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Abstract—Efficient routing among a set of mobile hosts is one of the most important functions in ad hoc wireless networks. Routing

based on a connected dominating set is a promising approach, where the search space for a route is reduced to the hosts in the set. A

set is dominating if all the hosts in the system are either in the set or neighbors of hosts in the set. The efficiency of dominating-set-

based routing mainly depends on the overhead introduced in the formation of the dominating set and the size of the dominating set. In

this paper, we first review a localized formation of a connected dominating set called marking process and dominating-set-based

routing. Then, we propose a dominant pruning rule to reduce the size of the dominating set. This dominant pruning rule (called Rule k)

is a generalization of two existing rules (called Rule 1 and Rule 2, respectively). We prove that the vertex set derived by applying Rule k

is still a connected dominating set. Rule k is more effective in reducing the dominating set derived from the marking process than the

combination of Rules 1 and 2 and, surprisingly, in a restricted implementation with local neighborhood information, Rule k has the

same communication complexity and less computation complexity. Simulation results confirm that Rule k outperforms Rules 1 and 2,

especially in networks with relatively high vertex degree and high percentage of unidirectional links. We also prove that an upper bound

exists on the average size of the dominating set derived from Rule k in its restricted implementation.

Index Terms—Ad hoc wireless networks, dominant pruning, dominating sets, routing, probabilistic analysis, simulation.
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1 INTRODUCTION

AN ad hoc wireless network, or simply ad hoc network,
can be represented by a unit disk graph [6], where every

vertex (host) is associated with a disk centered at this vertex
with the same radius (also called transmission range). Two
vertices are neighbors (i.e., there is an edge between them) if
and only if they are covered by each other’s disk. For
example, both vertices v and w in Fig. 1a are neighbors of
vertex u because they are covered by disk u; while vertices v
and x in Fig. 1b are not neighbors because their disks cannot
cover each other. In an ad hoc network, some links (edges)
may be unidirectional due to either the disparity of energy
levels of hosts or the hidden terminal problem [21].
Therefore, a general ad hoc network can be considered as
a general disk graph with both bidirectional and unidirec-
tional links.

Routing protocol design is one of the challenging issues
in ad hoc networks. Among various existing routing
protocols, dominating-set-based routing [9], [20], [24], [25] is
a promising approach. This approach was first proposed for
undirected graphs only using the notion of dominating set
[9], [25] and was later extended to cover directed graphs by
introducing another notion called absorbent set [24]. A subset
of vertices in an undirected graph is a dominating set if
every vertex not in the subset is adjacent to at least one
vertex in the subset. Moreover, this dominating set should
be connected for ease of the routing process within the
induced graph of dominating vertices. The main advantage

of dominating-set-based routing is that it simplifies the
routing process to the one in a smaller subnetwork
generated from the connected dominating set (CDS). Only
dominating vertices (also called gateways, as shown in Fig. 1
as doubly-cycled vertices) need to keep routing information
in a proactive approach and the search space is reduced to the
dominating set in a reactive approach.

Clearly, the efficiency of this approach depends largely
on the process of finding and maintaining a CDS and the
size of the corresponding subnetwork. It is desirable to find
a small CDS without compromising the functionality,
reliability, and efficiency of an ad hoc network. In addition,
the CDS formation algorithm should be localized (i.e., based
on local information) for low overhead and fast conver-
gence, two essential requirements for a routing protocol in
ad hoc networks. Unfortunately, finding a minimum CDS is
NP-complete for most graphs, even if global information is
available and no constraint, such as preserving the shortest
paths, is enforced.

Wu [24] and Wu and Li [25] proposed a simple and
efficient localized algorithm that can quickly determine a
CDS in ad hoc networks. This approach uses a marking
process where hosts interact with others in the neighbor-
hood. Specifically, each host is marked true if it has two
unconnected neighbors. It is shown that, collectively, these
hosts achieve a desired global objective—a set of marked
hosts forms a small CDS. In Wu and Li’s approach [24], [25],
the resultant dominating set derived from the marking
process is further reduced by applying two dominant
pruning rules. According to dominant pruning Rule 1, a
marked host can unmark itself if its neighbor set is covered
by another marked host; that is, if all neighbors of a
gateway are connected with each other via another gate-
way, it can relinquish its responsibility as a gateway. In
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Fig. 1b, either u or w can be unmarked (but not both).
According to Rule 2, a marked host can unmark itself if its
neighborhood is covered by two other directly connected
marked hosts. The combination of Rules 1 and 2 is fairly
efficient in reducing the number of gateways while still
maintaining a CDS. This approach also outperforms several
classic approaches in ad hoc networks, such as the cluster
approach [10], [15], in terms of finding a small CDS, and
MCDS (minimum connected dominating set) [13], [20], in
terms of doing so quickly [24].

Dominant pruning rules with more than two covering
hosts were not considered in early studies due to the
following two assumptions: 1) testing the coverage of
multiple hosts could be costly and 2) only a few hosts’
neighbor sets need to be covered by three or more other
hosts. However, further study in this paper will show that
these assumptions are not always true. In this paper, we
propose a generalized dominant pruning rule, called Rule k,
which can unmark gateways covered by k other gateways,
where k can be any number. We also show that Rule k can
be implemented in a restricted way with local neighbor-
hood information that has the same complexity as Rule 1
and, surprisingly, less complexity than Rule 2.

Note that a gateway that can unmark itself according to
Rule k is not necessarily “unmarkable” according to Rules 1
and 2. For example, suppose hosts in Fig. 1 are evenly
distributed andverydense. It is almost impossible to find two
hosts v and w to cover the neighborhood of host u (see the
shadowed area in Fig. 1a). However, it is much easier to find
three or more hosts to cover the same shadowed area (see
Fig. 1b). Simulation results of this paper show that Rule k is
better than the combination of Rules 1 and 2 in terms of
generatinga smallCDS.Rulek is especially suitable for adhoc
networks with relatively high density (more than 10 neigh-
bors for eachhost) and considerable percentage (10percent to
20 percent) of unidirectional links, where its superiority over
Rules 1 and 2 is obvious.

Like Rules 1 and 2, Rule k does not guarantee a constant
approximation ratio; however, we show the existence of a
“probabilistic bound” on the size of the CDS derived from
Rule k. Suppose in a random unit disk graph, the CDS
derived from Rule k is R times as large as the minimum
CDS; the upper bound of R is also called approximation
ratio. We prove that 1) the probability that R is infinitely
large is very small, specifically, PrðR > xÞ < �e��x, and
2) the average value of R is upper bounded by a constant.
We also show the same results for the restricted Rule k in

unit disk graphs and the nonrestricted Rule k in general
disk graphs. To the best of our knowledge, this is the first
bound given to a pure localized algorithm without resorting
to location information. We believe that our proof can be
extended to other localized algorithms.

2 RELATED WORK

Algorithms that construct a CDS in ad hoc networks can be
divided into two categories: centralized algorithms that
depend on network-wide information or coordination and
decentralized that depend on local information only. Cen-
tralized algorithms usually yield a smaller CDS than
decentralized algorithms, but their application is limited
due to the high maintenance cost. Das et al. [9] proposed a
centralized algorithm to find a small CDS. This algorithm is
based on Guha and Khuller’s first approximation algorithm
[13], which can be viewed as the process of growing a
spanning tree T in several sequential rounds. In the first
round, a vertex with the maximum vertex degree is selected
as the root of T . In each following round, a vertex v in T that
has the maximum number of neighbors not in T is selected.
Selecting v also adds edges to T from v to all its neighbors
not in T . Finally, a spanning tree is constructed and the
nonleaf vertices form a CDS. This so-called MCDS algorithm
has an Oðlog�Þ approximation ratio in regular graphs,
where � is the maximum number of neighbors of a vertex.
Another algorithm based on a spanning tree was proposed
by Wan et al. [23]. In this scheme, a maximal independent
set (MIS) is elected such that each vertex in the MIS can be
connected to the spanning tree via an extra vertex. Since, in
unit disk graphs, the size of an independent set is at most
four times that of the minimum CDS, this algorithm has an
approximation ratio of 8. However, this algorithm usually
produces a larger CDS than the MCDS algorithm in random
unit disk graphs.

