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Abstract—Mobile Edge Computing (MEC) has become an attractive solution to enhance the computing and storage capacity of mobile
devices by leveraging available resources on edge nodes. In MEC, the arrivals of tasks are highly dynamic and are hard to predict
precisely. It is of great importance yet very challenging to assign the tasks to edge nodes with guaranteed system performance. In this
paper, we aim to optimize the revenue earned by each edge node by optimally offloading tasks to the edge nodes. We formulate the
revenue-driven online task offloading (ROTO) problem, which is proved to be NP-hard. We first relax ROTO to a linear fractional
programming problem, for which we propose the Level Balanced Allocation (LBA) algorithm. We then show the performance guarantee
of LBA through rigorous theoretical analysis, and present the LB-Rounding algorithm for ROTO using the primal-dual technique. The
algorithm achieves an approximation ratio of 2(1 + ξ) ln(d+ 1) with a considerable probability, where d is the maximum number of
process slots of an edge node and ξ is a small constant. The performance of the proposed algorithm is validated through both
trace-driven simulations and testbed experiments. Results show that our proposed scheme is more efficient compared to baseline
algorithms.

Index Terms—Mobile Edge Computing,Primal-Dual Technique, Online Computation Offloading, Revenue-optimal.
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1 INTRODUCTION

Nowadays, pervasive mobile computing and the Internet of
Things are driving the development of many new compute-
intensive and latency-sensitive applications, such as mo-
bile gaming and virtual/augmented reality (VR/AR), and
massive data will be generated at the edge of networks.
However, many devices, such as smartphones and wearable
devices, have a limited processing capacity and may not
be able to process their data. Due to network bandwidth,
storage and data privacy concerns, it is also impractical,
and often unnecessary, to send all of the data to a remote
cloud. Fortunately, Mobile-Edge Computing (MEC) has
been gaining strong momentum as an emerging paradigm
that provides cloud computing-like capabilities including
computing and storage resources, at the edge of wireless
access networks. Although MEC is less powerful than a
remote cloud [1, 2], the transmission latency between a user
and a mobile edge cloud is much lower than that of the
remote cloud as it is located at the network edge.
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Fig. 1: System illustration. Multiple edge nodes constitute a
mobile edge cloud. We aim to optimize the revenue earned
by the edge nodes.

In a real-world task-offloading scenario, the arrivals of
users are dynamic and the tasks must be processed quickly.
This motivates us to consider the online scenario where
users arrive dynamically, and resources are allocated based
on only the past offloading decisions and current states of
the edge nodes. Therefore, making correct decisions when
the task arrivals are uncertain is challenging. Meanwhile,
with the increasing complexity of applications and wireless
networks, the scale of the dynamic offloading problem is an
enormous obstacle [3].

To tackle this issue, Li et al. [4] proposed an online com-
putation rate maximization algorithm using the Lyapunov
method for a multi-user MEC system by jointly managing
the radio and computational resources and allocating time
for energy transfer and data transmission; Chen et al. [5]
formulated a multi-user multi-task computation offloading
problem for green MEC and used the Lyapunov optimiza-
tion approach to determine the energy harvesting policy.
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Although the Lyapunov optimization is often used to deal
with online problems, it takes time to converge, and cannot
fully adapt to bursts of task requests in a short time. Some
other studies chose to use deep learning or deep Q-network
(DQN) methods [6–12], which require training in advance
and have no explicit theoretical performance guarantees.

Meanwhile, these studies mainly focused on the energy-
efficient and resource-efficient computational service of-
floading scheme in MEC. Only a few works have considered
the revenue maximization problem in task offloading [13–
16], and these works have considered either the edge offline
scenario or cloud-edge competition scenario.

Service providers such as Amazon and Alibaba have
deployed many edge nodes and built their own edge node
server platforms, which can provide the computing power
of content delivery network (CDN) edge nodes (ENS [17]
and Lambda@edge[18]). Enterprises or individuals can rent
their edge nodes by paying on demand or on time. In this
work, we study the revenue-driven online task offloading
(ROTO) problem in MEC. Specifically, we focus on offload-
ing multiple computation intensive tasks to a set of edge
nodes, and the objective is to maximize the revenue of edge
nodes from the perspective of service providers. Figure 1
illustrates a typical offloading scenario in which a set of edge
nodes constitute a mobile edge cloud. Generally, edge node
services are constructed based on the operator’s network
and the task offloading is done by the Base Stations (BS)
of the operators. We assume that the service provider can
obtain the information of the BS and control some functions
of the BS through software define network (SDN). Users can
offload their tasks to the edge nodes to extend their own
computing ability via paying for task execution. Moreover,
a user can offload its task only to edge nodes if the user and
edge nodes are within the communication range of the same
BS. A user first sends its task to the nearby BS, then the BS
decides how to offload the task to the edge nodes within its
communication range according to the revenue, computing
demand of the task, and states of the edge nodes.

We first formulate the ROTO problem into an integer
linear programming problem, then we prove that ROTO is
NP-complete by reducing the multi-dimensional knapsack
problem to it. To solve it, we first relax it to a linear fractional
programming problem, i.e., ROTO-LP. We then present two
important notions, level and move-up energy, that enable
us to design an efficient algorithm, named level balanced
allocation (LBA). By intelligently constructing a potential
function and using the primal-dual schema, we prove that
LBA can achieve an approximation ratio of 2(1+ξ) ln(d+1),
in which d is the maximum number of the process slots
of an edge node. Based on the intuitions obtained from
designing LBA for ROTO-LP, we finally propose the level
balanced rounding (LBR) algorithm for ROTO by combining
LBA and the rounding technique. Using the Chernoff bound
and probability analysis, we prove LBR can achieve the
same approximation ratio as LBA with a high probability,
i.e., at least 1 − e−σn, where n is the number of users. We
implemented LBR on our testbed consisting of 8 Raspberry
Pis and 4 mobile phones. Trace-driven simulations and
testbed experiments reveal the effectiveness of LBR.

Our main contributions are summarized as follows:

• We develop a multi-user computation offloading
framework for a mobile edge computing system to
maximize the total revenue. We provide a formal
formulation of the revenue-driven online task of-
floading (ROTO) problem, which proved to be NP-
complete.

• We design the Level Balanced Allocation (LBA) algo-
rithm to solve ROTO-LP, which achieves an approxi-
mation ratio of 2(1 + ξ) ln(d+ 1).

• Based on LBA, we propose the Level Balanced
Rounding (LBR) algorithm and obtain the solution
of ROTO. We prove that LBR achieves an approxi-
mation ratio of 2(1 + ξ) ln(d + 1) with a probability
of at least 1− e−σn.

• We conduct trace-driven simulations and testbed
experiments to evaluate the performance of the pro-
posed algorithm. The results are shown from differ-
ent perspectives to provide conclusions.

