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Abstract—The demand for video analytics is increasing rapidly.
Due to the limited computational and network resources on
edge servers, adjusting video configurations such as resolution
and frame rate has become an effective strategy to reduce
computational and transmission costs. However, this can also
compromise detection accuracy, necessitating a balance between
resource consumption and analytics accuracy. Also, the dynamic
availability of edge servers and variability in their energy
consumption further complicates making offloading decisions and
configuration selection. In this paper, we first model the problem
as a mixed planning program. Then we propose a volatile MAB-
based configuration selection algorithm, VACS, which aims to
maximize video analytics accuracy while reducing the overall
energy consumption. Rigorous proof measures the gap between
online decisions and the optimum. Extensive experiments validate
the effectiveness of VACS.

Index Terms—Video analytics, edge intelligence, task offload-
ing, volatile multi-arm bandit

I. INTRODUCTION

In recent years, the deployment of cameras for various
purposes such as traffic control, crime prevention, and artificial
intelligence has led to the generation of vast amounts of video
data, often requiring rapid and accurate analytics. Typically,
video analytics applications demand substantial computing
resources and result in high energy consumption. However, the
local computing resources at cameras may be insufficient to
meet high-performance analytics requirements, necessitating
the offloading of video data to edge servers with richer
computing resources. Nevertheless, the computing and net-
work resources at edge nodes are often limited. Therefore,
adjusting video transmission configuration has become an
effective approach. By adjusting configurations such as frame
rate and resolution, it is possible to reduce computation and
transmission costs at edges. However, this approach also faces
the challenge of balancing between resource consumption and
analytics accuracy. The main challenges are as follows:

Firstly, edge servers with heterogeneous hardware may
result in only specific video analytics models being sup-
ported [3, 23]. Since analytics models typically have their own
input formats [1, 4, 27], the supported video configurations
for different models are usually limited [5–7]. Therefore,
when making video task offloading decisions, it is necessary
to match the video configuration for transmission and the
configuration supported by edge servers. Furthermore, when
the candidate server set is unstable, offloading decisions and

configurations should be also dynamically adjusted over time,
making it more challenging.

Secondly, more expensive transmission configurations (e.g.,
higher resolution or frame rate) lead to high accuracy analytics
results as well as high computing and transmission energy
costs. Therefore, a trade-off between accuracy and energy
consumption must be made. Since transmission configuration
is part of the input to the video analytics model, this trade-
off decision must be made before offloading. However, in
practical applications, due to the highly dynamic nature of
video content over time, a CNN model with a fixed config-
uration may yield different analytics accuracies. Therefore,
dynamically adjusting transmission configurations over time
while minimizing overall energy consumption and maximizing
analytics accuracy becomes a critical issue.

Thirdly, the energy consumption for transmission and com-
putation varies dynamically over time [9, 20], making it diffi-
cult to estimate energy consumption in advance. Additionally,
edge servers may experience energy depletion or movement,
leading to uncertainty in the candidate server set, further
increasing the difficulty of estimating server performance and
balancing the trade-offs between accuracy and energy cost.

Prior research [4, 14, 15, 22, 24, 25, 27–30] optimized
video analytics pipelines from different perspectives, e.g.,
server-driven, offline + online, parallel decoding, and super
resolution. However, most of them are based on deterministic
and known information of edge servers and do not take into
account the dynamic candidate server set.

This work considers the differences and variations among
different edge servers in terms of communication costs, com-
puting performance, and energy expenditure. Additionally,
attention is paid to the dynamic changes in the candidate server
set due to edge servers’ mobility or energy depletion.

In this paper, we propose a volatile MAB-based configura-
tion selection algorithm, VACS. It utilizes the volatile multi-
arm bandit framework to capture the variations in the avail-
ability and performance of edge servers, predicting the utility
rewards achievable by offloading to these servers and adjusting
configurations to make task offloading decisions adaptively.
Rigorous proof measures the gap between online decision-
making and the optimum. Extensive experiments validate the
effectiveness of VACS.