Decentralized algorithms can be further divided into
cluster-based algorithms and pure localized algorithms.
Cluster-based algorithms have a constant approximation
ratio in unit disk graphs and relatively slow convergence
(OðnÞ in the worst case). Pure localized algorithms take
constant steps to converge, produce a small CDS on
average, but have no constant approximation ratio. A
cluster-based algorithm usually contains two phases. In
the first phase, the network is partitioned into clusters and a
clusterhead is elected for each cluster. In the second phase,
clusterheads are interconnected to form a CDS. Several
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clustering algorithms have been proposed [4], [10], [12], [15]
to elect clusterheads that have the minimal id, maximal
degree, or maximal weight. A host v is a clusterhead if it has
the minimal id (or maximal degree or weight) in its 1-hop
neighborhood. A clusterhead and its neighbors form a
cluster and these hosts are covered. The election process
continues on uncovered hosts and, finally, all hosts are
covered. The resultant set of clusterheads is an MIS. Kwon
and Gerla [14] proposed passive clustering (PC) to reduce
the control overhead. In PC, the control information is
piggybacked in normal packets, and neighbors compete to
be the clusterhead in a first-come-first-serve manner.

Several approaches were proposed to construct a CDS by
connecting clusterheads via nonclusterheads called connec-
tors; that is, both clusterheads and connectors are gateways
here. In early schemes [3], [15], every nonclusterhead that has
a neighbor in another cluster is designated as a connector,
which results in a larger CDS. The objective here is to
maximize the throughput and reliability, rather than to
reduce the CDS size. Alzoubi et al. [2] proposed growing a
tree to reduce thenumberof connectors. The root of this tree is
the winner of a distributed election among clusterheads, and
other clusterheads are connected to the tree via at most two
connectors per clusterhead. This algorithm is an early version
of [23]; it has an approximation ratio of 12 and a slow
converging speed.Most approaches [10], [14], [26] use amesh
structure, which is much faster to construct than a tree. In the
mesh scheme, each clusterhead designates one or two
connectors to form a path to each neighboring clusterhead
(i.e., a clusterhead twoor three hops away). Themesh scheme
also has a constant approximation ratio, but this constant is
much larger than 12.

In pure localized algorithms [1], [5], [16], [19], [24], [25],
the status of each node depends on its h-hop topology only,
where h is a small constant, and usually converges after at
most h rounds of information exchange among neighbors.
Chen et al. [5] proposed an approach similar to the marking
process, called Span, to select a set of special hosts called
coordinators. Ideally, coordinators form a CDS such that
other hosts can switch to the energy saving mode without
compromising the routing capability of the network. A host
v becomes a coordinator if it has two neighbors that are not
directly connected, indirectly connected via one intermedi-
ate coordinator, or indirectly connected via two intermedi-
ate coordinators. Before a host changes its status from
noncoordinator to coordinator, it waits for a backoff delay
which is computed from its energy level and 2-hop
neighborhood topology. The backoff delay can be viewed
as a priority value, such that nodes with shorter backoff
delay have a higher chance of becoming coordinators. Span
cannot ensure a CDS when two coordinators simulta-
neously change back to noncoordinators. We use in the
simulation an enhanced version of Span, where a host
becomes a coordinator if it has two neighbors that are not
directly connected or indirectly connected via one or two
intermediate coordinators with higher priority values. This
enhanced Span uses 3-hop information and takes three
rounds to converge.

Qayyum et al. [16] proposed an efficient broadcast
scheme called mutipoint relaying (MPR). In MPR, each
host designates a small set of 1-hop neighbors (MPRs) to
cover its 2-hop neighbors. In the broadcasting, a host u
forwards a packet p from the last hop v only if 1) u has not
received p before and 2) u is a MPR of v. For each
broadcasting, forwarding hosts form a source-dependent CDS

(i.e., a dynamic CDS depends on the broadcast process). By
taking advantage of the broadcast history information, a
source-dependant CDS is usually smaller than a source-
independent CDS constructed by above algorithms. It was
proven in [16] that MPRs selected by a single host has log�
approximation ratio. However it is unknown if a global
approximation ratio exists for the entire CDS. Tseng et al.
[22] proposed several efficient broadcasting schemes for ad
hoc networks, but none of them forms a CDS.

3 PRELIMINARIES

3.1 Localized Dominating Set Formation

Given a simple directed graphG ¼ ðV ;EÞ, where V is a set of
vertices (hosts) andE is a set of directed edges (unidirectional
links), adirectededge fromu tov isdenotedbyanorderedpair
ðu; vÞ. If ðu; vÞ is anedge inG,wesay thatudominatesvandv is
anabsorbent ofu. The dominating neighbor setNdðuÞof vertexu
is defined as fw : ðw; uÞ 2 Eg. The absorbent neighbor setNaðuÞ
of vertex u is defined as fv : ðu; vÞ 2 Eg. NðuÞ ¼ NdðuÞ [
NaðuÞ represents the neighbor set of vertex u. For example, in
Fig. 2a, vertexxdominates vertexu, y is an absorbent ofu, and
v is a dominating and absorbent neighbor of u. The
dominating neighbor set of vertex u is NdðuÞ ¼ fv; xg, the
absorbentneighborsetofu isNaðuÞ ¼ fv; yg, and theneighbor
set of u is NðuÞ ¼ fv; x; yg. The general disk graph and unit
disk graph are special cases of directed graphs.

A set V 0 � V is a dominating set of G if every vertex v 2
V � V 0 is dominated by at least one vertex u 2 V 0. Also, a set
V 0 � V is called an absorbent set if for every vertex
u 2 V � V 0, there exists a vertex v 2 V 0 which is an
absorbent of u. For example, vertex set fu; vg in Figs. 2a
and 2b and fu; v; wg in Fig. 2c are both dominating and
absorbent sets of the corresponding directed graphs. In this
paper, unless otherwise specified, we use the term “(con-
nected) dominating set” to represent “(strongly connected)
dominating and absorbent set.” The following marking
process can quickly find a strongly connected dominating
and absorbent set in a given directed graph.

Algorithm 1 Marking process [24]

1: Initially assign marker F to each u in V .

2: Each u exchanges its neighbor set NdðuÞ and NaðuÞ with

all its neighbors.

3: u changes its marker mðuÞ to T if there exist vertices v

and w such that ðw; uÞ 2 E and ðu; vÞ 2 E, but

ðw; vÞ 62 E.

The marking process is a localized algorithm, where
hosts only interact with others in the neighborhood. Unlike
clustering algorithms, there is no “sequential propagation”
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of information. The marking process marks every vertex in
G. mðvÞ is a marker for vertex v 2 V , which is either T
(marked) or F (unmarked). Suppose the marking process is
applied to the network represented by Fig. 2a, host u will be
marked because ðx; uÞ 2 E and ðu; yÞ 2 E, but ðx; yÞ 62 E;
host v will also be marked because ðu; vÞ 2 E and ðv; zÞ 2 E,
but ðu; zÞ 62 E. All other hosts will remain unmarked
because no such pair of neighbor hosts can be found. For
the same reason, only hosts u and v in Fig. 2b and hosts u, v,
and w in Fig. 2c will be marked by the marking process.
Assume that V 0 is the set of vertices that are marked T in V ;
that is, V 0 ¼ fv : v 2 V ^mðvÞ ¼ Tg. The induced graph G0

is the subgraph of G induced by V 0; that is, G0 ¼ G½V 0�. Wu
[24] showed that marked vertices form a strongly connected
dominating and absorbent set and, furthermore, can
connect any two vertices with minimum hops.