The rest of the paper is organized as follows. Prior works
are reviewed in Section 2. The system model is discussed
and the offloading problem is formulated in Section 3. The
proof of the ROTO NP-hardness is also explained in Sec-
tion 3. The online algorithm to provide maximum revenue
is proposed and analyzed in Section 4. Simulation results
and testbed experiments are investigated in Sections 5 and 6,
respectively. In Section 7, we conclude the paper.

2 RELATED WORK

In this section, we give a brief overview about some related
works in regards to task offloading in mobile edge comput-
ing.

First of all, task offloading is divided into two cate-
gories according to whether there are dependencies be-
tween tasks. The problem of offloading dependent tasks in
MEC is complicated thus most of works will make many
assumptions. Kao et al. [19] concerned a dependent task
assignment problem over multiple devices. However, they
did not impose restrictions on the capacity of the devices,
which makes their algorithm more inclined to offload the
tasks on a few devices with more capable devices. Gen-
Doc [20] jointly considered the problem of dependent task
offloading and service caching placement with the objec-
tive of application completion time minimization. However,
GenDoc does not consider the computing capacities when
offloading tasks to edge nodes. In fact, mobile edge nodes
are resource-sensitive and GenDoc may cause irrational use
of limited computing resources. In the field of offloading
independent tasks, Jošilon et al. [21] used game theory to
coordinate offloading various task requests from multi-user
to the mobile edge cloud. Zhu et al. [22] investigated the
task offloading problem in wireless powered mobile edge
computing. Zhao et al. and Ma et al. [23, 24] considered
the factor of service caching when offloading tasks. Chen et
al. [25] leveraged the idea of software defined network,
and investigated the task offloading problem in ultra-dense
networks. Tao et al. and Jošilo et al. [26, 27] focused on task
offloading of autonomous devices. In this paper, we focus
on offloading the independent tasks in MEC.

The above works considered offline scenarios only, that
is, the arrival of all tasks is known in advance. However,
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to further enhance the agility of the mobile edge cloud,
an online algorithm is more preferred. When considering
online offloading scenarios, most studies chose to use deep
learning [6, 7] or reinforcement learning methods [9–11]
for different objectives such as maximizing the weighted
sum computation rate [9], minimizing the energy consump-
tion [6] and minimizing the running cost [7, 10, 11]. How-
ever, these works require training in advance and have no
explicit theoretical performance guarantee. In addition to
machine learning-related methods, Lyapunov optimization
approach is often applied to analyze the online offloading.
Chen et al. [5] discussed multi-user multi-task offloading
scheduling schemes in a renewable mobile edge cloud sys-
tem, and used Lyaponov optimization approach to deter-
mine the energy harvesting policy. Ning et al. [28] com-
prehensively consider both of MEC and could computing
and design an iterative heuristic algorithm to minimize the
offloading delay. Guo et al. [29] investigated the problem
of collaborative mobile-edge computation offloading in 5G
HetNets and proposed a game-theoretical computation of-
floading scheme. However, these studies mainly focused
on the energy-efficient and resource-efficient computation
offloading scheme in MEC. Different from theirs, we con-
sider how to maximize the benefits of edge nodes from the
perspective of service providers. In additional, Lyapunov
method takes time to converge, and cannot fully adapt to
bursts of task requests in a short time. We use the primal-
dual theory instead of deep learning or Lyapunov’s theorem
to solve the problem. What’s more, in solving this problem,
we propose our algorithm with theoretical guarantees.

3 MODEL AND PROBLEM FORMULATION

In this section, we first elaborate the computation task
model and edge node execution model. Then we formulate
task computation offloading as an optimization problem to
maximize offloading revenue. The goal of the optimization
is to determine the optimal edge nodes to offload tasks
for users based on the arrival of users and their resource
requirements. For ease of presentation, we only consider
the CPU resource. Other type of resources such as memory
usage or disk I/O cycles can be similarly addressed [19, 30].
After that, we provide the proof of the ROTO NP-hardness.

3.1 Computation Task Model
Consider a time horizon T, which for simplicity is taken to
be discrete but can be extended to be continuous. We assume
that there are n independent users that need to offload their
tasks to edge nodes, where the set of users is denoted as U =
{u1, u2, . . . , un}. The task of user ui is characterized by a set
of parameters, {Si, βi, T arri , T ddli , αi1, . . . , αij , . . . , αim}, in
which Si denotes the input data size (in byte); βi denotes
the number of CPU cycles required to process one byte
of data [31]; T arri and T ddli represent the arrival time and
deadline of the task, respectively; αij represents the ratio
between the revenue that edge node ej can get and the
computing demand of ui [5, 32]. Note that, if ej and ui are
not within the communication range of the same BS, we set
αij as zero.

Considering the rapid development of 5G networks and
short distance between users and edge nodes, we assume

that the time of data transmission between a user and an
edge node is small enough to be ignored [33]. Thus, the
required computing demand (CPU cycles per second) of ui
is equal to (βi · Si)/(T ddli − T arri ), which is denoted as bi.
Based on this, we define the revenue that edge node ej can
get if the task of ui is offloaded to ej as αijbi.

According to our survey, the price paid by the user is
based on the computation resource used, service type and
service time slot [34–36]. We focus on compute intensive
tasks, which means the service types of all tasks are the
same. And the price for running the same task on different
edge nodes will not vary greatly. Thus we can assume that
maxej∈C(i) αij ≤ (1 + ξ) minej∈C(i) αij , where ξ is a small
constant and C(i) is the set of edge nodes that can provide
servers to ui.

In this paper, we focus on the scenarios in which the
mobile device has very limited computational resources,
and hence all the tasks should be offloaded to edge nodes
for execution. The task of each user is atomic and cannot be
further divided, and one task is assumed to be offloaded to
only one edge node.

3.2 Edge Node Execution Model

We assume that there are m independent edge nodes that
can provide computing service for users, where the set of
edge nodes is denoted as E = {e1, e2, . . . , em}. Edge node
ej has Vj process slots, which means ej can process at most
Vj tasks at the same time, and these process slots share the
entire computing capacity. Denote yij as a binary indictor:
yij = 1 if the task of ui is offloaded to edge node ej and
yij = 0 otherwise. Hence

∀ ej ∈ E :
∑n

i=1
yij ≤ Vj , (1)

∀ ui ∈ U, ej ∈ E : yij ∈ {0, 1}. (2)

A user can connect to an edge node if the user and edge
node are within the communication range of the same BS.
Denote C(i) as the set of edge nodes that are within the
communication range of the same BS as ui. To meet the task
offloading feasibility constraints, it requires

∀ ui ∈ U :
∑

ej∈C(i)
yij ≤ 1, (3)

∀ ui ∈ U, ej /∈ C(i) : yij = 0. (4)

Denoting the computing capacity of edge node ej as
Bj (CPU cycles per second). An edge node cannot provide
computing resources that exceed its capacity. Hence

∀ ej ∈ E :
∑n

i=1
biyij ≤ Bj . (5)

In this paper we assume that the computing demand
bi is not less than minej∈C(i)Bj/Vj . This assumption is
reasonable, because there is no need for users to offload their
task to edge nodes for processing if the computing demand
is small.

