, i.e., p?
D1

qD1,D2 = p?
D2

qD2,D1 , 8D1, D2 2 D,
where q is the transition probability.

Based on these two conditions, we build the Markov chain
and the transition probability between states as follows: (1)

Algorithm 3 Distributed Greedy Algorithm

Procedure: WAIT
1: Create a random countdown time number with mean 1/↵.
2: while the timer is still larger than 0 do

3: if Receive a Suspend message then Pause.
4: else Resume and Invoke WAKE.

Procedure: WAKE
1: Broadcast a Suspend message to other users.
2: Find all feasible solutions with only one different decision.
3: Change the matchmaking assignment with probability

proportional to the Eq. 11.
4: Broadcast an Continue message to other users.
5: Invoke WAIT.

setting the transfer probability between any two states to be
zero, i.e., cutting off the direct transition between them, given
that they are still reachable from any other states. This setting
can reduce the migration overhead of the P2P system; (2) the
transition probability of any two states is

qD1,D2 = ↵ exp(�(f(D1)� f(D2))) (11)
where there is a trade-off in the ↵ value selection, i.e., larger
↵ reduces the convergence but it may impose the overhead
of frequent assignment. The distributed greedy algorithm is
shown in Algorithm 3. Note that the transition probability can
be implemented locally. Algorithm 3 converges to a stationary
state with provable convergence time [23].

VII. PERFORMANCE EVALUATION

In this section, we demonstrate the effectiveness of proposed
algorithms by using the real Internet trace.
A. Trace Introduction

In this paper, we use the PlantLab trace [25] generated from
the PlantLab testbed. It contains a set of geo-distributed hosts
worldwide. In this trace, the medians of all latencies, i.e.,
RTT, between nodes are measured through the King method
between the 325 PlantLab nodes and 400 other most-popular
websites in the world are measured. An illustration of the
nodes’ geo-locations is shown in Fig. 7. In PlantLab trace,
the domain of each node is provided. Each node’s geometric
location is retrieved through the domain-to-IP database and
the IP-to-Geo database, provided by and [26] and [27], re-
spectively. Some domains are no longer in service. In the end,
there are 689 nodes. It is reported that the mapping error is
within 5mi and can be ignored in our experiments.
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Fig. 8. An illustration of the distance-latency relationship in PlantLab trace.
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Fig. 9. Performance comparison in the line topology.

B. Experiment Setting
We conduct experiments on two scales, i.e., the world and

the United States in the experiments. For the United States
scale, we use the nodes on the west coast to simulate the
line-topology. The number of the groups, m, is changed from
2 to 6. The number of users is changed from 10 to 60.
There are at most 2m different types of users in the network.
We conduct two main different preferences settings in the
experiments. (1) the number of users with different preference
cardinalities and each type of users are the uniform distribution
(2) the number of users with different preference cardinalities
is an exponential distribution with a parameter 1. We use the
exponential distribution to simulate different flexibilities in the
matching assignment.

C. Algorithm Comparison
We compare the performance of the proposed algorithm

under different topology settings.
• Min-Max (MM) algorithm: explained in Section IV,

which is widely used in combination optimization [20].
• Boundary-First (BF) algorithm, which is proposed in this

paper and well explained in Section V.
• Nearest-Representative (NR) algorithm, which tries to

assign each user to its nearest group, where the distance
is determined by the distance between the current node
and the group representative [28].

• Random algorithm (RD) algorithm, which randomly se-
lects a matching for a user. RD algorithm is a baseline
approach, and it is also the comparison in [28].

D. Results Analysis
Fig. 8 presents the trace analysis results from two scales,

i.e., worldwide and the United States. Specifically, Figs. 8(a)
and 8(b) show the distance-latency relationship results, where
the coordinates of raw data show a distance-latency measure-
ment in the PlantLab trace. We try to use the first-order,

the second-order, and the third-order polynomial functions
to fit the distance-latency relationship. The results show that
the first-order polynomial fitting is enough since higher-order
fittings have almost the same fitting result. Therefore, in
the following experiments, we use first-order mapping to
calculate the fitting error in Figs. 8(c) and 8(d). The results
show the cumulative distribution functions of three distance
measurement, i.e., the shortest path, the sum of latitude and
longitude distance, and the area between two nodes in terms
of latency estimation. Fig. 8(c) shows that using the area has
a relative large estimation error. In the following, we will use
the shortest path to estimate the latency, whose error rate is
within 10% for 80% of nodes.

Fig. 9 gives the performance results where the nodes are
picked randomly from the west coast of the United States as
shown in Fig. 7(b). These nodes are connected through the
main cable to each other, and thus, the network structure is
an approximation line. The BF2 algorithm is the same as the
BF1 algorithm except that it further uses the observation 1
to eliminate unnecessary errors. The BF2 algorithm always
achieves the best performance, followed by the BF1, MM,
and RD algorithms. Note that in Fig. 9(a), along with the
increase of user number, the error of the MM algorithm
increases significantly. However, the errors of BF1 and BF2
algorithms gradually converge. Fig. 9(b) shows that along with
the increasing number of the group, the BF2 further reduces
the maximum latency 40% maximum latency more than the
MM algorithm. In Figs. 9(c) and 9(d), the amount of users
with different preferences, i.e., 2 to 6, follows exponential
distribution. Compared with these two figures, if there are
many matchmaking flexibilities, the overall latency can be
reduced. In Fig. 10(d), RD has the worst performance which
demonstrates the necessity of matchmaking.

Fig. 10 shows the performance results of 4 algorithms in
the general topology. Particularly, in Figs. 10(a) and 10(b),
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Fig. 10. Performance comparison in the general topology.

each user has a uniform probability of having a preference
in a group. The performance shows that BF has the best
performance, followed by the MM algorithm. The NR and RD
have similar performances in such an experimental setting. It
is clear that when the total number of users is small, or the
total number of group is large, the BF algorithm outperforms
the MM algorithm. The reason is that in this case, a wrong
matchmaking will increase the maximum latency significantly.
In Figs. 10(c) and 10(d), the amount of users with different
preferences, i.e., 2 to 6, follows the exponential distribution.
The result shows that when there are many matchmaking
flexibilities or there are only a few groups, the MM algorithm
achieves similar performance with the BF algorithm.

VIII. CONCLUSION

This paper addresses optimal matchmaking in multi-party
online applications, considering user’s multiple preferences,
to minimize the maximum latency between any pair of users.
We prove that the proposed problem is NP-hard in the general
topology. Then, we first prove that the proposed problem
has a sub-modular property. In addition, we observe that the
assignment priority exists and thus, we propose a revised
greedy algorithm with an approximation bound and discuss
its performance in the tree topology and the general topology.
Finally, we discuss a distributed greedy algorithm which
converges quickly. Extensive real trace-driven experiments
demonstrate the effectiveness of proposed schemes.
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