An important issue in implementing the marking process
is how to collect the neighbor set information. For each host
u, its dominating neighbor set, NdðuÞ, can be established by
monitoring the beacon packet sent periodically by each
dominating neighbor. Its absorbent neighbor set, NaðuÞ,
however, cannot be established in this way. Suppose host v
is an absorbent neighbor of u; that is, v 2 NaðuÞ but
v =2 NdðuÞ, u will not receive the 1-hop beacon sent by v
and, therefore, cannot recognize v as its neighbor. This
problem is handled in [24] by the means of k-hop beacons: If
host v finds out it is an absorbent neighbor of host u, but
currently not in u’s neighbor set, host v will broadcast a
beacon packet to notify u of its existence. Each broadcast
packet has a TTL (time-to-live) value set to k to limit its
propagation range. Simulation results in [24] show that with
2-hop beacon packets, more than 99.9 percent of the
absorbent neighbors can be detected in a random network
with an average node degree of 18 and 20 percent
unidirectional links.

3.2 Dominating Set Reduction

In the marking process, a vertex is marked T because it may
be the only connection between its two neighbors. How-
ever, if there are multiple connections available, it is not
necessary to keep all of them. We say a vertex is covered if
its neighbors can reach each other via other connected
marked vertices. Two dominant pruning rules are proposed
in [25] and then extended in [24] to reduce the size of the
connected dominating set. The idea is the following: If a
vertex is covered by no more than two connected vertices,
removing this vertex from V 0 will not compromise its
functionality as a CDS. To avoid simultaneous removal of
two vertices covering each other, a vertex is removed only
when it is covered by vertices with higher id’s. Node id
idðvÞ of each each vertex v 2 V serves as a priority. Nodes
with high priorities have high probability of becoming
gateways. Id uniqueness is not necessary, but equal id’s will
produce more gateways.

Rule 1. Consider two vertices u and v in G0. IfNdðuÞ � fvg �
NdðvÞ and NaðuÞ � fvg � NaðvÞ in G and idðuÞ < idðvÞ, change
the marker of u to F ; that is, G0 is changed to G0 � fug.

Rule 2. Assume that v and w are bidirectionally connected in
G0. If NdðuÞ � fv; wg � NdðvÞ [NdðwÞ and NaðuÞ � fv; wg �
NaðvÞ [NaðwÞ in G and idðuÞ < minfidðvÞ; idðwÞg, then
change the marker of u to F .

In Fig. 2a, since NdðuÞ � fvg � NdðvÞ, NaðuÞ � fvg �
NaðvÞ, and idðuÞ < idðvÞ, vertex u is removed from V 0 and

vertex v is the only dominating vertex in the graph. In Fig. 2b,
u and v cover each other, but only u is removed from V 0

because idðuÞ < idðvÞ. In Fig. 2c, since NdðuÞ � fv; wg �
NdðvÞ [NdðwÞ, NaðuÞ � fv; wg � NaðvÞ [NaðwÞ, and idðuÞ <
minfidðvÞ; idðwÞg, vertex u can be removed from V 0 based on
Rule 2. It is proven in [24] that the reduced set V 0

� � V 0

generated from applying Rule 1 and/or Rule 2 to V 0 is still a
strongly connected dominating and absorbent set of G. If
vertex u in Rule 1 and vertices u andw in Rule 2 are neighbors
of vertex v, the corresponding dominant pruning rules are
called the restricted Rule 1 and Rule 2; otherwise, they are
nonrestricted.

3.3 Dominating-Set-Based Routing

Assume that a CDS has been determined for a given ad hoc
network. Dominating-set-based routing usually consists of
three steps:

1. If the source is not a gateway host, it forwards the
packets to a source gateway, which is one of the
adjacent gateway hosts in its absorbent set.

2. This source gateway acts as a new source to route
the packets in the induced graph generated from the
connected dominating set.

3. Eventually, the packets reach a destination gateway,
which is either the destination host itself or a
gateway in the dominating neighbor set of the
destination host.

In the latter case, the destination gateway forwards the
packets directly to the destination host.

There are, in general, two ways to perform routing
within the induced graph: proactive routing and reactive
routing. In [25], DSDV is used as a sample proactive routing
to illustrate the dominating-set-based routing. In reactive
routing protocols such as DSR and AODV, a connected
dominating set can serve as a forward node set to forward
routing request (RREQ) packets.

4 DOMINANT PRUNING THROUGH k-NEIGHBOR

COVERAGE

4.1 Generalized Pruning Rule

Assume G0 ¼ ðV 0; E0Þ is the induced subgraph of a given
directed graph G ¼ ðV ;EÞ from marked vertex set V 0. In
the following dominant pruning rule, we use NdðV 0

kÞ
(NaðV 0

kÞ) to represent the dominating (absorbent) neighbor
set of a vertex set V 0

k ; that is, NdðV 0
kÞ ¼

S
vi2V 0

k
NdðviÞ and

NaðV 0
kÞ ¼

S
vi2V 0

k
NaðviÞ.

Rule k. Assume that V 0
k ¼ fv1, v2, . . . , vkg is the vertex set of a

strongly connected subgraph in G0. If NdðuÞ � V 0
k � NdðV 0

kÞ and
NaðuÞ � V 0

k � NaðV 0
kÞ in G and idðuÞ < minfidðv1Þ; idðv2Þ;

� � � ; idðvkÞg, then change the marker of u to F .

Rules 1 and 2 are special cases of Rule k, where jV 0
k j is

restricted to 1 and 2, respectively. Note that V 0
k may contain

two subsets: V 0
k1

that really covers u’s neighbor set, and V 0
k2

that acts as the glue to make them a connected set.
Obviously, if a vertex can be removed from V 0 by applying
Rule 1 or Rule 2, it can also be removed by applying Rule k.
On the other hand, a vertex removed by Rule k is not
necessarily removable via Rule 1 or Rule 2. For example, in
Fig. 3a, both vertices u and v can be removed using Rule k
(for k � 3) because they are covered by vertices w, x, y, and
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z; in Fig. 3b, vertex u can be removed because it is covered
by vertices w, x, and y. Note that, although x and y are not
bidirectionally connected, they can reach each other via
vertex w. However, none of these vertices can be removed
via Rule 1 or Rule 2.

Theorem 1. If V 0 is a strongly connected dominating and
absorbent set of a directed graph G, and V 0

R is the set of vertices
removable under Rule k, then V 0

� ¼ V 0 � V 0
R is also a strongly

connected dominating and absorbent set of G.