3.3 Problem Formulation

In this work, we intend to maximize the overall revenue of
edge nodes. The main problem studied is defined as follows:
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Problem 1. Given a time horizon T, a set of users U with param-
eters {Si, βi, T arri , T ddli , αi1, . . . , αij , . . . , αim} corresponding
to the task of ui, a set of edge nodes E with parameters {Bj , Vj}
corresponding to ej , and n sets C(1), . . . , C(n) denoting the
edge nodes that are connected to ui, the revenue-driven online
task offloading problem is to find an allocation of tasks to edge
nodes that maximizes the overall revenue.

max
∑n

i=1

∑
ej∈C(i)

αijbiyij , (6)

s.t.(1)− (5), (7)

where bi = (βiSi)/(T
ddl
i − T arri ).

Theorem 1. The ROTO is NP-complete.

Proof. We prove this by reducing the multi-dimensional
knapsack problem to ROTO, which is NP-complete. The
multi-dimensional knapsack problem is defined as follows:
the weight of knapsack item i is given by a D-dimensional
vector wi = {w1i, . . . , wiD} and the knapsack has a D-
dimensional capacity vector {W1, . . . ,WD}. Knapsack item
i has its value vi. The target is to maximize the sum of values
of items in the knapsack so that the sum of the weight in
each dimension j does not exceed Wj .

We construct the tasks and edge nodes as follows:

• We set the number of edge node to be 1, the process
slot to be V and the process capacity to be B.

• For each item i in knapsack, we construct a task ui in
ROTO,

• For the weight of item i, we construct a vector {1, bi}
in ROTO,

• For the value of item i, we construct the reward αibi
of ui in ROTO.

• For the capacity of knapsack, we construct a vector
{V,B} in ROTO.

The construction can be finished in polynomial time; thus,
we reduce solving the NP-complete multi-dimensional
knapsack problem to solving a special case of ROTO, im-
plying that ROTO is NP-complete.

With this transformation, we can prove the theorem eas-
ily: assume, without loss of generality, there is a solution to
the multi-dimensional knapsack problem, then this solution
is also the answer to the special case of ROTO.

4 ALGORITHMIC DESIGN

In this section, we first relax ROTO to a linear fractional pro-
gramming problem (Section 4.1), for which we propose the
LBA algorithm based on the level and move-up energy no-
tions (Section 4.2). We then show the performance guarantee
of LBA through rigorous theoretical analysis (Section 4.3),
after which we present the LBR algorithm for ROTO and
prove it has the same approximation ratio as LBA with a
high probability (Section 4.4).

4.1 Relaxing ROTO to ROTO-LP
We relax constraint (2) and get the following linear formu-
lation of ROTO, which we call ROTO-LP:

max
∑n

i=1

∑
ej∈C(i)

αijbiyij (8)

s.t. ∀ ui ∈ U :
∑

ej∈C(i)
yij ≤ 1, (9)

∀ ui ∈ U, ej /∈ C(i) : yij = 0, (10)

∀ ej ∈ E :
∑n

i=1
biyij ≤ Bj , (11)

∀ ej ∈ E :
∑n

i=1
dyije ≤ Vj , (12)

∀ ui ∈ U, ej ∈ E : yij ∈ [0, 1]. (13)

Note that it is necessary to round yij in constraint (12),
which makes the result meet the constraint that edge node
ej can process at most Vj tasks at the same time.

For an online setting, at each time t ∈ T, only a task
of user ui ∈ U that arrives before t is known. This implies
both the objective function (8) and the left hand side sum
in Eqs. (9), (11) and (12) are unknown ahead, and they
are gradually revealed to the algorithm over the operation
period. The online algorithm does not know the length of
T and has to take into account possible future arrivals and
reserve the resources properly.

4.2 The Online Algorithm for ROTO-LP

In this subsection, we propose LBA to solve ROTO-LP, in
which each task can be divided into arbitrary size.

4.2.1 Preliminaries
Let d be the maximum number of process slots of all
edges, i.e., d = maxj Vj . Denote the amount of computing
resources ej has allocated to users by Ωj . The notion of the
level is defined as follows.

Definition 1. (Level) Each edge node ej is associated with a level
Lj , which is an integer between (d − Vj) and d. The level of an
edge node changes only when the amount of computing resources
it has allocated to users changes. Formally, we have

Lj , d− Vj + bVjΩj
Bj
c. (14)

From the above definition, we know if Ωj = 0, then
Lj = d−Vj ; if Ωj = Bj , then Lj = d. We design this notion,
level, for capturing how ‘full’ an edge node is. The proposed
LBA algorithm prefers allocating the computing resources of
edge nodes with a small level to a newly coming task. By
doing so, LBA strives to keep all edge nodes at the same
level to avoid overloading edge nodes, which probably in-
creases the probability of offloading a newly coming task to
an edge node with sufficient resources. Because, otherwise,
a newly coming task may find all of the edge nodes it can
connect to are at the biggest level, i.e., overloaded.

Note that, the level of each edge node is an integer, and
it cannot precisely represent how full an edge node is. We
introduce another important notion below.

Definition 2. (Move-up Energy) The move-up energy µj of edge
node ej is the amount of computing resources ej has to allocate
to some tasks such that the level of the edge node is increased by
exactly one. Formally,

µj ,
Bj
Vj

(Lj + 1)− Ωj . (15)

Take e9 in Fig. 2 for example, suppose B9 = 8, V9 = 4,
and d = 4. Initially, L9 = 0 and µ9 = 2, since it requires to

Authorized licensed use limited to: Nanjing University. Downloaded on August 29,2021 at 02:03:21 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2021.3105325, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. –, NO. -, MONTH YEAR 5

Alg. 1: LB-Allocation (LBA) alg. for ROTO-LP

1 Initialization: Ωj ← 0, ∀ej ;
2 Lj ← d− Vj + bVjΩj

Bj
c, ∀ej ;

3 µj ← Bj

Vj
· (Lj + 1)− Ωj , ∀ej .

4 if a new task from user ui arrives then
5 Invoke LB shown in Alg. 2.

6 if the task of ui finishes then
7 foreach edge node ej in Qi do
8 yij ← 0, Ωj ← Ωj − ωij ,

Lj ← d− Vj + bVjΩj

Bj
c;

9 µj ← Bj

Vj
(Lj + 1)− Ωj .

allocate 2 units of resources to increase its level to 1. When
the task of u2 arrives at time T arr2 and LBA allocates 2.2
units of resources to it, L9 changes into 4− 0 + b 4×2.2

8 c = 1,
and µ9 changes into 8

4 (1 + 1)− 2.2 = 1.8.

4.2.2 The Level Balanced Allocation Algorithm
The principle of LBA is as follows: when a new task arrives,
LBA gradually allocates the computing resources of the edge nodes
with the smallest move-up energy among the edge nodes with the
smallest level to the task. Formally, we define the preference
below.