II. SYSTEM MODEL

We consider a set of time epochs T = {1, .., t, .., T}, which
are further divided into multiple time slots Jt. Within each
time slot, devices need to make task offloading decisions for
the collected video data, i.e., selecting an edge server and a
configuration. Fig. 1 illustrates the problem scenario in which
multiple edge servers are located near the device, forming
a candidate server set. However, edge servers may become
unavailable due to mobility or energy depletion, resulting in
possible changes in the available servers within each time slot.
We assume that the candidate server set remains stable within
each epoch j, and Sj,t is used to represent the candidate server
set in slot t within j-th epoch.

Let M = {mt|t = 1, 2, ..., T} denote the set of all video
analytics tasks, where mt represents the task at slot t. Previous
studies [10–13] show that video analytics task is relatively
large, thus it can be further divided into multiple subtasks (e.g.,
each subtask contains several video frames). We divide mt into
Kt subtasks, denoted by Kt = {mk,t|k = 1, 2, ...,Kt}, where
mk,t is the k-th subtask in task mt. Different CNN models
may be deployed on edge servers. CNN models typically
have their own input formats, limiting the supported video
configurations for different models, such as processing only
a fixed range of input resolution. Therefore, Rs is used to
identify the input resolution set supported by server s, and
the video transmission resolution rk,s,t of subtask mk,t is
chosen from Rs. We introduce a decision variable xk,s,t to
indicate whether subtask mk,t is offloaded to edge server s. If
xk,s,t = 1, it indicates that edge server s is selected; otherwise
xk,s,t = 0.

Detection Accuracy Model. Different configuration at-
tributes affect the accuracy of video analytics in distinct ways,
making it challenging to characterize the relationship between
video transmission configurations and accuracy. Existing re-
search [4, 14, 15] has demonstrated through extensive experi-
ments that the impact of frame rate and resolution on accuracy
is independent, and the relationship between accuracy and
frame rate/resolution can be represented by concave functions.
Based on these observations, the analytics accuracy ak,t of
sub-task mk,t can be expressed as:

ak,t = ϵt(
∑|Sj,t|

s=1
xk,s,trk,s,t)ϕt(fk,t), (1)

where the concave functions ϵt(r) and ϕt(f) represent the
accuracy with respect to resolution r and frame rate f in time
slot t, respectively.

Energy Consumption Model. Given the limited battery life
of edge devices, energy consumption is a crucial consideration
when designing configuration selection algorithms. The energy
consumption of edge devices primarily includes the transmis-
sion energy used for transmitting video data and the processing
energy consumed by running CNN models on servers.

The transmission energy is usually proportional to the
amount of data transmitted [4]. According to research [16],
a video frame with resolution r contains αr2 bits of data,
where α is a constant. We define γs,t as the energy consumed
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Fig. 1: Video offloading and configuration selection in multi-edge environment

by server s to download a bit of video data. Consequently,
the energy consumption etransk,s,t for edge server s to download
video data of subtask mk,t can be expressed as:

etransk,s,t = γs,tα(xk,s,trk,s,t)
2fk,t. (2)

Let µs,t denote the energy consumed by server s to process
one frame. Then, the processing energy consumption eprok,s,t for
server s to analyze subtask mk,t can be expressed as:

eprok,s,t = µs,txk,s,tfk,t. (3)

Then, the total energy consumption for processing subtask
mk,t is ek,t =

∑|Sj,t|
s=1 (etransk,s,t + eprok,s,t). Note that, due to the

dynamic variation in energy consumption on servers over time,
γs,t and µs,t are stochastic.