Proof. First, we prove V 0
� is a dominating set. This claim

holds when jV 0j ¼ 1 because V 0
� ¼ V 0. If jV 0j > 1, for

every vertex u in G, it is either in V 0 or not in V 0. If u =2 V 0,
it is dominated by at least one vertex in V 0 because V 0 is a
dominating set of G. If u 2 V 0, it is also dominated by a
vertex in V 0 because V 0 is strongly connected. In
addition, there always exists a vertex v 2 V 0 satisfying
idðvÞ ¼ maxfidðwÞ : w 2 NdðuÞg, which cannot be re-
moved by applying Rule k. Therefore, u is dominated
by at least one vertex v 2 V 0

� . By analogy, we can prove V 0
�

is also an absorbent set.
Then, we prove G½V 0

� � is strongly connected. Suppose
G½V 0

� � is not strongly connected, if we put back the
removed vertices one by one in descending order of
vertex id’s, we shall find the first vertex u that
“reconnects” V 0

� ; that is, after the removal of u, at least
one pair of vertices (x; y) in G½V 0� loses its last connecting
path. However, this is impossible: If u is removed from
V 0 by applying Rule k, its dominating and absorbent
neighbor sets are covered by a strongly connected set of
vertices with higher id’s than idðuÞ. As we can see in
Fig. 4, for any ðx; yÞ-path through u, there always exists
another ðx; yÞ-path with the following three segments:
1) from source x to vertex w1 before u, 2) from w1 to the
vertex after u, w2, through vertices v1; v2; � � � ; vl covering
u, and 3) from w2 to destination, which is not through u.
Therefore, removal of u cannot eliminate all ðx; yÞ-paths,
which is a contradiction. tu

4.2 An Efficient Pruning Algorithm

Similar to restricted Rules 1 and 2, if v1; v2; . . . ; vk are all
neighbors of u in Rule k, the corresponding dominant
pruning rule is called the restricted Rule k; otherwise, it is
nonrestricted. In the nonrestricted dominant pruning rules,
a host can be covered by a group of hosts 1 or 2 hops away,
self-connected or connected by other marked hosts. For
example, hosts u and v in Fig. 3a and u in Fig. 3b can
unmark themselves via the nonrestricted Rule k, but only
host u in Fig. 3b can unmark itself via the restricted Rule k.
Host v in Fig. 3a cannot unmark itself because one of the

covering hosts, w, is not a neighbor of v. The restricted Rule
k is easier to implement, because it demands only 2-hop
neighborhood information. The nonrestricted Rule k de-
mands global information, which is quite unrealistic in ad
hoc networks. Our simulation shows that the number of
hosts unmarked by restricted and nonrestricted rules are
very close.

Algorithm 2 Restricted k-dominant pruning (executed on

each marked host u 2 V 0)
1: Broadcasts its id and marker ðidðuÞ; T Þ to all its

neighbors.

2: Builds a subgraph G½V 0
þ�, where

V 0
þ ¼ fwjw 2 ðV 0 \NðuÞÞ ^ ðidðuÞ < idðwÞÞg.

3: Computes the set of strongly connected components

fV 0
1 ; V

0
2 ; � � � ; V 0

l g of G½V 0
þ�.

4: Changes its markermðuÞ to F if there exists V 0
i ; 1 � i � l,

such that NdðuÞ � V 0
i � NdðV 0

i Þ and
NaðuÞ � V 0

i � NaðV 0
i Þ.

Algorithm 2 gives an implementation of the restricted
Rule k. This procedure is invoked only when the current
host is marked T by the marking process. First, all marked
hosts advertise their id’s to their neighbors (Step 1). By
collecting the advertised information, each marked host can
build the set V 0

þ of marked neighbors with higher id’s and
the induced graph G½V 0

þ� that includes all those neighbors
(Step 2). Because, during the marking process, each host has
collected the information of its neighbors and links among
its neighbors, G½V 0

þ� can be built without further informa-
tion exchange. Then, the condition of Rule k is tested and a
marked host is unmarked if the rule applies (Steps 3 and 4).
Note that the computation in Steps 3 and 4 is based on local
information and does not involve interhost communication.

In Step 3, each host decomposes the induced graph of its
marked neighbor set with higher id’s, V 0

þ, into several strong
components. The strong components [7] of a directed graph
are the equivalence classes of vertices under the “mutually
reachable” relation. Two vertices of V 0

þ belong to the same
strong component if and only if they are strongly connected
in G½V 0

þ�. For example, the directed graph in Fig. 5 has three
strong components: ft; v; xg, fwg, and fy; zg. A directed
graph is strongly connected if it has only one strong
component. Note that, although we always assume that G0

is a strongly connected graph, G½V 0
þ� is not necessarily
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Fig. 3. Limitation of Rules 1 and 2 in networks (a) without or (b) with

unidirectional links.

Fig. 4. An impossible case: u is the first vertex that reconnects the

partitioned network, but any path from x to y through u can detour via

other vertices with higher id’s.



strongly connected. For any marked host u, if it can be
unmarked by applying the restricted Rule k, it must be
covered by a subset of a strong component, V 0

i , which also
covers u. If u is not covered by any V 0

i , it cannot be covered
by any strongly connected vertex set. Therefore, it is not
necessary to test the coverage of every combination of u’s
marked neighbors: Testing every strongly connected component
shall be sufficient.

Several linear-time algorithms can decompose a directed
graph into strong components [7], [17]. They are all based
on the depth-first search (DFS) algorithm and have a
complexity of OðjEj þ jV jÞ. A DFS process grows a DFS
tree from a given starting vertex (root). All vertices reach-
able from a root are visited (i.e., added to the DFS tree) in
preorder. After the construction of a DFS tree, if there are
still vertices unvisited (i.e., unreachable from root), one
unvisited vertex is selected as the root to grow another DFS
tree. This process continues until all vertices are visited.
Each visited vertex u is labeled with an ordering number
ordðuÞ; that is, for any two visited vertices u; v 2 V , ordðuÞ <
ordðvÞ if and only if u is visited before v. Fig. 5b shows the
result of a DFS process starting from vertex t (i.e.,
ordðtÞ ¼ 1). Note that different DFS processes may have
different order assignments. Each DFS tree contains one or
several strong components. The following algorithm,
originally proposed by Gabow [11], is considered as the
most efficient algorithm that partitions a DFS tree into
strong components. Algorithm 3 utilizes two stacks: Stack A
stores visited but unsettled vertices (i.e., their strong
components are still open for new joiners) in the ascending
order of ord. Vertices in stack A ¼ ½v1v2 . . . vn� are parti-
tioned into several sections ½S1S2 . . .Sm�, where each Si is a
subsequence of ½v1v2 . . . vn� with consecutive elements.
Vertices in the same section are strongly connected with
each other, and the first vertex of each section is stored in
stack B in the ascending order of ord. Initially, both stacks A
and B are empty, vertices enter and leave these stacks
during the DFS process and, finally, both stacks are empty
again when the algorithm terminates.

Algorithm 3 SC-DFS(u)

1: Push u into A and B.
2: For each visited but unsettled absorbent neighbor v of u,

pop B until ordðtopðBÞÞ � ordðvÞ.
3: While there exists an unvisited absorbent neighbor v of u,

recursively call SC-DFS(v).

4: If topðBÞ ¼ u, pop u out of B, and pop A until u is out of

A. The newly settled vertices (those popped out of A)

form a strong component.

There are two key operations in the above algorithm:
merging several sections into one larger section and closing
a section to form a strong component. A newly visited
vertex u is itself a section Sm (Step 1). If this vertex has a link
to another section Si with smaller ord in stack A, sections
Si; Siþ1; . . . ; Sm are merged into one section Si (Step 2).
When u’s descendants in the DFS tree are visited, u’s section
may be further merged into more sections (Step 3). u’s
section is closed when all its descendants in the DFS tree
have been visited; that is, no more merge is possible.
Therefore, u’s section is popped out of stack A and forms a
strong component (Step 4). For example, corresponding to
the DFS forest in Fig. 5b, the status of stack A after SC-DFS is
applied on each vertex is:

1. ½t��1,
2. ½t�v��,
3. ½t�v�x�� ! ½t�vx� (x merges sections t; v),
4. ½t�vxy��,
5. ½t�vxy�z�� ! ½t�vxy�z� ! ½t�vx� (section yz is closed at

vertex y) ! ½� (section tvx is closed at vertex t), and
6. ½w�� ! ½� (section w is closed immediately).