Definition 3. (Preference) LBA prefers allocating the computing
resources of ei than ej if and only if

Li < Lj (16)

or
Li = Lj and µi < µj . (17)

If one of the two conditions holds, we denote the preference as

ei � ej . (18)

Alg. 1 shows the details of LBA. Lines 1 − 3 show the
initialization of Ωj ,Lj , and µj of each edge node. Remember
that, LBA handles the online ROTO-LP problem. Lines 4 −
5 invoke the level balanced procedure (shown in Alg. 2)
to allocate resources when a new task arrives. Lines 6 − 9
update yij , Ωj , Lj , and µj of each edge node when the task
of ui finishes.

Before we highlight the level balanced (LB) procedure,
we introduce a few notations. We use ωij to denote the
amount of resources allocated by ej to the task of ui;
we use Qi to maintain the set of edge nodes that have
allocated resources to ui; we use b

′

i to represent the amount
of computing demand from ui that has not been allocated.
Lines 2 − 3 in LB check whether all edge nodes that can be
reached from ui have exhausted their computing capacities.
Lines 5 − 20 are the main loop that handles the resource
allocation.

In each iteration, LB first chooses one of the edge nodes
with the highest preferences, i.e., LB chooses eh such that no
other edge node ej in C(i) is more preferred by LB. If b

′

i ≥
µh, then LB allocates µh amount of resources on eh to the
task of ui and updates Ωh, Lh, µh, ωih, and b

′

i. Note that, by
allocating µh amount of resources on eh to the task of ui, the

Alg. 2: Level Balanced (LB) procedure

1 b
′

i ← bi, Qi ← ∅, ωij ← 0, yij ← 0, ∀ej ∈ E;
2 if each edge node ej in C(i) with Lj = d then
3 break;
4 else
5 while b

′

i 6= 0 do
6 L←set of edge nodes with the smallest level;
7 h← arg minej∈L(µj).
8 if b

′

i ≥ µh then
9 Lh ← Lh + 1, b

′

i ← b
′

i − µh;
10 ωih ← ωih + µh, Ωh ← Ωh + µh;
11 µh ← Bh

Vh
(Lh + 1)− Ωh;

12 if Lh 6= d, then Qi ← Qi
⋃
{eh}.

13 else if b
′

i < µh and Qi 6= ∅ then
14 foreach edge node ej in Qi do

15 ωij ← ωij +
b
′
i

|Qi| , Ωj ← Ωj +
b
′
i

|Qi| ;

16 µj ← Bj

Vj
(Lj + 1)− Ωj , b

′

i ← 0.

17 else
18 break.

19 foreach edge node ej in C(i) do
20 yij ← ωij

bi
.

level of eh increases by exactly 1. If b
′

i < µh, the remaining
computing demand of ui cannot increase the level of any
edge node by 1, LB equally splits the remaining demand
into |Qi| pieces and allocates a single piece to each edge
node in Qi.

The complexity of Algorithm 1 is O(nm2). Every time
when a new task arrives, Alg. 2 is invoked. LB gradually
allocates the computing resources to the task. The allocation
lasts at most O(m) rounds and each round LB checks m
edge nodes. So the complexity of LB is O(m2) and the
complexity of Alg. 1 is O(nm2).

4.2.3 Example

Here we use a simple example to intuitively explain our
algorithm. In Fig. 1, users u1, u2 and u3 decide to offload
their tasks to edge nodes e7, e8 and e9. Assuming that e7,
e8 and e9 can process at most 2, 3 and 4 tasks at the same
time, respectively. The computing capacity of e7, e8 and e9

are 2, 6 and 8 units, respectively. The levels of e7, e8 and
e9 are initialized to 2, 1 and 0, respectively. µ7 is initialized
as 1 unit, and µ8 and µ9 are both initialized as 2 units. The
running process of this example is shown in Fig. 2.

Without loss of generality, we assume that u2 submits
its task first, and its computing demand is 2.2 units. Since
e9 has the smallest level and µ9 is smaller than b

′

2 (b
′

2

is initialized as 2.2 units), LBA first allocates 2 units of
computing resources on e9 to u2 and updates the states of
e9, which makes µ9 = 2, Ω9 = 2, ω1,9 = 2, L9 = 1. Then
LBA adds e9 to Q2. After that, b

′

2 is updated to 2.2−2 = 0.2.
Since b

′

2 is smaller than any move-up energy of edge nodes
with the smallest level, LBA allocates b

′

2 units of computing
resources on edge nodes in Q2, i.e., e9. The states of e9 are
updated according to LBA, which makes µ9 = 1.8, Ω9 = 2.2
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Fig. 2: An example of running LBA algorithm.

and ω1,9 = 2.2. Then, u1 submits its task with a demand of
3.8 units. Since e8 and e9 have the smallest level and µ9 is
smaller than µ8 (1.8 < 2), LBA first allocates 1.8 units of
computing resources on e9 to u1 and updates the states of
e9. In the end, 1.8 and 2 units of computing resources on e9

and e8 are allocated to u1, respectively. Finally, u3 submits
its task with a demand of 5.6 units. According to LBA, e7

allocates 1.2 units of computing resources to u3; e8 and e9

each allocate 2.2 units of computing resources to u3.

4.3 Competitive Analysis of LBA
In this section, we first formulate the dual problem of
ROTO-LP and then intelligently construct the potential
function, which plays an important role in the analysis. We
then present two lemmas and the weak duality theorem
before proving the approximation ratio of LBA.

4.3.1 Dual Problem of ROTO-LP
Here we use an indicator variable kij to help analyze the
algorithm, where kij denotes whether the task of ui is
offloaded to edge node ej . Hence

∀ej ∈ E :
∑n

i=1
kij ≤ Vj , (19)

∀ui ∈ U, ej ∈ E : yij = kijyij , (20)
∀ui ∈ U, ej ∈ E : kij ∈ {0, 1}. (21)

Put zi to be the dual variable for user ui, and introduce
a variable xj for edge node ej , then the dual problem of
ROTO-LP is to minimize

∑m
j=1Bjxj +

∑n
i=1 zi subject to

∀ui ∈ U, ej ∈ E : zi + bikijxj ≥ αijbikij , (22)

∀ej ∈ E :
∑n

i=1
kij ≤ Vj , (23)

and constraints xj ≥ 0, zi ≥ 0, kij ∈ {0, 1}, ∀ej ∈ E, ui ∈ U.
Before entering the approximation analysis, we first elab-

orate the potential function, f(i, j), which relates the values
of the prime variables to that of the dual objective function.