Problem Formulation. Our goal is to maximize the ac-
curacy of video analytics while minimizing overall energy
consumption. We introduce a utility function to evaluate the
quality of video transmission configuration which is defined
as the difference between the video analytics accuracy and the
energy consumption generated under a certain transmission
configuration:

Pk,t = ak,t − ωek,t, (4)

in which the weight parameter ω controls the trade-off be-
tween accuracy and energy consumption. When ω is large,
the algorithm will prioritize reducing energy consumption by
sacrificing accuracy. The overall problem is as follows:

P : max

T∑
t=1

Kt∑
k=1

|J |∑
j=1

(ak,t − ωek,t)

s.t. C1 : xk,s,t ∈ {0, 1},∀t, k ∈ Kt, s ∈ ∪jSj,t,

C2 :

Kt∑
k=1

|Sj,t|∑
s=1

xk,s,t = 1,∀t, k ∈ Kt, s ∈ ∪jSj,t,

C3 : fk,t ∈ [f, f̄ ],∀t, k ∈ Kt.

(5)

The constraints C1 and C2 jointly limit that the device can
only select one server for task offloading of video analytics
tasks simultaneously. Constraint C3 restricts the selection
range of video frame rates, requiring the frame rate to be
neither lower than f nor higher than f̄ .

III. ALGORITHM DESIGN

Analysis. The difficulty in solving P lies in the inability
to obtain future system-related information in advance. For
instance, before offloading tasks to server s, γs,t and µs,t



are stochastic. This leads to a trade-off between “exploration”
and “exploitation” during the learning process. Specifically, it
involves deciding whether to offload video tasks to servers that
have not been previously selected to gather more information
or to make the best decision based on existing information.
In the long run, “exploration” may yield higher returns for
future selections, but the results obtained at the moment may
not be optimal. Conversely, continuous “exploitation” is more
conducive to making the best decision at the current moment
but may lead to the solution being trapped in a local optimum.

The uncertainty of the candidate server set further compli-
cates the problem. Edge servers may join or quit the candidate
cluster due to energy depletion or mobility. Traditional online
learning algorithms may not cope with this unstable scenario,
necessitating a restart of the learning process. However, apart
from the servers that join or quit, the information of other
servers in the cluster remains unchanged. If the learned in-
formation is not reused and the learning process starts from
scratch, it will result in a large amount of redundant learning,
thereby significantly reducing overall efficiency.

Overview. This work proposes VACS, a Volatile MAB-
based Configuration Selection algorithm based on Volatile
Multi-Arm Bandit [17]. VACS continuously “explores” the
candidate edge server set by selecting edge servers that have
not been chosen for offloading video tasks, updating the rele-
vant server performance information of the current selection.
When the candidate edge server set becomes relatively stable,
VACS “exploits” the acquired information to estimate the
expected utility rewards of each server, making the optimal
offloading decision and video transmission configuration se-
lection at the current time.

VACS Details. VACS utilizes Upper Confidence Bound
(UCB) to solve the tradeoff between exploration and ex-
ploitation. The core idea is to select the action with the
maximum upper confidence bound of expected rewards, which
consists of two components: the mean cumulative reward and
uncertainty measure. The mean cumulative reward reflects the
“exploitation” value of an action by calculating the average
return obtained after selection, while the uncertainty measure
quantifies the “exploration” value of the action.

We denote the time when an edge server first joins the
candidate set as uk,t. If a server re-joins the candidate edge
server cluster after exiting, it will be considered as a new
available server. It is assumed in this work that the candidate
server set remains unchanged within each slot t.

For each subtask mk,t, the objective is to find the edge
server that maximizes the utility function Pk,t and determine
the transmission configuration. The utility reward function
V s,r∗,f∗

k,t is defined as the value of the utility function Pk,t

when offloading the subtask mk,t to edge server s, with the
resolution r∗k,s,t and frame ratef∗

k,t. That is,

V s,r∗,f∗

k,t = ϵt(r
∗
k,s,t)ϕt(f

∗
k,t)− ω[γs,tα(r

∗
k,s,t)

2f∗
k,t + µs,tf

∗
k,t].