Note that Algorithm 3 generates the same set of strong
components when a different DFS process is applied (and a
different DFS forest is generated).

The correctness of Algorithm 3 lies in the facts that

1. only mutually reachable vertices are put in the same
section,

2. all vertices mutually reachable via visited vertices
are in the same section, and

3. if a vertex cannot reach any ancestor in the DFS tree
after all its descendants have been visited, then it
cannot reach any unvisited vertex either.

Note that, in Step 2 of Algorithm 3, facts 1 and 2 hold, even
if the directed edge ðu; vÞ points to another branch in the
DFS tree. Suppose an extra edge ðz; xÞ is added to the
directed graph in Fig. 5, the status of stack A after vertex z is
visited becomes: 5) ½t�vxy�z�� ! ½t�vxy�z� ! ½t�vxyz� ! ½�,
still giving the correct result.
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1. A vertex with superscript “*” is also stored in stack B and marks the
beginning of a section in stack A.

Fig. 5. (a) After applying depth-first search (DFS) on a directed graph and (b) a DFS forest including two DFS trees is generated, where vertices are

numbered with the visiting order. A branch is pruned from the first DFS tree below node v. (c) Finally, the directed graph is decomposed into three

strong components.



4.3 Performance Analysis

This section discusses the efficiency and overhead of Rule k.
First, we give an upper bound on the average size of the
dominating set derived from Rule k in unit disk graphs. Let
V 0
� be the connected dominating set derived from Rule k,

and V 0
opt be the minimal connected dominating set. We

define the efficiency ratio R ¼ jV 0
� j=jV 0

optj. It is clear that there
is no upper bound on R. In the worst case, jV 0

� j is
proportional to jV j, when vertices in V are placed in a 2D
space, and their coordination satisfies that idðuÞ > idðvÞ if
and only if ðxu; yuÞ > ðxv; yvÞ. As the network density grows,
jV 0

� j grows while jV 0
optj is upper bounded by OðSV =r

2Þ,
where SV is the area of the 2D space. Here, R can be
infinitely large. Fortunately, this is not the average case.

Theorem 2. If Rule k is applied on a unit disk graph where
vertices are randomly and uniformly distributed in a
rectangular region, then there exist constants �; �; � > 0,
such that PrðR > xÞ < �e��x and E½R� � �.

Theorem 2 is proved in the appendix for both restricted
and nonrestricted Rule k. This theorem states that 1) the
probability that R is infinitely large is very small and 2) the
average value of R is upper bounded by a constant that is
independent of network size and density. For general disk
graphs, suppose � ¼ rmax=rmin is the ratio between the
maximal disk radius rmax and the minimal disk radius rmin,
the following theorem is also proved in the Appendix.

Theorem 3. If the nonrestricted Rule k is applied on a general disk
graph where vertices are randomly distributed in a rectangular
region with a given �, then there exist ��; ��; �� > 0, such that
PrðR > xÞ < ��e

���x and E½R� � ��.

Next, we show that the restricted Rule k has the same
complexity as the restricted Rule 1 and less complexity than
the restricted Rule 2. The computation complexity of the
restricted Rule 1 for each marked host is Oð�2Þ, because a
host compares its neighbor set with � neighbors in the
worst case, and the neighbor set comparison has a
complexity of Oð�Þ. The complexity of the restricted
Rule 2 for each marked host is Oð�3Þ, because a host
compares its neighbor set with �ð�� 1Þ=2 pairs of marked
neighbors in the worst case. The following theorem shows
that the complexity of restricted Rule k is Oð�2Þ, same as
the restricted Rule 1, better than the restricted Rule 2.

Theorem 4. The computation complexity of Algorithm 2 is
Oð�2Þ, where� is the maximum vertex degree in the network.

Proof. The complexity of Algorithm 2 can be derived from
the complexity of its steps. Obviously, the complexity of
Step 1 is Oð�Þ. The complexity of Step 2 is Oð�2Þ,
because subgraph G½V 0

þ� has at most � vertices, each
with at most � links. The complexity of Step 3 is Oð�2Þ.
Because it has been proven in [7] that a/ graph G ¼
ðV ;EÞ can be decomposed into strong components with
OðjEj þ jV jÞ complexity (every vertex is visited only once
in the depth-first search), and for G½V 0

þ� which contains
marked neighbors with higher id’s, jEj � �2 and
jV j � �. The complexity of Step 4 is also Oð�2Þ. Note
that each vertex in V 0

þ (V 0
þ � �) contributes at most two

neighbor set subtractions in Step 4, and the complexity of
each substraction is Oð�Þ. Overall, the computation
complexity of Algorithm 2 is Oð�2Þ. tu

Contrary to intuition, Rule 2 is theoretically slower than
Rule k. Even when it is known that vertex u can be covered
by k (k > 3) of its marked neighbors, it still cannot decide
whether u can be covered by any two of them. Therefore,
the neighbor set of each v 2 V 0

þ needs to be compared with
u’s neighbor set many times in Rule 2, but only once in Rule
k. Nevertheless, the actual difference of execution time is
hard to observe if the network is relatively sparse, or made
sparse via clustering or power control techniques. The
following theorem shows that the restricted Rule k has the
same communication overhead and latency (in terms of the
rounds of information exchange) as the restricted Rules 1
and 2.

Theorem 5. In bidirectional networks, the combination of the
marking process and restricted Rule k takes 3 rounds to
complete. Each host sends at most 1 message of Oð�Þ bits.

Proof. The 2-hop information used by the marking process
can be collected via two rounds of information exchanges.
In round 1, each host advertises its id and builds its 1-hop
neighbor set based on the advertisement of its neighbors.
In round 2, each host advertises its 1-hop neighbor set and
identifies links among its 1-hop neighbors. After the
marking process, each marked host advertises its marker
in round 3. The restricted Rule k is applied based on the 2-
hop information and the list of marked neighbors. In
rounds 1 and3, eachhost sends aOð1Þmessage; in round2,
each host sends a Oð�Þmessage. tu

5 IMPLEMENTATION ISSUES

5.1 Mobility

Topology changes caused by mobility are handled in a
localized way by the marking process and Rule k. Basically,
each host is sensitive to four types of topological changes: a
new neighbor appears (host-on), an old neighbor disappears
(host-off), two neighbors move close enough to each other
(link-on), and two neighbors move far enough from each
other (link-off). When a topological change is detected by a
host, the marking process and restricted Rule k is applied to
compute the newstatus of this host. For anyhost, themarking
process can only be triggered by changes within 1 hop (host-
on/off) and 2 hops (link-on/off). The restricted Rule k can
only be triggered by changes within 1 hop (host-on/off),
2 hops (link-on/off), and 3 hops (status change of neighbor
hosts). Therefore, the propagation range of any topological
change is no more than 3 hops.

