TOUR: Time-sensitive Opportunistic Utility-based Routing in Delay Tolerant Networks

Mingjun Xiaoa,b, Jie Wub, Cong Liuc, and Liusheng Huanga

a University of Science and Technology of China, China
b Temple University, USA
c Sun Yat-sen University, China
Outline

- Introduction on utility-based routing
- Motivation
- Problem
- Solution
- Simulation
- Conclusion
Introduction: utility-based routing

- **Concept**: Utility-based routing [Jiewu 08, 12]
 - **Utility** is a composite metric
 \[
 \text{Utility } (u) = \text{Benefit } (b) - \text{Cost } (c)
 \]
 - **Benefit** is a reward for a routing
 - **Cost** is the total transmission cost for the routing
 - Benefit and cost are uniformed as the same unit
 - **Objective** is to maximize the utility of a routing
Motivation of Utility-based Routing

- **Valuable** message: route (more reliable, costs more)
- **Regular** message: route (less reliable, costs less)

Benefit is the successful delivery reward
Utility-based routing is an important factor for the routing design in Delay Tolerant Network (DTN). Time-sensitive utility-based routing is crucial in such networks.
Time-sensitive utility model

- **Benefit:** a linearly decreasing reward over time
 \[b(t) = \begin{cases}
 b - t \cdot \delta, & t \leq b/\delta \\
 0, & t > b/\delta
 \end{cases} \]

- **Utility:** \(u(t) = b(t) - c \)
Problem

- **Time-sensitive utility-based routing in DTN**
 - DTN: $V=\{1, 2, \ldots\}$, $\lambda_{i,j}$, c_i ($i, j \in V$)
 - source s, destination d, initial benefit b, benefit decay coefficient δ *(single copy)*
 - **Objective**: maximize $E[u_d]$ or minimize $D_s(u_s) = b - E[u_d]$ for generality, minimize $D_i(u)$
Problem

- **A simple example**
 - DTN: \(V = \{1, 2, 3, d\} \), \(\lambda_{i,j} \), \(c_i \) \((i, j \in V)\)
 - source \(s = 3 \), destination \(d \), initial benefit \(b = 20 \),
 benefit decay coefficient \(\delta = 2 \)
 - **Objective**: minimize \(D_3(u_3) \)
• The key problem
 - when a node i meets another node, whether the node i should forward messages to this encountered node, or ignore this forwarding opportunity, so that the node i can achieve the minimum $D_i(u)$
Solution

- **Basic idea:**
 - **Time-Sensitive Opportunistic Forwarding**
 - Dynamically select relays: forwarding set $R_i(u)$
 - Opportunistic forwarding scheme: only forward messages to nodes in forwarding sets; ignore the other nodes outside of the set
• **Basic idea:**

Time-Sensitive Opportunistic Forwarding

- Forwarding set $R_i(u)$ is time-sensitive:
 vary with time, i.e., remaining utility u
• Determine optimal forwarding set

- **Computation formula** $R_i^*(\mu)$

\[
R_i^*(u) = \arg \min_{R(u) \subseteq N_i} D_i(u) \bigg|_{R(u)}
\]

\[
D_i(u = \mu) \bigg|_{R(u)} = \int_0^\mu \sum_{j \in R(u)} \rho_{i,j}(u)(\mu - u_j + D_j(u_j)) du + p_f(\mu) \mu
\]
Solution

- **Determine optimal forwarding set**

 For a single node \(i \): \(R_i^* (\mu) \)

 - **Assumption:** \(D_j (\mu-c_i) = D_j (u_j) \) are known

 \(D_1 (\mu-c_1) < D_2 (\mu-c_2) < \ldots < D_m (\mu-c_m) \)

 - **Method:** Greedily compute \(R_i^* (\mu) \)

 \(R_i^* (\mu) \): 1, 2, ..., \(k \), \(k+1 \), ..., \(m \)

 - **Correctness:** Theorem 1

![Diagram showing the optimal forwarding set process.](image)
Solution

- **Determine optimal forwarding set**

 For all nodes $i \in V$: $R_i^*(\mu)$

 - **Method**: iteratively compute $R_i^*(\mu)$ for all $i \in V$

 - **Convergence**: Theorem 2

 \[
 \begin{array}{c|c|c}
 u & R_1^*(u) & R_2^*(u) \\
 \hline
 (4, 20] & \{d\} & (0, 4] \\
 (0, 8] & \phi & \phi \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c}
 u & R_1^*(u) & R_2^*(u) \\
 \hline
 (8, 20] & \{d\} & (0, 8] \\
 (0, 8] & \phi & \phi \\
 \hline
 \end{array}
 \]

 \[1 \quad 3 \quad d \]

 Round 1

 \[2 \quad 1 \quad 3 \quad 2 \]

 Round 2
Implementation

- **Discrete Process**
 - $D_i(u)$ \rightarrow $\tilde{D}_i(u)$
 - $R_i(u)$ \rightarrow $\tilde{R}_i(u)$
• **Discrete Process**

\[
D_i(\mu) \bigg|_{\bar{R}(u)} = \int_0^\mu \sum_{j \in \bar{R}(u)} \rho_{i,j}(u)(\mu - u_j + D_j(u_j))du + p_f(\mu)\mu
\]

\[
\tilde{D}_i(\mu) \bigg|_{\tilde{R}(u)} = \int_0^\mu \sum_{j \in \tilde{R}(u)} \tilde{\rho}_{i,j}(u)(\mu - u_j + \tilde{D}_j(u_j))du + \tilde{p}_f(\mu)\mu
\]

Theorem 3 gives the upper bound of estimation error of the discrete process
Simulation

- **Real trace used**
 - Cambridge Haggle Trace
Trace	Contacts	Length (d.h:m.s)	Routing nodes	External nodes
Intel	2,766	4.3:48.32	9	128
Cambridge	6,732	6.1:34.2	12	223
infocom	28,216	2.22:52.56	41	264.9
 - UMassDieselNet Trace
 - 40 buses
 - 55 days, Spring 2006
Simulation

• **Algorithms in comparison**
 – TOUR (10 discrete sampling points)
 – TOUR-OPT (100 discrete sampling points)
 – SimpleUtility, MinDelay, MinCost

• **Metrics**
 – Remaining utility
 – Derivation
 – Cost
Simulation

Settings

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial benefit</td>
<td>100</td>
<td>20-200</td>
</tr>
<tr>
<td>Maximum forwarding cost</td>
<td>5</td>
<td>0-45</td>
</tr>
<tr>
<td>Benefit decay coefficient</td>
<td>0.02</td>
<td>0.01-0.1</td>
</tr>
<tr>
<td>Number of messages</td>
<td>30,000</td>
<td></td>
</tr>
</tbody>
</table>
Simulation

- Results
 - Remaining utility vs. initial benefit, benefit decay coefficient, maximum forwarding cost
Simulation

• **Results**
 - Derivation vs. initial benefit, benefit decay coefficient, maximum forwarding cost
Simulation

• Results
 – Remaining utility vs. initial benefit and benefit decay coefficient
• Our proposed algorithm outperforms the other compared algorithms in utility.

• The larger the initial benefit and the smaller the benefit decay coefficient are, the larger the remaining utility would be.

• Our proposed algorithm can schedule different message deliveries to different paths.
Thanks!

Q&A