(6)
VACS is shown in Alg. 1. Lines 4-10 represent the con-

tinuous “exploration” phase, which is used to initialize edge

Algorithm 1: VACS

1 for t = 1 to T do
2 estimate accuracy parameters ϵt and ϕt;
3 for j = 1 to |Jt| and each subtask mk,t do
4 if ∃ new edge server s then
5 uk,t ← mk,t;
6 select server s, observe γ̃s,t and µ̃s,t;
7 for rk,s,t in Rs do
8 get frame rate fk,t according to rk,s,t;

9 get best configuration r∗k,s,t and f∗
k,t;

V̄ s,r∗,f∗

k,t (γ̄s,t, µ̄s,t)← Ṽ s,r∗,f∗

k,t (γ̃s,t, µ̃s,t);
10 πs,t ← 1;

11 else
12 select server s using Eq. (7), observe γ̃s,t

and µ̃s,t;
13 for rk,s,t in Rs do
14 get frame rate fk,t according to rk,s,t;

15 get best configuration r∗k,s,t and f∗
k,t;

16 V̄ s,r∗,f∗

k,t (γ̄s,t, µ̄s,t)←
V̄ s,r∗,f∗
k,t (γ̄s,t,µ̄s,t)πs,t+Ṽ s,r∗,f∗

k,t (γ̃s,t,µ̃s,t)

πs,t+1 ;
17 πs,t ← πs,t + 1;

servers that join for the first time. Since each edge server
only supports several specific input resolutions, VACS attempts
to offload analytics subtasks to these servers at all available
resolutions to gather relevant performance information, while
the information on the remaining available servers is retained
and reused. Here, γ̃s,t and µ̃s,t are the estimated values
of γs,t and µs,t, respectively, and γ̄s,t and µ̄s,t represent
the sample means. Lines 12-17 represent the “exploitation”
learning phase. When the candidate edge server set is stable,
the current subtask selects an edge server for offloading based
on the following rule:

s←argmax{V̄ s,r∗,f∗

k,t (γ̄s,t, µ̄s,t)+λ

√
2 ln(mk,t − uk,t)

πs,t
, (7)

where V̄ s,r∗,f∗

k,t represents the mean cumulative reward ob-
tained by choosing to offload the subtask to server s. πs,t

denotes the number of times the server s has been cho-
sen for offloading within slot t. The uncertainty measure√

2 ln(mk,t−uk,t)
πs,t

is used to gauge the “exploration” value of
server s. It decreases as the number of times the server is
chosen increases; that is, if the server is chosen less frequently,
it is considered to have higher “exploration” value, and VACS
is more likely to select it in decision-making. λ is a weight
that balances “exploration” and “exploitation”, adjusting the
tendency of VACS to “explore” or “exploit”.

After determining the target server for offloading, the frame
rate for video transmission is then established. Once the edge
server and the video transmission resolution rk,s,t are set,
a set of frame rates fk,t can be determined to maximize



Pk,t. Specifically, for a chosen server s, the optimal set of
frame rates Fs

k,t can be identified by computing the first-order
derivative of Pk,t with respect to fk,t in Fs

k,t equals 0, i.e.,

Fs
k,t = {fk,t|xk,s,t = 1 ∧ ∂Pk,t/∂fk,t = 0}, (8)

then we get the optimal frame rate f∗
k,t by solving

f∗
k,t = argmax

fk,t∈Fs
k,t∪{f,f̄}

Pk,t. (9)

Theoretical Analysis. Define the regret of task mt as:

Reg(t) =
∑Kt

k=1
E[V s∗,r∗,f∗

k,t ]− E[V s,r∗,f∗

k,t ], (10)

where V s∗,r∗,f∗

k,t is the theoretical optimal utility function
value obtained by selecting the optimal server s∗ with future
information, and V s,r∗,f∗

k,t is the utility obtained by VACS. We
have the following theorem; for proof please refer to [31].
Theorem 1. Without the prior information of γs,t and µs,t ,
the upper bound of the regret for each analytics task mt is:

E[Reg(t)] ≤ |Jt|
∑
s̸=s∗

λ(8∆−1
s lnKt +

8

3
∆s), (11)

where ∆s ≜ E[V s∗,r∗,f∗

k,t /λ]− E[V s,r∗,f∗

k,t /λ].