The above bound of propagation range can be reduced to
2 hops by slightly altering the restricted Rule k algorithm.
Algorithm 2 is still correct if we remove Step 1 and make a
subtle change of Step 2 to “build a subgraph G½V 0

þ�, where
V 0
þ ¼ fwjw 2 NðuÞ ^ ðidðuÞ < idðwÞÞg is u’s neighbor set

with higher id’s.” If u’s neighbor set is covered by Vi,
which is a strong component of its neighbors, then V 0

i ¼
V 0 \ Vi is also strongly connected, because any vertex that
connects two otherwise separated vertices must be marked
by the marking process. Furthermore, V 0

i covers u’s
neighbor set, because any vertex that connects a covered
vertex and vertices in V 0

i must be marked by the marking
process. The altered algorithm depends only on the link
state within its 2-hop neighborhood and, therefore, will not
be affected by any topological change more than 2-hops
away. The altered algorithm has lower communication cost
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and converges faster, but it has higher computation cost
because of the larger V 0

þ.
The computation cost can be reduced by handling each

type of topological change differently. For example, for the
host-on events, if the current host is marked and the new
neighbor has a lower id, it is easy to tell that the current host
will still be marked. No computation is needed. If the
current host is unmarked, and the new neighbor is covered
by the last V 0

i , which covers the old neighbor set, the current
host can remain unmarked. The drawback of this approach
is the complicated updating algorithm. Usually, we assume
that saving computation power is less critical than saving
communication bandwidth and fast convergence. There-
fore, a compute-from-scratch scheme with the altered Rule
k algorithm is appropriate. If the computation power is the
bottleneck, and the average vertex degree is large, an
incremental updating scheme with the original algorithm is
appropriate.

5.2 Restricted Implementation Based on h-Hop
Neighborhood Information

For restricted implementations of Rule 1, Rule 2, or Rule k,
collecting 2-hop information (NðuÞ and NðwÞ; 8w 2 NðuÞ) is
sufficient and only partial 2-hop information (NðuÞ and
NðwÞ \NðuÞ; 8w 2 NðuÞ) is actually used. For nonrestricted
implementations, Rule 1 still needs 2-hop information, Rule 2
needs 3-hop information, andRule kneeds information of the
entire network, which is impractical for ad hoc networks.
However, Algorithm 2 can be extended to use 2 to 3-hop
neighbors to cover u’s neighbor set.

Coverage based on 2-hop information can be computed
by changing step 2 of Algorithm 2 to include 2-hop
neighbors NðNðuÞÞ into V 0

þ. This extension requires no
extra communication cost, but has higher computation cost.
However, the 2-hop information collected in Step 1 does not
include edges between any two 2-hop neighbors. Unidirec-
tional links cause another problem: If v is the downstream
host of unidirectional link ðu; vÞ, u will not see those 2-hop
neighbors connected with v. Rule k based on 2-hop
information can cover nonrestricted Rule 1 and some
nonrestricted Rule 2.

Coverage based on 3-hop information can be computed
by changing Steps 1 and 2 of Algorithm 2 to first exchange
2-hop neighborhood information with neighbors and, then,
include 3-hop neighbors NðNðNðuÞÞÞ into V 0

þ. A benefit of
3-hop information collection is that some unidirectional
links can be detected as a by-product. Rule k based on 3-hop
information can cover both nonrestricted Rule 1 and Rule 2.
The main drawback of this extension is the increased
communication cost. In order to collect 3-hop information,
2-hop information (Oð�2Þ), instead of merely a list of
neighbors (Oð�Þ), is exchanged among neighboring hosts.
Simulation study in the next section shows that results of
the restricted, 2-hop, and 3-hop implementations of Rule k
are very close. Therefore, unless special reason exists, we
adopt the restricted implementation.

6 SIMULATION

We conducted a simulation study to compare the perfor-
mance of Rule k and several existing algorithms that
construct a connected dominating set. All algorithms are
simulated on a custom simulator ds [8]. To generate a
random ad hoc network, n hosts (with preassigned unique
id’s 1 to n) are randomly placed in a confined square area.

For a given transmission range r, a wireless link is added
between each pair of hosts that has a distance smaller than
r. Note that, for a constant r, the network density, in terms
of the average vertex degree d, will increase rapidly as the
network size (n) increases. In most scenarios, r is adjusted
as n increases to maintain a constant d, such that the impact
of network size can be observed independent of density. In
order to observe the impact of network density, each
simulation is repeated on both relatively sparse (d ¼ 6) and
relatively dense (d ¼ 18 or 30) networks. The marking
process and various dominant pruning rules are simulated
on both directed and undirected networks. In directed
networks, most wireless links are bidirectional, but a small
portion (p percent) of them may be randomly designated as
unidirectional links. Networks that cannot form a strongly
connected graph are discarded. Fig. 6 shows a sample
network generated by ds. All simulations are conducted in
static ad hoc networks, where a simulation completes after a
CDS formation algorithm converges after several rounds of
information exchanges. Each simulation is repeated until
the confidence interval of the average result is sufficiently
small (	1 percent for 90 percent probability).

First, the performance of the restricted Rule k, in terms of
the size of the resultant connected dominating set, is
compared with a centralized algorithm (MCDS [13]), two
cluster-based algorithms (Tree [2] and Mesh [10]), and a
pure localized algorithm, i.e., the variation of Span [5] that
ensures a connected dominating set. MCDS is a very good
approximation to the optimal solution. We use it as a rough
estimation to the real minimal connected dominating set, as
the brute force method to find the optimal solution is too
slow to provide the result for n > 40. For the two cluster-
based algorithms, Tree is actually a centralized algorithm,
as all clusterheads are connected to a global infrastructure
(i.e., a tree) controlled from a central point (i.e., the root).
This algorithm avoids the redundancy in connecting
clusterheads with multiple paths and usually designates
fewer gateways than Mesh. In the Mesh method, each
clusterhead is connected with every neighboring cluster-
head in 3 hops; that is, 3-hop information is collected at each
clusterhead. Besides, the cluster structure must be main-
tained before gateways can be designated. Span, on the
other hand, depends on 3-hop information only. The
pruning rule of Span can be viewed as an extension of
nonrestricted Rules 1 and 2: If a vertex can be pruned via
Rules 1 and 2, then every pair of its neighbors is connected
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Fig. 6. An ad hoc network generated by ds. There are three hosts
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by one or two vertices with higher priorities (i.e., id’s). In a
clustering process, either vertex id or vertex degree can be
used as a priority value in selecting clusterheads. Those
priority types can also be used by the Span variation.
Similarly, we can change Rule k and still maintain its
correctness, such that a vertex can be pruned if its neighbor
set is covered by several connected vertices with higher
vertex degrees. Usually, using vertex degree yields a
smaller connected dominating set than using vertex id,
but takes an extra round to converge. In the remainder of
this section, unless otherwise specified, we assume vertex
id’s are used as priority values.

Fig. 7a shows the performance of these algorithms when
vertex id’s are used as priority values. In MCDS, the size of
the connected dominating set is about 30 percent of the
network size in sparse (d ¼ 6) networks, and 7 percent in
dense (d ¼ 30) networks. This performance is much better
than other algorithms. Tree has a performance of 50 percent
in sparse networks and 12 percent in dense networks. Mesh
produces a dominating set that is about 20 percent larger
than Tree in sparse networks, and about 80 percent larger in
dense networks. The performance of the restricted Rule k is
about the average of those of Mesh and Tree. That is, a pure
localized algorithm, the restricted Rule k, is actually more
efficient than a cluster-based algorithm when vertex id’s are
used as priority values. Another pure localized algorithm,
Span, is also better than Mesh, but is not as good as the
restricted Rule k, which implies that the restricted Rule k
performs better than nonrestricted Rules 1 and 2.

Fig. 7b shows scenarios when vertex degrees serve as
priority values. In sparse networks, the performances of
Tree, Span, Rule k, and Mesh are still very close, as in the
upper row. The only difference is that Span is slightly better
than the restricted Rule k this time. The strength of Rule k is
its ability to cover a large neighbor set with more than two
high priority vertices, which is not very helpful in a sparse
network. On the other hand, Span may take advantage of
the 3-hop topology information collected at each host. In

dense networks, the restricted Rule k performs better than
Span, but occasionally worse than Mesh. However, the
difference is very small (< 10 percent). Tree performs much
better (40 percent difference) than these three algorithms in
dense networks. This result is not surprising, as the
corresponding connected dominating sets are constructed
via network-wide coordination.

