

TOUR: Time-sensitive Opportunistic Utilitybased Routing in Delay Tolerant Networks

Mingjun Xiao^{a,b}, Jie Wu^b, Cong Liu^c, and Liusheng Huang^a

^a University of Science and Technology of China, China
 ^b Temple University, USA
 ^c Sun Yat-sen University, China

- Introduction on utility-based routing
- Motivation
- Problem
- Solution
- Simulation
- Conclusion

Introduction: utility-based routing

- Concept : Utility-based routing [Jiewu 08, 12]
 - Utility is a composite metric

Utility (u) = Benefit (b) – Cost (c)

- Benefit is a reward for a routing
- Cost is the total transmission cost for the routing
- Benefit and cost are uniformed as the same unit
- **Objective** is to maximize the utility of a routing

Introduction: utility-based routing

- Motivation of Utility-based Routing
 - Valuable message: route (more reliable, costs more)
 - Regular message: route (less reliable, costs less)

Benefit is the successful delivery reward

Motivation

delivery delay is an important factor for the routing design

Time-sensitive utility-based routing

Time-sensitive utility model

• Benefit: a linearly decreasing reward over time

$$b(t) = \begin{cases} b - t \cdot \delta, & t \le b/\delta \\ 0, & t > b/\delta \end{cases}$$

• Utility: u(t) = b(t) - c

Problem

- Time-sensitive utility-based routing in DTN
 - DTN: V={1, 2, ...}, $\lambda_{i,j}, c_i (i, j \in V)$
 - source s, destination d, initial benefit b, benefit decay coefficient o (single copy)
 - **Objective**: maximize $\mathbf{E}[u_d]$ or minimize $D_s(u_s) = b \mathbf{E}[u_d]$

Problem

- A simple example
 - $-DTN: V = \{1, 2, 3, d\}, \lambda_{i,j}, c_i (i, j \in V)$
 - source s=3, destination d, initial benefit b=20, benefit decay coefficient b=2
 - Objective: minimize D₃(u₃)

Problem

The key problem

-when a node *i* meets another node, whether the node *i* should forward messages to this encountered node, or ignore this forwarding opportunity, so that the node *i* can achieve the minimum $D_i(u)$

• Basic idea:

Time-Sensitive Opportunistic Forwarding

- Dynamically select relays: forwarding set $R_i(u)$
- Opportunistic forwarding scheme: only forward messages to nodes in forwarding sets; ignore the other nodes outside of the set

Basic idea:

Time-Sensitive Opportunistic Forwarding

Forwarding set *R_i(u)* is time-sensitive:
 vary with time, i.e., remaining utility *u*

- Determine optimal forwarding set
 - Computation formula R_i^* (μ)

$$R_i^*(u) = \arg\min_{R(u)\subseteq N_i} D_i(u)\Big|_{R(u)}$$

- Determine optimal forwarding set
 For a single node *i* : *R_i** (µ)
 - Assumption: $D_j(\mu c_j) = D_j(\mu_j)$ are known
 - $D_1(\mu c_1) < D_2(\mu c_2) < ... < D_m(\mu c_m)$
 - Method: Greedily compute R^{*} (µ)

 R_i^* (μ): 1, 2, ..., k, k+1, ..., m

- Correctness: Theorem 1

- Determine optimal forwarding set
 For all nodes *i*∈V: *R*^{*}_i(µ)
 - Method: iteratively compute R_i^* (μ) for all $i \in V$

|V|-1 rounds of computation

- Convergence: Theorem 2

Implementation

Discrete Process

$$-D_i(u) \longrightarrow \widetilde{D}_i(u)$$

$$-R_i(u) \longrightarrow \widetilde{R}_i(u)$$

$$\begin{array}{c|c}
Estimation \\
error \\
\overline{R}(u) \\
R(u) \\
\mu_0 \\
\mu_k \\
\mu_n
\end{array}$$

Implementation

Discrete Process

$$D_{i}(\mu)|_{R(u)} = \int_{0}^{\mu} \sum_{j \in R(u)} \rho_{i,j}(u)(\mu - u_{j} + D_{j}(u_{j}))du + p_{f}(\mu)\mu$$
$$\int_{\widetilde{D}_{i}(\mu)} \widetilde{D}_{i}(\mu)|_{\widetilde{R}(u)} = \int_{0}^{\mu} \sum_{j \in \widetilde{R}(u)} \widetilde{\rho}_{i,j}(u)(\mu - u_{j} + \widetilde{D}_{j}(u_{j}))du + \widetilde{p}_{f}(\mu)\mu$$

Theorem 3 gives the upper bound of estimation error of the discrete process

Real trace used

- Cambridge Haggle Trace

Trace	Contacts	Length (d.h:m.s)	Routing nodes	External nodes
Intel	2,766	4.3:48.32	9	128
Cambridge	6,732	6.1:34.2	12	223
infocom	28,216	2.22:52.56	41	264.9

- UMassDieselNet Trace
 - 40 buses
 - 55 days, Spring 2006

- Algorithms in comparison
 - TOUR (10 discrete sampling points)
 - TOUR-OPT (100 discrete sampling points)
 - SimpleUtility, MinDelay, MinCost
- Metrics
 - Remaining utility
 - Derivation
 - Cost

Settings

Parameter name	Default	Range
Initial benefit	100	20-200
Maximum forwarding cost	5	0-45
Benefit decay coefficient	0.02	0.01-0.1
Number of messages	30,000	

Results

 Remaining utility vs. initial benefit, benefit decay coefficient, maximum forwarding cost

Results

 Derivation vs. initial benefit, benefit decay coefficient, maximum forwarding cost

- Results
 - Remaining utility vs. initial benefit and benefit decay coefficient

Conclusion

- Our proposed algorithm outperforms the other compared algorithms in utility.
- The larger the initial benefit and the smaller the benefit decay coefficient are, the larger the remaining utility would be.
- Our proposed algorithm can schedule different message deliveries to different paths.

Thanks!

