
WeSeeYou: Adapting Video Streaming for
Surveillance Applications

Joshua Lloret, Robyn McCue, and Jie Wu
Department of Computer and Information Sciences

Temple University, Philadelphia, USA
{joshua.lloret, robyn.mccue, jiewu}@temple.edu

Abstract—Police departments and other law enforcement
agencies have integrated a greater number of video cameras into
their daily routines. This has introduced with it the problem
of moving and processing vast amounts of video data. In this
work, we take a look at some of the associated problems and
our own attempts to address them. We first analyze the physical
network and infrastructure at Temple University’s main campus
to determine the limitations we will meet in the real world. We
investigate and implement a simple technique to transfer data
across multiple wireless networks. Finally we look at different
techniques of limiting the video we will transfer in the network
switches to ensure that a video we want to prioritize reaches its
intended destination in real time.

Keywords—LTE, OpenFlow, REU, SDN, Wi-Fi, WiMAX

I. INTRODUCTION

Recently, increasing demand for oversight and accountabil-
ity of law enforcement officers has resulted in police depart-
ments incorporating more video cameras into their arsenals of
equipment.

Previous work has been done to take advantage of cameras
on police vehicles and video processing to query license
plate numbers for flags or related criminal activity[2]. The
computing power that can be placed in a car is sufficient
to recognize the numbers and letters from a license plate
and subsequently run a query on a small local database, but
it is not nearly powerful enough for more advanced video
analysis techniques. Our group was interested in running the
captured video through algorithms that process things like
facial recognition and other computer vision tasks. Similarly,
tasks that require access to large databases of information
cannot be done locally on the car, and thus must be done
on a remote processor.

Therefore, the video must be transmitted from the camera
to a remote location. In order to determine how to best achieve
this, we tested available wireless networks, including Wi-Fi
and LTE. We investigated how to transfer the video streams
using a simple transfer program written in Python. Finally,
using the OpenFlow standard, we implemented a simple switch
controller to manage the flow of video streams between the
WAN and our server.

II. TESTING

Transferring data across campus Wi-Fi is something that
many students will tell you to be nearly impossible. Our
approach was to use campus Wi-Fi when we could connect

Avg Mbits/s Mbits/s Range
Wi-Fi (11n) 28.12 600 820ft (250m)
LTE 9.12 300 20mi (32km)
WiMAX 1.56 219 30mi (48km)

TABLE I: Comparison of the measured and theoretical down-
load speeds of the different wireless technologies, as well as
a listing of their theoretical range

to it and other wireless spectrums like WiMAX or LTE when
we could not. This would allow us to broadcast video streams
from the vehicles continuously regardless of the performance
of any specific wireless network.

In order to find out where we could connect and what kind
of speeds we could expect from these connections, we ran a
series of tests. The tests involved running an iperf server on
a remote host and a client on a laptop computer. The laptop
was then taken to different locations on campus and set to
transfer either for 15 minutes continuously or for a fixed chunk
of 300MB. We performed the 15 minute tests at stationary
locations as well as while walking a route around campus.
These tests allowed us to see the variability of throughput
across a length of time and the simple numbers indicating
how long it took to transfer x bytes.

Since we were interested in measuring throughput speeds
when connected, we did not want the time spent negotiating a
Wi-Fi connection to be a factor in our results. Therefore, we
measured the Wi-Fi slightly differently from the LTE for our
walking test. The reason for this is that the LTE connection
was never dropped, even if throughput occasionally went to 0.
However, the Wi-Fi connection was lost repeatedly, and this
caused problems with physically reconnecting with the laptop
as well as connecting the iperf client back to the server.

When trying to collect the Wi-Fi data for the walking test,
we would often walk out of the range of the Wi-Fi router
while the computer was still trying to negotiate its connection.
Similarly, the iperf client was not able to recover from a lost
connection to the server and would have to be restarted. To
deal with these problems during testing, we decided to simply
stop the clock and stop walking when we came within range of
Wi-Fi and wait for it to connect. When the Wi-Fi was finished
connecting and the iperf client had reconnected to the server,
we restarted the timer and continued walking. This gives us a
data set that tries to ignore the cost of Wi-Fi network switching
and looks only at throughput of packets.



Fig. 1: A graph showing variability of packet throughput over
15 minutes of testing at a single location.

Fig. 2: A graph showing variability of packet throughput over
15 minutes of testing while walking along a route through
campus.

Unlike iperf, our client continues streaming data without
error after a connection is dropped and then reconnected. This
is the subject of the next section.