The second group of simulations compares performances
of different dominant pruning rules, including the restricted
Rule 1, the combination of restricted Rules 1 and 2, the
restricted Rule k, Rule k based on 2-hop and 3-hop
information, and the nonrestricted Rule k. The restricted
Rule k is guaranteed to outperform restricted Rules 1 and 2;
the question is how much and under which circumstances
Rule kwill outperform Rules 1 and 2 significantly. Applying
Rule k based on more than 2-hop information will also
enhance its pruning performance. In the extreme case, testing
Rule kwith global information has the highest performance.
However, collectingmore than 2-hop information is also very
expensive and, therefore, should be justified by its contribu-
tion to the overall performance.

Fig. 8 shows that situations are different in sparse and
dense networks. When the network is sparse (d ¼ 6),
performances of various pruning rules are relatively close.
Specifically, Rule 1 alone yields a dominating set about
30 percent to 50 percent larger than other rules; the
combination of restricted Rules 1 and 2 is slightly
(< 5 percent) worse than the restricted Rule k, which in
turn, is about 10 percent worse than the nonrestricted Rule
k. In dense networks (d ¼ 18 or 30), the performance of the
restricted Rule 1 is much worse. In such networks, it is
nearly impossible for the neighbor set of a vertex to be
covered by another vertex, unless in the border area of a
network. The combination of restricted Rules 1 and 2
performs much better than the restricted Rule 1 only, but is
significantly worse than the restricted Rule k. In undirected
graphs (p ¼ 0 percent), the size of dominating sets derived
from the restricted Rule k is about two thirds of that
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derived from Rules 1 and 2. That is, as illustrated in Fig. 1b,
the neighbor sets of many vertices can be covered only by
more than two vertices. In directed graphs (p ¼ 20 percent),
the difference is more significant. Restricted Rules 1 and 2
yield a dominating set 100 percent to 200 percent larger
than the one produced by the restricted Rule k. This
phenomena can be explained with the example in Fig. 3b.
Neighbor sets of many vertices can be covered by two
vertices that are connected via a unidirectional link. These
vertices cannot be pruned by Rule 2, but can probably be
pruned by Rule k. That also explains why the performance
of Rule k is about the same in both directed and undirected
graphs. Another observation in dense networks is that the
contribution of extra neighborhood information becomes
trivial as the network becomes denser. Therefore, collecting
more than 2-hop information is not appropriate in dense
(d > 18) networks.

Simulation results can be summarized as follows:

1. The connected dominating set produced by the
marking process and the restricted Rule k is about
the same size as those produced by the cluster-based
schemes, and this is achieved in a localized way
without sequential propagation.

2. The restricted Rule k performs slightly better than
another pure localized algorithm, Span, with lower
cost and a faster converging speed.

3. The restricted Rule k is more efficient than the
combination of Rules 1 and 2, restricted or non-
restricted, and can be implemented without increas-
ing complexity.

4. Rule k outperforms Rules 1 and 2 significantly in
networks with relatively high density and/or high
percentage of unidirectional links.

7 CONCLUSIONS

A major challenge in dominating-set-based routing it to
construct a small connected dominating set, and to do it
rapidly in a localized way under communication and

computation restraints. Wu [24] and Wu and Li [25] have
proposed a distributed marking process to rapidly con-
struct a connected dominating set, and then reduce the
dominating set with two dominant pruning rules. In this
paper, a new dominant pruning rule, Rule k, has been
proposed to replace Rule 1 and Rule 2. Given any strongly
connected dominating set, if a vertex can be removed by
applying Rule 1 or Rule 2, it can also be removed by
applying Rule k; a vertex removable by Rule k is not
necessarily removable by Rules 1 and 2. An efficient
algorithm is proposed to implement the restricted Rule k
with the same communication and computation complexity
as the restricted Rule 1, and the same communication
complexity as the restricted Rule 2, but lower computation
complexity than the restricted Rule 2. A constant upper
bound is given for the average value of R, the ratio of the
size of the dominating set derived from the restricted Rule k
to the minimal connected dominating set. We believe this is
the first bound given to a pure localized algorithm, and can
be applied to other localized algorithms.

Simulation study verifies that the restricted Rule k is a

more efficient dominant pruning rule than the combination

of the restricted Rules 1 and 2, especially in dense networks

with a relatively high percentage of unidirectional links. For

these networks, the resultant dominating set can be greatly

reduced by Rule k without any performance or resource

penalty. One advantage of the marking process and the

dominant pruning rules is their capability to support

unidirectional links. For networks without unidirectional

links, the marking process and the restricted Rule k is as

efficient as several cluster-based schemes and another pure

localized algorithm, Span, in terms of the size of the

dominating set; this is achieved with lower cost and higher

converging speed. Our future research includes perfor-

mance evaluation of CDS-based routing protocols, and

applying the dominant pruning rules to the k-hop dominat-

ing set to make dominating-set-based routing more scalable.
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Fig. 8. Comparison of various dominant pruning rules.



APPENDIX (PROOF OF THEOREMS 1 AND 2)
Let R be the efficiency ratio. We need to prove that

PrðR > xÞ < �e��x and E½R� < � ð1Þ

for both restricted and nonrestricted Rule k in unit disk
graphs, and for nonrestricted Rule k in general disk graphs,
where �; �; � > 0 are constants independent of network size
and density. For the sake of clarity, we break our proof into
several steps. First, we prove (1) with assumptions that 1) G
is a unit disk graph, 2) V 0

� is derived from the non-restricted
Rule k, and 3) vertices in G are randomly and uniformly
distributed in a boundless area. Then, we extend this proof
by removing these assumptions, one by one, and prove that
(1) still holds.

Consider a boundless 2D space, which is partitioned into
small square regions (called cells) with side d ¼ r=2

ffiffiffi
2

p

(diagonal line r=2) aligned in grid pattern.

Definition 1. Given a cell C, its minimal coverage region,
CminðCÞ, is the intersection of all disks centered within C; its
maximal coverage region, CmaxðCÞ, is the union of all disks
centered within C.

Consider a unit disk graphG ¼ ðV ;EÞwith adisk radius r,
where vertices in V are randomly and uniformly distributed
in the boundless 2D space. Clearly, for any v 2 C and
u 2 CminðCÞ, u is within v’s disk, and ðu; vÞ 2 E. As shown
in Fig. 9a, all eight neighboring cells of C are within CminðCÞ.
That is, the 3d
 3d grid can be covered by one vertex in C.
Fig. 9b shows the CmaxðCÞ, which is a ðdþ 2rÞ 
 ðdþ 2rÞ
square with four rounded corners generated from four
90� cones centered at each corner of C with radius r. The
area of CmaxðCÞ is �r2 þ 4rdþ d2 ¼ ð8�þ 8

ffiffiffi
2

p
þ 1Þd2 < 38d2.

If v 2 C and ðu; vÞ 2 E, thenu 2 CmaxðCÞ. As shown inFig. 9b,
CmaxðCÞ is contained in a 7d
 7d region consisting of 49 cells.
The inner 25 cells contained in CmaxðCÞ are complete. The
probability that any vertex in CmaxðCÞ is within a specific
complete cell is at least 1=38.

Lemma 1. If the nonrestricted Rule k is applied on a unit disk
graph in a boundless 2D space, then there exist constants
�1; �1 > 0, such that PrðR > xÞ < �1e

��1x.

