
Reliability
Enhanced Social
Crowdsourcing

Wei Chang and Jie Wu

Temple University

Email: wei.chang@temple.edu

Introduction
• Crowdsourcing:

o Job owner partitions a tedious work into pieces, and

outsources them onto a crowdsourcing platform.

o Independent freelances search and take up some

subworks. After finishing sub-works, they return results

to the platform.

o Centralized platform: Amazon Mturk

Introduction
• Crowdsourcing:

o Job owner partitions a tedious work into pieces, and

outsources them onto a crowdsourcing platform.

o Independent freelances search and take up some

subworks. After finishing sub-works, they return results

to the platform.

o Centralized platform: Amazon Mturk

Introduction
• Crowdsourcing

• Problem with the conventional crowdsourcing:

o Although crowdsourcing brings more knowledge

diversity and a large amount of labor force, the

independent feature of workers causes the problem

that it can only process simple and independent

works. For complex tasks, we need trusted experts.

o It is hard for a newly created task to attract enough

participants in a relatively short time, unless the task

owner gives a very attractive payment. We need

priority for our tasks.

Introduction
• Crowdsourcing

• Problem with the conventional crowdsourcing:

o trusted experts

o prioritized tasks

• Social Crowdsourcing (SC): explores the social

relations among participants

o Add a new dimension, sociality, to existing platforms.

o A job can be completed, via iterative recruitment of

workers through social ties.

o Unlike the existing systems, workers of SC are not

independent.

Introduction
• Crowdsourcing

• Problem with the conventional crowdsourcing

• Social Crowdsourcing (SC)

• Reliability issue with SC

o Early return

o Offline

o Drop out

Introduction
• Crowdsourcing

• Problem with the conventional crowdsourcing

• Social Crowdsourcing (SC)

• Reliability issue with SC

• Reliability enhanced SC

o Preplanned redundant return paths in SC

o Returning rules

System model
• Social Crowdsourcing models the job’s outsourcing

procedure via the process of iteratively recruiting

friends’ friends.

• Job owner: creates social-HIT (i.e. task)

• Human Worker:

o Locally processes the social-HIT

o Further propagates the social-HIT to others, and collects results

o Return the results to the participant, who gave the social-HIT

System model
• Social Crowdsourcing models the job’s outsourcing

procedure via the process of iteratively recruiting

friends’ friends.

• Job owner: creates social-HIT (i.e. task)

• Human Worker:

o Locally processes the social-HIT

o Further propagates the social-HIT to others, and collects results

o Return the results to the participant, who gave the social-HIT

• Worker status:

o Awake, sleep, done, and dead

Social Crowdsourcing:
design details

• A social-HIT:
o JobID: unique id of the original job

o Father: the participant who gave the social-HIT

o LifeTime: timely clean-up the starved job

o Hop: the number of remaining hops

o Instruct: job description and specific returning conditions

Social Crowdsourcing:
design details

• A social-HIT:

• Returning conditions:

For relay nodes (Hop is non-zero):

o When a node is awake and receives c replies, the

node immediately returns his result;

o If the node is in sleep and receives more than c

replies during sleeping, it should return all of them

when it wakes up.

For the non-relay nodes (Hop equals zero):

o When a node is awake and finish the work, it

should immediately return the result.

Social Crowdsourcing:
design details

• A social-HIT:

• Returning conditions for relay nodes:
o When a node is awake and receives c replies, the node

immediately returns his result;

o If the node is in sleep and receives more than c replies during

sleeping, it should return all of them when it wakes up.

Reliability issue
• Successful return rate:

o Pi : the probability that a node with Hop=i successfully

returns its subtree’s results to its father node.

o r: average number of child

o R: reliability

Reliability issue
• Successful return rate:

o Pi : the probability that a node with Hop=i successfully

returns its subtree’s results to its father node.

o r: average number of child

o R: reliability

• For example, when r=15 and R=0.8, we have:

Reliability enhanced SC:
GFC structure

• Grandpa, Father, Current node structure (GFC)

represent a triangle relation in which a non-root

node records the identities of its father (a primary

return node) and grandfather/sibling (a backup

return node).

Children of non-root node Children of the root node

Reliability enhanced SC:
GFC structure

• Grandpa, Father, Current node structure (GFC)

represent a triangle relation in which a non-root

node records the identities of its father (a primary

return node) and grandfather/sibling (a backup

return node).

When should we use the
backup paths?

• Using the backup path too early may cause many

potential results dropped off.

When should we use the
backup paths?

• Using the backup path too early may cause many

potential results dropped off.

• Returning results too late may result in both father

and grandpa nodes left.

Since each node has only two options and early

using the backup one may cause results dropping,

GFC-SNCA adopts the following idea: a node does

not use its backup return node, as long as the

primary one have enough opportunity to return

data to a higher-level node.

GFC structure-based
returning rules

• Current decision node:
o Wake + have collected enough results

• Father node:
o Dead/ done

o The number of collected results are

significantly less then grandfather node

• Grandfather node:
o Sleeping + have collected enough

results

o Very likely to collected enough results

and wake up before next checking

time

o Have collected a large portion from its

children + the number of collected

results does not changed in a period of

time

GFC structure-based
returning rules

• Current decision node:
o No child and Hop value in the social-hit is non-zero

• Father node:
o Sleeping + have collected enough number of results

o It is very likely for the father node to collected enough
results and wake up before next checking time

GFC structure-based
returning rules

• Current node will directly submit its result to the
grandfather node if one of the following cases is satisfied:

• Case 1: both father and grandfather do not have enough
children

• Case 2: father will never collect enough result; the
grandfather node is sleeping, and has or will have collect
enough results before next checking time

• Case 3: collecting progress of father node is too slow while
grandfather node has collected a majority of the returns
from its children

Extension: Second Requester-
based backup Path

• Consider that, if v fails, plenty of results from v’s

children will flock to the v’s father, x, which may

cause x’s return slots being quickly used up.

• Returning rules for using the second requester-

based path are the same as the ones for

grandfather nodes (GFC structure).

Evaluation

Evaluation

Evaluation

Conclusion
• We first proposed a new crowdsourcing

system, called social crowdsourcing, which

explores the social relationships among

workers.

• We considered the reliability issues on the

social crowdsourcing system.

• We proposed GFC-structure and second-

requester-based backup returning paths.

• We also provided 3 sets of rules for using

these backup returning paths.

Thanks