4.3.2 Potential Function
Consider the time point when ui just arrives, in which
the ith dual constraint is given and assume that it is not
satisfied. Our goal is to constrain the derivative of the dual
cost (D) as a function of the primal profit (P ). That is, show
that ∂D

∂yij
= Bj

∂xj

∂yij
≤ λ ∂P

∂yij
, where λ is going to be the

competitive factor. Supposing that the derivative of the dual
cost satisfies

Bj
∂xj
∂yij

= A

(
bixj +

αijbi
d

)
, (24)

where A is a constant. Then, since xj ≤ αijbi
bi

= αij (due to
Inequality (22)), αijbi

d ≤ αijbi for d ≥ 1, and ∂P
∂yij

= αijbi,

we get that A
(
bixj +

αijbi
d

)
≤ 2A ∂P

∂yij
. Thus, λ = 2A. By

solving Eq. (24), we get ∂xj

∂yij
= A

Bj

(
bixj +

αijbi
d

)
. Through

integration, the following equation can be obtained: xj =

G · exp
(
A
Bj

∑i
w=1 bwkwjywj

)
− αij

d , where exp(x) = ex

and G can take any value. Next, we have the following two
boundary conditions on this equation:

• Initially, xj = 0, and this happens when∑i
w=1 bwkwjywj

Bj
= 0;

• If
∑i

w=1 bwkwjywj

Bj
= 1, (i.e., the primal constraint is

tight) then xj = αij . (Then, the dual constraint is
also satisfied.)

The first boundary gives G = αij/d. The second boundary
gives A = ln(d+ 1). Thus we get the potential function:

f(i, j) =
αij
d

[
exp

(
ln(d+ 1)

Bj

∑i

w=1
bwkwjywj

)
− 1

]
.

If
∑i
w=1 bwkwjywj = Bj , then f(i, j) = αij . We denote

αi = maxej∈C(i) αij . And for edge node ej , xj = f(i, j).

4.3.3 Bounded Iteration
Let P (i) and D(i) be the values of the objective function
of the primal and dual solutions, respectively, derived from
the algorithm when ui submits its task. Upon the arrival
of a new task, we update both primal and dual programs.
The primal program is updated by adding a new constraint
corresponding to the user and a new term bikijyij to each
constraint of an edge node. The dual program is updated by
adding a new variable zi for the new user and a constraint
of the form bikijxj + zi ≥ bikij for each edge node.

The dual solution is an assignment of values to the
variables xj and zi. Initially, the values of primal and dual
solutions are zero. Let ∆P (i) and ∆D(i) be the changes of
P (i) and D(i), respectively, after user ui submits its task.

Lemma 1. In each iteration (arrival of ui): ∆D(i) ≤ 2(1 +
ξ) ln(d+ 1)∆P (i).

Proof. First, we consider the situation where the task of ui
is not fully allocated to edge nodes. This means that all
edge nodes in C(i) where kij = 1 have exhausted all their
computing capacities after allocating computing resources
to ui. In this case, the corresponding variable xj with kij = 1
are all αij at the end of the iteration. As a result, all the new

Authorized licensed use limited to: Nanjing University. Downloaded on August 29,2021 at 02:03:21 UTC from IEEE Xplore.  Restrictions apply. 



1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2021.3105325, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. –, NO. -, MONTH YEAR 7

dual constraints are satisfied, and we can set zi = 0. For xj
with kij = 0, setting zi = 0 also satisfies the constraints,
because bi · 0 · xj + 0 = 0 = bi · 0. We only need to show
that the change in the dual cost in this iteration is bounded.
When we increase the variable yij , the derivative of the
primal profit of the algorithm is ∂(αijbiyij)

∂yj
= αijbi. The

derivative of the dual cost Bj
∂f(x)
∂yij

is:

Bj
αijbi ln(d+ 1)

dBj

[
exp

(
ln(d+ 1)

Bj

i∑
w=1

bwywj

)]

=bi ln(d+ 1)

(
αij
d

[
exp

(
ln(d+ 1)

Bj

i∑
w=1

bwywj

)
−1

]
+
αij
d

)
=bi ln(d+ 1)

(
xj+

αij
d

)
≤bi ln(d+ 1) · 2αij < 2(1 + ξ) ln(d+ 1)αijbi.

The first inequality holds since xj = αij and αij/d ≤ αij .
Thus, we get ∆D(i) ≤ 2(1 + ξ) ln(d + 1)∆P (i) after ui

submits its task under the condition where the task of user
ui is not fully allocated by LBA.

Then we consider the situation where the task of user ui
is fully offloaded to the edge nodes in C(i). Note that the
task may be offloaded to several edge nodes. We analyze
this situation as follows. For edge node ej with kij = 0,
the derivative of the dual cost is 0, and the constraint is
satisfied for all zi ≥ 0. For edge nodes with kij = 1, the
derivative of the dual cost is bi ln(d+ 1)(f(j, αij) + αij/d).
We set zi = bi ln(d+1)(αi−αi/d) to satisfy all the new dual
constraints for edge node with kij = 1. We can prove these
constraints are satisfied as follows:

zi + bixj (25)

=bi ln(d+1)
(
αi−

αi
d

)
+
biαi
d

[
exp

(
ln(d+ 1)

Bj

w∑
w=1

bwywj

)
−1

]
(26)

=
biαi
d

[
(d− 1) ln(d+ 1) + exp

(
ln(d+ 1)

Bj

i∑
w=1

bwywj

)
− 1

]
(27)

≥biαi
d

[
(d− 1) ln(d+ 1) + exp

(
ln(d+ 1)

d

)
− 1

]
(28)

≥biαi
d
· d ≥ αijbi. (29)

Inequality (28) holds since
∑i
w=1 bwywj/Bj ≥ 1/d for each

node with kij = 1. The first inequality of (29) holds since
(d − 1) ln(d + 1) + exp

(
ln(d+1)

d

)
− 1 ≥ d, for d ≥ 3. Thus,

all the new dual constraints are satisfied.
Therefore, when ui arrives, the dual cost of each edge

node, ej (zi +Bj∆(xj)), is updated as

bi ln(d+ 1)
(
αi −

αi
d

)
+ bi ln(d+ 1)

(
xj +

αij
d

)
=bi ln(d+ 1)

(
αi −

αi
d

+ xj +
αij
d

)
≤bi ln(d+ 1)

(
αi −

αi
d

+ xj +
αi
d

)
=bi ln(d+ 1)(αi + xj)

≤bi ln(d+ 1) · 2αi ≤ 2(1 + ξ) ln(d+ 1)αijbi.

Thus the lemma follows.

4.3.4 Feasibility
Here, we show the feasibility of LBA.

Lemma 2. The algorithm LBA produces a feasible solution for
both the primal and dual ROTO-LP problem.

Proof. For the ROTO-LP problem, LBA never increases∑i
w=1 bwywj to be greater than Bj . Whenever

∑i
w=1 bwywj

increases in some iteration and reaches Bj , LBA stops
allocating computing resources from ej to users, because
the computing capacity of ej is exhausted. Therefore, the
value of

∑i
w=1 bwywj is not going to change anymore unless

some tasks processed on ej are completed, which reduces∑i
w=1 bwywj . Also, LBA never increases

∑
j∈C(i) yij beyond

1. Whenever
∑
j∈C(i) yij in some iteration equals to 1, LBA

stops allocating computing resources for ui, because ui’s
computing demand is satisfied.