IV. EXPERIMENTS AND CONCLUSION

Settings. Our extensive trace-driven experiments use the
videos derived from the AI City Datasets 2019 [18], with the
row resolution of 1080p and frame rate of 30fps. YOLOv5 [19]
is deployed on edge servers for object detection, supporting
resolutions including 360p, 480p, 540p, 600p, 720p, 810p,
960p, and 1080p, with each server supporting three of these
resolutions. Following related work [20, 21], we set the
computational energy consumption µs,t ∼ N(5, 0.5)J/frame
and the transmission energy consumption γs,t ∼ N(5, 0.5)×
10−6(J) by default. We use F1-score [26] to measure the
accuracy (details can be found in [31]).

Baselines include (1) Accuracy-Optimal (AO), which max-
imizes accuracy and ignores energy consumption, and (2)
Energy-Consumption-Optimal (ECO), which minimizes en-
ergy consumption and ignores accuracy.

Effectiveness of VACS. Fig. 2 shows two typical examples
of using VACS. In Figs. 2(a) and 2(b), during the first 20 slots,
vehicles move slowly, and the differences between adjacent
frames are small. Sampling the video at a lower frame rate
can still achieve an average accuracy of 98%. In the latter 20
slots, vehicles move faster, necessitating a higher frame rate to
maintain high accuracy. Similarly, as shown in Figs. 2(c) and
2(d), in the first 20 slots, pedestrians are close to the camera
and gradually move away in the last 20 slots. To maintain high
accuracy as pedestrian size decreases, VACS opts to transmit
the video at a higher resolution.

Comparison Results. Figs. 3 shows the comparison results,
in which we assume that the highest configuration (e.g., 1080p
and 30fps) achieves an accuracy of 1. VACS achieves an
average accuracy of 87%, only a 13% reduction compared
to AO, but it saves 59% in energy consumption. While ECO

(a) Scenario 1: vehicle speed changes over time

0 5 10 15 20 25 30 35 40
Time Slot

0

10

20

30

40

50

Fr
am
e 
ra
te

fp
s

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

Accuracy

Frame rate

(b) fps. vs. accu.

(c) Scenario 2: pedestrian size changes over time
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Fig. 2: VACS dynamically adjusts configuration

achieves the lowest overall energy consumption, its average
accuracy is only 56%, failing to meet the accuracy require-
ments of most video analytics applications. Therefore, VACS
manages to strike a good balance between accuracy and energy
consumption.
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Fig. 3: Comparison results

Effect of ω and Volatile Bandit. Our evaluation results
show that (1) by setting ω to an appropriate value, it is possible
to ensure high accuracy while maximizing the reduction in
energy consumption costs, and (2) Volatile Bandit indeed helps
improve utility. Please refer to [31] for more details.

Conclusion and Future Work. In this work, we formulate a
mixed planning program that aims to maximize the analytics
accuracy while minimizing the energy consumption. Due to
the dynamic availability of edge servers and the variability of
server performance, it is difficult to predict candidate server
performance in advance and make offloading and configuration
selections accordingly. We propose a volatile MAB-based
configuration selection algorithm, VACS, to enhance online
learning efficiency by fully utilizing the information obtained.
Rigorous proof measures the gap between online decisions and
the optimum. Extensive experiments validate the effectiveness
of the algorithm. For future work, we plan to investigate neural
codecs for machine-centric video transmission and analytics.
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