III. TRANSFER

A simple transfer program was written in Python to transfer
data across our variable networking setup. The host side of the
program takes an output directory and an optional port number
as input. The host then listens on that port for connections from
a client.

The client takes a folder and host name and port number
as input. First, the client tries to initiate a connection with the
host specified at the given port number. After a connection is
established, the client selects the first file from the folder and
reads in the file’s metadata. The metadata includes things like

Fig. 3: A graph showing the average transfer rate at four
different locations around campus.

filename and size. Next the metadata is sent as the first “chunk”
of information from the client. When the server receives this
information, it sends a message to the client indicating that
the chunk was received. If the chunk is file metadata, the host
creates a file with the given filename in the output directory.

Once the client receives a confirmation that the metadata
was received, it opens the file, reads a chunk of a specified
size, and sends that chunk over the network to the host. The
host receives this chunk and sends the appropriate message
back to the client. If the client does not receive an appropriate
message from the host, either because the message was lost
or because the original chunk was never received by the host,
the client will wait 500ms and try to send the chunk again.

It is by this method that we ensure the entire file is copied
from the client to the host and that none of the chunks are
received out of order. This method also allows us to be blind to
how the client is connected to the host: Wi-Fi, WiMAX, LTE,
or even written message delivered via rickshaw, the means of
connection does not matter.

This client host code can transfer static data, and it relies on
transferring the file’s size in the beginning. We are interested
in transferring live video streams which will not have size
information available. Luckily, this size information was only
transferred for convenience, and adapting the code to transfer
chunks of live stream data is possible.

More research and testing is planned to find the optimal
chunk size. We will have to take into account the throughput
of the network we are currently on and which data we hope
to transfer when determining chunk size. Initially, chunk size
will be something decided before we start the program and
which will remain unchanged through the transfer, but a more
complicated algorithm can be imagined which adapts the
chunk size to the network’s throughput and reliability.

For instance, a more reliable network could take larger
chunk sizes; we can be more sure that our chunk will arrive
and that we will receive a confirmation of its arrival from the



Server cuts file into 
chunks

Server keeps 
sending chunk to 
client until client 

sends RECEIVED 
signal

RECEIVED

Server sends 
next chunk

Connection between Server and Client is initiated

Server gets first chunk from file

Loop until client sends DONE signal

If client doesn’t send RECEIVED signal

Server gets next chunk from file

Send chunk again by continuing loop

Server sends file metadata

Server sends chunk

Else RECEIVED

End of loop DONE

Server Client

Our Application

Operating System

Wifi LTE Ethernet

Internet

Software
Hardware

Interface Selection Algorithm

Python 2.7

Other...

Fig. 4: A diagram of the technology stack on which our simple
transfer code is written.

host. On the other hand, a less reliable network will necessitate
smaller chunks; if we lose one it will be a minimal loss, and
data can be sent in an instant. Considering throughput, if we
have a slow network connection, we may reach a point of
diminishing returns when shrinking chunk size; every time
we send a chunk, there is the additional overhead of the host
sending back a confirmation message.

While this program was originally fine for testing file trans-
fers independent of network or platform, there are many other,
more complicated algorithms we hope to expand this work
with. There has been useful work done on transferring video
using inter-layer network coding[3]. The algorithm described
by Ostovari involves separating out and attaching more priority
to the more important frames of the video. It has the added
benefit that it is not blocking like our script, so it is free of
the overhead of waiting for a response from the server before
sending more video data.

As well as taking advantage of the frame data of certain
encoding formats, we can take advantage of the data needed by
our video processing host. If the host can only process a single
frame of video every second, that means we only have to send,
at max, a single frame a second from the capture point. Since
captured video is normally around 30 frames per second, this
could potentially cut video transfer down to a fraction of the
cost.

Similarly, certain video processing techniques such as edge
detection and character recognition are not as dependent on
color information, so that can be cut down or stripped entirely
from the video before transfer cuts down on the data again.

Lastly, there could be different “modes” or states of
processing, where all captured video is transferred to the
processing host at a lower quality, and when one video is
determined to be more important, the host can send a message
to that client to “upgrade” its video quality to allow for more
detailed processing. All the other clients would “downgrade”
their qualities accordingly.

IV. SWITCHING

On the topic of data transfer, we would be remiss to leave
out solutions in the switches between the host and client. Our
switch-side approaches started by asking what kind of data we
would want to send to the host and what our limitations were.

First, the data we wanted to send was real-time video as
captured by our mounted cameras. Initially, this may seem
as though our interests are the same as those of commercial
video streaming services such as YouTube or Twitch. In fact,
previous work has been done in the field of software-defined
networking (SDN) applications by a group at the University of
Würzburg, focusing on transferring YouTube video [3]. Simi-
larly, a group at Stanford has released a paper on improving
video transfer over wireless networks using techniques that
affect multiple layers of the network[4].