For the dual problem of ROTO-LP, before any task on ej
is finished, the resources allocated on ej will not decrease
after the arrivals of subsequent users, which makes xj
monotonically increasing and the constraint (22) always
holds. Once a task on ej is finished, the value of xj is
either equal to 0 (no task is processed on ej anymore) or
greater than 1/d (at least one task is processed on ej). We set
zi = biln(d+1)(αi−αi/d). If xj = 0, then the constraint (22)
is satisfied for any zi ≥ 0. If xj 6= 0, from Eqs. (25)−(29), the
constraint (22) still holds.

4.3.5 Weak Duality
We prove weak duality of ROTO-LP here.

Theorem 2. Let y = (y11, . . . , yij , . . . , ynm) and x =
(x1, x2, . . . , xm) be feasible solutions to the primal and dual
ROTO-LP, respectively. Then:∑m

j=1
Bjxj +

∑n

i=1
zi ≥

∑n

i=1
αijbiyij .

Theorem 2 states that the value of any feasible dual
solution is at least the value of any feasible primal solution.
Thus, the solution of the dual program can be used as a
upper bound for any feasible primal solution. The proof of
this theorem is as follows:

Proof.∑m

j=1
Bjxj +

∑n

i=1
zi (30)

≥
∑m

j=1

(∑n

i=1
bikijyij

)
xj +

∑n

i=1
zi (31)

≥
∑m

j=1

(∑n

i=1
bikijyij

)
xj +

∑n

i=1

(
zi
∑m

j=1
yij
)

(32)

=
∑n

i=1

(∑m

j=1
bikijxj

)
yij +

∑n

i=1

∑m

j=1
ziyij (33)

=
∑n

i=1

(∑m

j=1
(bikijxj + zi)

)
yij (34)

≥
∑n

i=1
αijbikijyij (35)

=
∑n

i=1
αijbiyij , (36)

where inequalities (31) and (32) hold since
∑n
i=1 bikijyij ≤

Bj and
∑m
j=1 yij ≤ 1. Eq. (33) holds by changing the order

of summation. Eq. (34) holds by merging the summation.
Inequality (35) holds since x = (x1, x2, . . . , xm) is feasible,
which means inequality (22) is satisfied. Eq. (36) holds since
kijyij = yij .
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Theorem 3. Algorithm LBA is 2(1 + ξ) ln(d+ 1)-competitive.

Proof. Theorem 3 can be easily proved based on Lemmas 1
and 2 and the weak duality.

4.4 The Online Algorithm for ROTO

In this subsection, we propose the solution to solve the
ROTO problem, and show that the proposed algorithm
achieves an approximation of 2(1 + ξ) ln(d + 1) with a
probability of at least 1 − e−σn, where n is the number of
users and σ is a constant.

4.4.1 The Level Balanced Rounding Algorithm

The pseudo code of the algorithm is shown in Alg. 3. Upon
the arrival of a user ui, LBR invokes LB procedure and gets
the fractional solution yij for offloading decisions (Line 5).
The key idea of LBR is using the rounding technique to turn
the fractional solution into an integer solution. The rounding
steps are as follows: Since

∑
ej∈E yij ≤ 1, we can map each∑j

w=1 yiw (j from 1 tom) to a point with value
∑j
w=1 yiw on

the interval [0, 1], and the segment between point
∑j−1
w=1 yiw

and
∑j
w=1 yiw represents the probability of offloading the

task to edge node ej . Note that
∑m
w=1 yiw may be smaller

than 1, then the segment between point
∑m
w=1 yiw and point

1 represents the probability of rejecting the task of ui.
We choose r uniformly in the interval [0, 1] (Line 6). Then

we decide whether to reject the task or to offload the task
to a specific edge node according to r (Lines 7-18). We use
ÿij to represent the solution produced by LBR. Note that
ÿij is a binary variable after rounding, in general ÿij 6= yij .
Lines 12-13 update Ωj , Lj , and µj of the edge node ej with
ÿij = 1. Lines 15-18 update the states of each edge node ej
with ÿij = 0 in C(i). Lines 19-22 update the states of each
edge node when a task finishes.

The complexity of Algorithm 3 is O(nm3). Compared to
Alg. 1, Alg. 3 has one more step. Every time when LBA gets
the fractional solution, LAR uses the rounding technique to
turn the fractional solution into an integer solution. And the
complexity of rounding isO(m). As a result, the complexity
of Alg. 3 is O(nm3).

4.4.2 Analysis

Denote the objective value achieved by the LBA algorithm
as Y . Denote the optimal objective value of ROTO and
ROTO-LP as OPT and OPT-LP, respectively. Note that we
have proved in the previous section that Y ≥ OPT-LP

2(1+ξ) ln(d+1) .
Since ROTO-LP is a convex relaxation of ROTO, we have
OPT-LP≥ OPT. Thus, we get 2(1 + ξ) ln(d+ 1)Y ≥ OPT.

Denote the objective value derived from LBR as
Ÿ . We define a random variable Ÿi such that Ÿi =∑
ej∈C(i) αijbiÿij . Then, we have Ÿ =

∑n
i=1 Ÿi, and E[Ÿ ] =∑n

i=1E[Ÿi] =
∑n
i=1

∑
ej∈C(i) αijbiÿij = Y .

Theorem 4. For any δ ∈ (0, 1),

Pr

(
Ÿ < (1− δ) OPT

2(1 + ξ) ln(d+ 1)

)
≤ e−σn.

Proof. We use the Chernoff Bound [37] to facilitate the proof.
Obviously, the random variables {Ÿi} are independent by

Alg. 3: LB-Rounding (LBR) alg. for ROTO

1 Initialization: Ωj ← 0, ∀ej ;
2 Lj ← d− Vj + bVjΩj

Bj
c, ∀ej ;

3 µj ← Bj

Vj
· (Lj + 1)− Ωj , ∀ej .

4 if a new task of user ui arrives then
5 Invoke LB shown in Alg. 2 for the solution yij .
6 Choose r uniformly in the interval [0, 1].
7 if r >

∑m
w=1 yiw then

8 Reject the task of ui, ÿij ← 0, ∀ej ∈ C(i).

9 for j = 1 to m do
10 if

∑j−1
w=1 yiw < r ≤

∑j
w=1 yiw then

11 Allocate ui to ej ;
12 ÿij ← 1, Ωj ← Ωj − ωij + bi, ωij ← bi;
13 Lj ← d− Vj + bVjΩj

Bj
c,

µj ← Bj

Vj
(Lj + 1)− Ωj ;

14 ¨yiw ← 0, ∀w 6= j, break.

15 foreach edge node ej in C(i) do
16 if ÿij = 0 then
17 Ωj ← Ωj − ωij , ωij ← 0,

Lj ← d− Vj + bVjΩj

Bj
c;

18 µj ← Bj

Vj
(Lj + 1)− Ωj , Qi ← Qi \ {ej}.