Proof. First, we construct a probabilistic “upper bound” for
the number of gateways in any cellC, jV 0

� \ Cj, after Rule k
has been applied. Let Vk be the set of k vertices in CmaxðCÞ
with the largest id’s. If every complete cell in CmaxðCÞ
contains at least one vertex in Vk, then the induced graph

GðVkÞ is connected and CmaxðCÞ is covered by disks of
vertices in Vk. According to the nonrestricted Rule k, any
v 2 V located in C that is not in Vk can be pruned from V 0

� ;
that is, ðV 0

� \ CÞ � Vk and, therefore, jV 0
� \ Cj � jVkj ¼ k. In

other words, if jV 0
� \ Cj > k, then at least one complete cell

has no vertex from Vk. Let A represent “at least one
complete cell has no vertex fromVk,” andAi represent “the
ith complete cell in CmaxðCÞ has no vertex from Vk,” we
have A ¼ A1 [A2 [ . . . [A25 and PrðAiÞ < ð1� 1

38Þ
k ¼

ð3738Þ
k. Therefore,

PrðjV 0
� \ Cj > kÞ � PrðAÞ �

X25
i¼1

PrðAiÞ < 25
37

38

� �k

: ð2Þ

Then, we consider the optimal solution V 0
opt ¼ fv1; v2;

. . . ; vmg. Since every vertex in V is covered by the disk of at
least one vi 2 V 0

opt, jV 0
� j �

Pm
i¼1 ni,whereni is thenumberof

gateways in vi’s disk. As shown in Fig. 9c, the disk of each
vertex in V 0

opt can be covered by 36 cells. If we label cells
covering vi’s disk as Ci;1; Ci;2; . . . ; Ci;36 and let ni;j ¼
jV 0

� \ Ci;jj, then ni �
P36

j¼1 ni;j. From (2),

Prðni;j > kÞ < 25
37

38

� �k

ði ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; 36Þ

and, therefore,

PrðjV 0
� j > 36kmÞ � Pr

Xm
i¼1

X36
j¼1

ni;j > 36km

 !

� Prðni;j > k; 8i; jÞ < 25
37

38

� �k

:

Note that R ¼ jV 0
� j=jV 0

optj ¼ jV 0
� j=m. Let x ¼ 36k, we have

PrðR > xÞ < 25
37

38

� �x=36

: ð3Þ

Let �1 ¼ 25; �1 ¼ lnð3837Þ=36, we get PrðR > xÞ < �1e
��1x

from (3). tu
Note that in Lemma 1, a smaller �1 and a larger �1 yield a

smaller x under the same probability. However, our focus
here is to prove the existence of a “probabilistic bound”
rather than to find the tightest one. For example, �1 can be
reduced to 12, because CmaxðCÞ can be covered by vertices
in 12 gray cells in Fig. 9b. But, that could cause extra
complexity in the proof. If we view R as a random variable,
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Fig. 9. Properties of square cells with side d ¼ r=2
ffiffiffi
2

p
: (a) All eight neighboring cells of C are within its minimal coverage region CminðCÞ, (b) the

maximal coverage region of C, CmaxðCÞ is covered by 49 cells, and (c) the unit disk of a vertex in V 0
opt is covered by 36 cells.



then its distribution function is FRðxÞ � 1� �1e
��1x, and the

following lemma show that its average value, E½R�, has a
constant upper bound.

Lemma 2. If the nonrestricted Rule k is applied on a unit disk
graph in a boundless 2D space, then there exists a constant �1,
such that E½R� � �1.

Proof. Let R0 be a nonnegative random variable with
distribution function FR0 ðxÞ ¼ 1� �1e

��1x, then its den-
sity function is

fR0 ðxÞ ¼ dFR0 ðxÞ
dx

¼ �1�1e
��1x

and

E½R0� ¼
Z 1

0

xfR0 ðxÞdx ¼ �1

�1
: ð4Þ

Since FRðxÞ � FR0 ðxÞ for all x � 0, E½R� � E½R0� (strong
stochastic ordering [18]). Let �1 ¼ �1=�1, we get E½R� �
�1 from (4). tu

Lemma 3. Lemmas 1 and 2 still hold when vertices of G are
randomly and uniformly distributed in a confined rectangular

region.

Proof. Let S be the confined rectangular region where all
vertices in V are randomly and uniformly distributed. It
is sufficient to prove that (2) still holds when CmaxðCÞ is
not totally contained in S. Here, we assume that C is not
outside S; otherwise, the number of gateways in C is
always 0. Without loss of generality, we assume that the
width of S is no less than the height. Let I denote the
intersection region of S and CmaxðCÞ, if C is not outside
S, only three cases are possible, as shown in Fig. 10.

Case a: There are complete cells in I. Because every
incomplete cell in I has at least one neighboring
complete cell, if Vk has at least one vertex in each
complete cell, I is covered by Vk. Since there are at most
25 complete cells, and the area of I is less than 38d2, (2)
still holds in this case.

Case b: There is no complete cell in I, but there are
some cells Ci such that the width of Ci \ I is d. We call
these cells full width cells. In the horizontal direction, I
expands at most seven columns. In the vertical direction,
I expands at most two rows. If I is within one row, we

mark all full width cells in gray color; the area of each
gray cell is larger than 1=7 of I. If I occupies two rows,
we only mark full width cells in one row that has the
larger intersection with I; the area of each gray cell is
larger than 1=14 of I. If Vk has at least one vertex in each
gray cell, I is covered by Vk. Since there are at most five
gray cells, and the ratio of the area of such a full width
cell to the area of I is larger than 1=14, (2) still holds in
this case.

Case c: There is neither complete cell nor full width
cell in I. I expands at most four cells and any vertex in Vk

can cover I. That is, PrðAÞ ¼ 1 for k � 1, and (2) still
holds. tu

Lemma 4. If the restricted Rule k is applied on a unit disk graph

randomly and uniformly distributed in a confined rectangular

region, then there exist constants �2; �2; �2 > 0, such that

PrðR > xÞ < �2e
��2x and E½R� � �2.

Proof (sketch). The difficulty here is that the restricted Rule
k requires vertices in Vk be neighbors of a vertex u 2 C

for u to be pruned. Since some complete cells within
CmaxðCÞ are not within CminðCÞ, they are not suitable for
covering CmaxðCÞ. The solution is to use the partition
scheme as shown in Fig. 11a, where CmaxðCÞ is covered
by one vertex at each of the 12 gray regions. Using the
process similar to Lemmas 1 and 3, we can prove that
this lemma is also true. Since the area of some gray
regions is smaller than a complete cell, �2 is smaller than
�1, but it is still a constant. tu
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Fig. 10. Three types of intersection of CmaxðCÞ and a rectangular region. One vertex in each gray cell is enough to cover the intersection region.

Fig. 11. Coverage scheme for (a) the restricted Rule k in a unit disk

graph and (b) nonrestricted Rule k in a general disk graph.



Theorem 2 can be deduced from Lemmas 3 and 4 and
Theorem 3 is from the following lemma.

Lemma 5. If the nonrestricted Rule k is applied on a general disk
graph randomly and uniformly distributed in a confined
rectangular region, then there exist �3; �3; �3 > 0, such that
PrðR > xÞ < �3e

��3x and E½R� � �3.

Proof (sketch). Similar to Lemma 1, but use a cell size d0 ¼
rmin=2

ffiffiffi
2

p
and define CminðCÞ (CmaxðCÞ) with rmin (rmax),

where rmin (rmax) is the minimal (maximal) disk radius of
all vertices. Since CmaxðCÞ is a convex region, it can still
be covered by one vertex at each of the complete cells.
The resultant �3 will be much larger than �1, and �3

much smaller than �1; but they are still positive
constants. tu

Fig. 11b shows a general graph, where rmax ¼ 2rmin, and
a scheme to cover the neighbor set of the center cell C using
vertices from 52 gray cells.
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