However, real-time video streaming in those instances
has had different meanings. In our instance, we are not so
interested in providing a smooth, seemingly lossless video on
the receiving end. We are more interested in acquiring the most
recently captured frames, and in that sense we are essentially
streaming images instead of video. On a similar note, we are
also not interested in syncing or even streaming audio along
with the video.

The only switches we can control between the host and the
client are those between the host and the WAN. This is because
we cannot control Wi-Fi or LTE connections on the wireless
APs. We do, however, control the WiMAX tower, but there is
not much support on other wireless APs for our software.

The idea we have for our switches is to give the video and
data which we deem to be more important a greater portion
of the available bandwidth. Even if we did have access to
the Wi-Fi or LTE APs, the technology to control them using
SDN is still in its infancy and is not implemented widely[1].
We are more interested in combining SDN solutions like
those mentioned in Stanford’s original OpenRoads paper[5]
which allows n-casting on multiple APs, with techniques that
specifically target video transfer and take into account our
control of the client and host.

Using the OpenFlow standard, we wrote a simple program
to allow us to decide which clients get bandwidth priority in a
network. We started out by simply dropping flows from non-
priority streams. This presented the whole process as a sort
of two-state system. In one state, all cameras are streaming to
the processing host, and all streams are processed. During this
state, the videos are all run through computer vision algorithms
to determine which one is the most valuable to us.

Once a video is determined to be of highest priority, the
system enters the second state. In this state, there is a smaller
subset of higher quality streams going to the host. In our
simple implementation, this is done on the switch using flow
tables and packet dropping. In the future, however, we hope
to implement this client-side, so as to decrease the networking
load in the second state.

Lastly, we began to implement a simple message passing
system in Python, in order to allow the video processing host
to communicate with the switch controller. This will allow the
host to tell the controller which clients are of lower priority
and can be dropped.



If there are similarities between our switching and transfer-
ring ideas, this is not purely consequential. We can implement
a virtual switch on the computer clients using Open vSwitch,
which will allow us to run the switching code locally before
the data is transmitted wirelessly. This means the switching
code could act as client-side code as well, and further tests
will have to be done to determine the best solutions.

V. CONCLUSION

After testing our actual network conditions, we found them
to be scaled-down versions of the theoretical limits of the
wireless technologies we hoped to use. We implemented a
simple file transfer program to test data transfer while jumping
between access points and interfaces. Lastly, we created a first
attempt at limiting video traffic across the network switches
using OpenFlow. The simplicity of each approach is stressed
because we are already able to achieve what we set out to
do; we hope, however, to see much more improvement on
upload speeds and reliability by using the methods referenced
throughout the paper.

We still have plenty of work ahead of us, but initial testing
and prototyping have revealed problems we hope to solve and
solutions we think we can implement. Hopefully, our work
will ease some of the bigger problems with real-time video
streaming in similar settings and allow further improvements
in this field.

ACKNOWLEDGEMENTS

This research is supported in part by NSF grants CNS
1449860, CNS 1461932, CNS 1460971, CNS 1439672, CNS
1301774, ECCS 1231461, ECCS 1128209, and CNS 1138963.

REFERENCES

[1] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. Open-
radio: a programmable wireless dataplane. In Proceedings of the first
workshop on Hot topics in software defined networks, pages 109–114.
ACM, 2012.

[2] Shyang-Lih Chang, Li-Shien Chen, Yun-Chung Chung, and Sei-Wan
Chen. Automatic license plate recognition. Intelligent Transportation
Systems, IEEE Transactions on, 5(1):42–53, 2004.

[3] Pouya Ostovari and Jie Wu. Robust wireless delivery of scalable videos
using inter-layer network coding.

[4] Eric Setton, Taesang Yoo, Xiaoqing Zhu, Andrea Goldsmith, and Bernd
Girod. Cross-layer design of ad hoc networks for real-time video
streaming. Wireless Communications, IEEE, 12(4):59–65, 2005.

[5] Kok-Kiong Yap, Rob Sherwood, Masayoshi Kobayashi, Te-Yuan Huang,
Michael Chan, Nikhil Handigol, Nick McKeown, and Guru Parulkar.
Blueprint for introducing innovation into wireless mobile networks. In
Proceedings of the second ACM SIGCOMM workshop on Virtualized
infrastructure systems and architectures, pages 25–32. ACM, 2010.


	Introduction
	Testing
	Transfer
	Switching
	Conclusion
	References