19 if the task of ui finishes then
20 foreach edge node ej in Qi do
21 ÿij ← 0, Ωj ← Ωj − ωij ,

Lj ← d− Vj + bVjΩj

Bj
c;

22 µj ← Bj

Vj
(Lj + 1)− Ωj .

construction. By applying the Chernoff Bound, we have

Pr

(
Ÿ ≤ (1− δ) OPT

2(1 + ξ) ln(d+ 1)

)
=Pr

(∑n

i=1
Ÿi ≤ (1− δ) OPT

2(1 + ξ) ln(d+ 1)

)
≤Pr

(∑n

i=1
Ÿi ≤ (1− δ) OPT-LP

2(1 + ξ) ln(d+ 1)

)
≤Pr

(∑n

i=1
Ÿi ≤ (1− δ)Y

)
=Pr(Ÿ ≤ (1− δ)Y )

≤exp(−δ2Y/2).

Without loss of generality, we assume that OPT=O(n).
Since Y ≥ OPT-LP

2(1+ξ) ln(d+1) ≥
OPT

2(1+ξ) ln(d+1) , we can find some
constant C > 0 such that Y ≥ Cn for sufficiently large n.
Therefore,

exp

(
−δ

2Y

2

)
≤ exp

(
−δ

2Cn

2

)
.

Let σ = δ2C/2, then we have

Pr

(
Ÿ < (1− δ) OPT

2(1 + ξ) ln(d+ 1)

)
≤ e−σn.

The theorem holds immediately.
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4.5 Discussions

In this subsection, we discuss a few limitations of our work
and some possible future directions.

• Divisible Tasks. We assume in this work that the
tasks of users are atomic. However, in many situa-
tions, a task can be divided into several independent
or dependent subtasks. For dependent subtasks, we
consider the subtasks that can be processed in par-
allel as independent tasks according to their DAG
graphs. We consider independent subtasks as a new
task and set the revenue of them according to their
weights in the entire task.

• Non-negligible Devices’ Capacities. Our work focus
on the scenarios that the mobile device has very
limited computing resource, and hence all the tasks
should be offloaded to the edge nodes for execu-
tion [38]. Under the condition where the mobile
device has more powerful computing capacity and
the task is divisible, we can consider the user as a
special edge node, which only connects to the user
itself, and set the revenue as the energy consumption
if the task is processed locally. LBA can be slightly
adjusted to suit this condition.

• Dynamic Revenue. Our work assumes that the rev-
enue of the task is fixed. However, users may be
willing to pay more for their tasks due to the urgency.
The revenue ratio αij can be dynamically modi-
fied according to current time and deadline, which
means scheduling some urgent tasks can bring in
more revenue. Meanwhile, because of the existence
of competition, users need to consider how to modify
their prices so that their tasks can be completed at the
edge node with minimal cost. We plan to use game-
theoretic framework to study this problem.

• Uncertain Task Requirements. We mainly talk about
the scenario where the computing requirement of
each task is available. However, in realistic scenar-
ios, the size of the task can be measured but its
processing time is generally uncertain until it is
completed. Task assignment under the uncertainty
of the processing time is well studied in theoretical
computer science [39, 40]. However, most works
focus on the design of efficient task scheduling and
do not concern the allocation of computing resources.
We would like to study the computation offloading
problem under uncertain processing time in the fu-
ture.

• Nonnegligible Transmission Time. In this paper,
we assume that with the rapid development of 5G
network, the time of transmission is small enough
to be ignored [33]. Meanwhile, we assume that users
arrive one by one and the task of the user can only
be offloaded to the edge nodes that are within the
communication range of the same BS as the user.
As a result, the scale of the ROTO problem will not
be particularly large. However, for large-scale MEC
scenes, the performance of the algorithm may not be
as good as theoretically. Collecting and scheduling
a large amount of edge nodes in a short period of
time is a big challenge. We plan to use a distributed

Fig. 3: Loc. of Starbucks. Fig. 4: Our Testbed.

competition method to analysis the problem when
considering the transmission delay. Specifically, we
plan to design a self-organizing distributed frame-
work, that is, whenever a user arrives, the scheduling
calculations of task offloading is only performed in
the BS to which the user can connect.

5 TRACE-DRIVEN SIMULATION

In this section, we demonstrate the performance of LBR.
We compare LBR with three baseline algorithms. Both of
them assume that the information of all users is known in
advance. The first one is the Random Allocation (RA) algo-
rithm, when the user arrives, RA randomly offloads the task
to an edge node connected to the user. The second one is the
Greedy Allocation (GA) algorithm, which always offloads
tasks to the edge node with the maximum revenue. The
third one is the optimal (OPT) solution, which is obtained
from the existing mathematical tools (IBM CPLEX [41]).
After presenting the setup and parameters, the results are
shown from different perspectives to provide insightful
conclusions.

5.1 Simulation Settings
We envision a mobile edge computing system deployed
inside a megacity in Asia.

Edge Node Trace. For the locations of envisioned edge
nodes, we use the locations of the Starbucks due to the fact
that Starbucks shops in a city can usually achieve a decent
coverage for users. In addition, the distribution of Starbucks
actually follows the population density, making them per-
fect locations for edge cloud deployment in the future. We
collect the locations of 105 Starbucks in the megacity, which
is shown in Fig. 3. Each Starbucks is envisioned as an edge
node. Then the default number of edge nodes is 105. The
computing capacity of an edge node is in a range of 3 − 4
GHz and the process slots of each edge node is in a range of
4− 12.

Task Trace. The task statistics are in accordance with [31].
For tasks, the expected input data size per task is 8 MB, and
the expected number of CPU cycles required to process one
byte of data is 1000, which makes the computing demand of
users be in a range of 0.27-0.4 gigacycles. The price statistics
are in accordance with [35, 36]. The value of the price of unit
computing demand αij is set between 0.5 and 0.6.

User Trace. The number of customers visiting a Star-
bucks shop in a day in the megacity is about 500, which
implies about 50 customers in an hour. We set the total
running time as | T |= 100. We set the default number of
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Fig. 5: Simulation results for our algorithm and the baseline algorithms with different configurations.

users to 5000. Locations of users are randomly distributed
in the megacity. In the 5G scenario, we consider a user can
connect to an edge node if the distance between them is
within the communication range, and the default commu-
nication range is 3km. For users, we use the data traces
of Google clusters [42]. Note that, these traces only contain
the information of processing time, dependency relationship
and required processing resources for each task. We adjust
users’ arrival time based on Poisson distribution to accom-
modate stochastic arrival and the length between deadlines
and arrival time are uniformly distributed in [20, 30].

5.2 Simulation Results
In Fig. 5(a), we evaluate the influence of the number of users
which varies from 2000 to 6000. We observe the trend that
as the number of users grows, the overall revenue grows
accordingly. This is reasonable because more users will be
served to maximize the revenue as long as the edge nodes
have sufficient computing capacity. We also observe that, the
overall revenue does not exceed a certain threshold. This is
because the computing capacity of edge nodes is limited.
Once edge nodes exhaust their capacities, the future users
will not be served, thus the revenue will no longer increase.
Our online algorithm always outperforms the RA and GA
and is close to the optimal algorithm.

Fig. 5(b) shows the impact of the number of edge nodes
on overall revenue. We randomly choose 60 − 100 edge
nodes among 105 edge nodes. We observe that the overall
revenue increases as the number of edge nodes increases.
This is because, with the increase of the number of edge
nodes, the computing capacity has increased accordingly.
And more computing capacity will also bring more revenue.
Still, our algorithm performs better than RA and GA and is
close to the optimal algorithm.

In Fig. 5(c), we inspect the impact of the network
topology. We vary the communication range from 1km to
5km, which makes the average number of edge nodes that
connect to a user vary between 1 and 20. We observe that,
the overall revenue grows as the number of connections
increases. This is as expected, because when there are few
connections, it is very likely that all the edge nodes that con-
nected to the user have exhausted their computing capaci-
ties, while other edge nodes still have sufficient capacities.
With more connections, this happens less likely. And the
overall revenue in our algorithm is significantly higher than
that in RA and GA and is close to the optimal algorithm.

Fig. 5(d) shows the results with different number of
process slots. We vary the number of process slots of each
edge node from 4 to 12. We can see from Fig. 5(d), as the
number of process slots grows, the overall revenue grows.
This is because, with more process slots more users can
be served by each edge node, thus the overall revenue
increases. And our algorithm outperforms the classic RA
and GA algorithms and is close to the optimal algorithm.

The reasons why LBR outperforms GA and RA will be
discussed in Section 6.2.

6 TESTBED EXPERIMENT

In this section, we implement the revenue-driven online task
offloading system and conduct experiments based on the
implementation to validate the performance of LBR.

6.1 Testbed Setting

Deployment Platforms. The testbed environment is shown
in Fig. 4; we use 5 Raspberry Pi 4 Model B (ARM Cortex-
A72 CPU, 4 Cores @ 1.5GHz)) and 3 Raspberry Pi 3 Model B
(ARM Cortex-A53 CPU, 4 Cores @ 1.2GHz) as edge nodes.
We use 2 Samsung S4 and 2 Samsung note3 phones as
users, and each user is connected to 3 − 5 Raspberry Pis.
The program is written in python3.7 environment, and has
roughly implemented with about 2.3k lines of codes.

User Trace. We adjust users’ arrival time based on Pois-
son distribution. The time between the arrival time and the
deadline of a task are uniformly distributed in [10, 15].

Task Trace. Consider the realistic task trace from Google
cluster as computation-intensive tasks, which contains the
information of processing time, dependency relationship
and required processing resources for each task [42]. The
expected number of CPU cycles required to process one byte
of data is in accordance with [31]. We set up two different
tasks in our experiments, namely pdf2text and html2text
programs. The expected number of CPU cycles required
to process one byte of data of pdf2text and html2text is
1000 and 6000, respectively. The value of the price of unit
computing demand αij is set between 0.5 and 0.6. We set
the size of each pdf2text task between 1.05MB and 4.45MB,
and the size of each html2text task is set between 5.9MB
and 9MB. We set the total running time as | T |= 100.
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Fig. 6: Testbed results for our algorithm and the baseline algorithms with different configurations.

6.2 Performance Comparison

Fig. 6(a) shows the change in overall revenue over time.
Note that an edge node can only gain the revenue after the
task is successfully executed. In the first 10 seconds, the total
revenue remains at 0 because no tasks have been completed
yet. We observe that the performance of all algorithms is
very similar in the beginning. This is because the computing
resources of edge nodes were sufficient in the beginning and
all tasks can be offloaded to edge nodes. We also observe
that GA and RA perform better than LBR in the beginning,
this is because LBR always selects the edge node with the
smallest level, which may not bring the biggest revenue.
However, LBR outperforms baselines over time, and the
overall revenue in LBR is 50% higher than that in the
baselines in the end.

The experimental results on the testbed are consistent
with our simulation results. Figs. 6(b) and 6(c) show the
overall revenue versus the number of users and the number
of edge nodes, respectively. The overall revenue increases
with the growth of the number of users and the number of
edge nodes, and LBR achieves significant revenue increment
compared to other algorithms. Fig. 6(d) evaluates the impact
of the number of connections between users and edge
nodes on the overall revenue. By increasing the number of
connections, the overall revenue will also increase.

The reason why LBR outperforms GA and RA in
Figs. 5(a), 5(b), 6(b) and 6(c) is as follows: In the begin-
ning, GA prefers to offload tasks on the edge nodes with
the maximum revenue, which causes imbalance in the re-
maining resources of edge nodes. Thus, some edge nodes
may exhaust their resources quickly while others still have
sufficient resources. As a result, the newly arrived task is
very likely to be rejected because all of the edge nodes it can
connect to are overloaded. This situation may also occur
when applying RA.

The reason why LBR outperforms GA and RA in
Figs. 5(c), 5(d) and 6(d) is as follows. The number of
connections and process slots will not affect the offloading
decisions of GA and RA. More connections and process slots
will only slow down the speed at which some edge nodes
exhaust their resources, and cannot change the result that
some edge nodes exhaust their resources while others have
sufficient resources.

7 CONCLUSION

In this paper, we formulate the task computation offloading
as an optimization problem to maximize offloading revenue
while providing performance guarantees. The proposed al-
gorithm achieves the approximation of 2(1+ξ) ln(d+1) with
a probability of at least 1 − e−σn. Trace-driven simulations
and testbed experiments have shown that our proposed
scheme outperforms the classic RA and GA algorithms and
is close to the optimal algorithm.
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[21] S. Jošilo and G. Dán, “A game theoretic analysis of selfish
mobile computation offloading,” in 2017 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2017, pp.
1–9.

[22] T. Zhu, J. Li, Z. Cai, Y. Li, and H. Gao, “Computation
scheduling for wireless powered mobile edge computing
networks,” in 2020 IEEE Conference on Computer Communi-
cations (INFOCOM). IEEE, 2020, pp. 1–9.

[23] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Of-
floading dependent tasks in mobile edge computing with
service caching,” in 2020 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2020, pp. 1–9.

[24] X. Ma, A. Zhou, S. Zhang, and S. Wang, “Cooperative
service caching and workload scheduling in mobile edge
computing,” in 2020 IEEE Conference on Computer Commu-
nications (INFOCOM). IEEE, 2020, pp. 1–9.

[25] M. Chen and Y. Hao, “Task offloading for mobile edge
computing in software defined ultra-dense network,”
IEEE Journal on Selected Areas in Communications, vol. 36,
no. 3, pp. 587–597, 2018.

[26] T. Ouyang, R. Li, X. Chen, Z. Zhou, and X. Tang, “Adaptive
user-managed service placement for mobile edge comput-

ing: An online learning approach,” in 2019 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2019, pp.
1468–1476.
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