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Abstract—Major cities worldwide have millions of cameras deployed for surveillance, business intelligence, traffic control, crime
prevention, etc. Real-time analytics on video data demands intensive computation resources and high energy consumption. Traditional
cloud-based video analytics relies on large centralized clusters to ingest video streams. With edge computing, we can offload compute-
intensive analysis tasks to nearby servers, thus mitigating long latency incurred by data transmission via wide area networks. When
offloading video frames from the front-end device to an edge server, the application configuration (i.e., frame sampling rate and frame
resolution) will impact several metrics, such as energy consumption, analytics accuracy and user-perceived latency. In this paper, we
study the configuration selection and bandwidth allocation for multiple video streams, which are connected to the same edge node
sharing an upload link. We propose an efficient online algorithm, called JCAB, which jointly optimizes configuration adaption and
bandwidth allocation to address a number of key challenges in edge-based video analytics systems, including edge capacity limitation,
unknown network variation, intrusive dynamics of video contents. Our algorithm is developed based on Lyapunov optimization and
Markov approximation, works online without requiring future information, and achieves a provable performance bound. We also extend
the proposed algorithms to the multi-edge scenario in which each user or video stream has an additional choice about which edge
server to connect. Extensive evaluation results show that the proposed solutions can effectively balance the analytics accuracy and
energy consumption while keeping low system latency in a variety of settings.
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1 INTRODUCTION

A Large number of cameras have been deployed for
various purposes, such as business intelligence,

traffic control, and crime prevention [1]. These cameras
generate a large amount of video data every second.
Quick analysis on these live video streams is often
required. In addition, many other emerging applications
such as cognitive assistance, mobile gaming, virtual re-
ality and augmented reality [2], [3] also rely on effective
analysis of videos with low latency.

Video analytics applications usually require intensive
computation resources and high energy consumption.
Thus the front-end devices are often resource-limited to
support these applications with acceptable latency. One
way to overcome this limitation is to transfer videos
to cloud data centers and execute the deep learning
algorithms there [4]. However, cloud-based solutions
may incur excessive transmission delay in wide area
networks [5]. Edge computing is an emerging computing

• S. Zhang, C. Wang, Y.B. Jin, Z.Z. Qian, and S.L. Lu are with the State
Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China.
E-mail: sheng@nju.edu.cn, {mf1733063, yibo.jin}@smail.nju.edu.cn,
{qzz, sanglu}@nju.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

• M.J. Xiao is with with the School of Computer Science and Technology /
Suzhou Institute for Advanced Study, University of Science and Technol-
ogy of China, Hefei, China.
E-mail: xiaomj@ustc.edu.cn.

paradigm which advocates processing data at the logical
edge of a network [6]–[12], thereby enabling video ana-
lytics to occur closer to the data source and end users.

In typical video analytics, frames are extracted from a
video at different sampling rates, compressed into var-
ious resolutions, and then processed by different CNN
(convolutional neural network [13]) models. Following
previous works [14]–[16], we refer to a combination of
a resolution and a frame rate as a configuration [14].
Apparently, different configurations often lead to dif-
ferent accuracies and energy consumptions. Since edge
nodes serve as the backend for video processing [17],
transmitting videos from their sources to an edge server
via time-varying network links is inevitable. Thus, effi-
cient offloading of video analytics involves configuration
selection and bandwidth allocation.

Both industry and academia have invested heavily in
these two aspects. Most of the previous works [3], [5],
[14], [18]–[22] considered only one of them in offloading
video analytics, which leads to sub-optimal performance.
However, the joint scheduling of computing resources
(via configuration selection) and networking resources
(via bandwidth allocation) are both of importance to the
overall performance of edge-assisted video analytics.

In this paper, we first consider a practical scenario
in which multiple video streams connect to the same
edge server sharing a narrow uplink channel, as shown
in Fig. 1. We call this scenario the single-edge scenario.
Different CNN models are deployed on the single edge
server to match various video resolutions. A smaller
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CNN model with fewer convolutional layers is cheaper,
faster but less accurate [1]. We then consider the multi-
edge scenario in which each video stream has an addi-
tional choice about which edge server to connect. The
objective in both scenarios is to decide the frame rate,
resolution, and the share of bandwidth for each video
stream to maximize the overall accuracy and minimize
the energy consumption, subject to a service latency
budget. This problem faces many challenges for the
following reasons:

The best offloading configuration varies over time. As we
mentioned above, different configurations lead to differ-
ent accuracies and energy consumptions. We can keep
choosing the most expensive configuration to ensure a
high accuracy, but this demands more resources and
energy. In many cases, the policy that reduces the frame
rate and lowers the resolution can save energy signifi-
cantly without impacting the accuracy. For example, we
can choose a lower frame sampling rate when the target
moves slowly. Meanwhile, the policy that lowers frame
resolution will not hurt accuracy when the target is large
in the scenes [5]. The best configuration can optimize
the trade-off between accuracy and energy consumption,
which varies over time depending on the video content.

Network bandwidth is often unpredictable. As many pre-
vious works have observed, the wide area network
bandwidth has come to a standstill [23] while traffic
demands are growing at a staggering rate [24]. Not
only is WAN bandwidth scarce, it is also relatively
expensive, and highly variable [5]. Similar scarcity and
variations exist in wireless networks [25], [26], broad-
band access networks and cellular networks [27]. When
the available bandwidth becomes insufficient, an offload-
ing configuration which adopts high frame resolution
may incur long transmission latency, and this problem
becomes more noticeable when multiple video streams
have to share the same uplink channel, hence bandwidth
resource management becomes crucial and the main
challenge is to deal with the trade-off between analytics
accuracy and bandwidth consumption.

These observations motivate us to propose adaptive
video analytics which is capable of optimizing the trade-off
among the analytics accuracy, service latency, and energy
consumption. We aim to find the most suitable video ana-
lytics offloading configuration and bandwidth allocation
scheme, subject to the computing capacity, bandwidth
capacity, and the delay constraint, for a multi-user edge-
assisted video analytics system. Since the Lyapunov
optimization framework [28] is the de facto standard
method to achieve stability in control theory and is
capable of minimizing the time average of a network
attribute subject to additional time average constraints,
in this paper, we utilize the Lyapunov framework to
transform the original problem into a series of one slot
optimization problems, each of which is solved by lever-
aging the Markov approximation and the KKT condition.
We prove that our solution achieves a close-to-optimal
performance, while bounding the potential violation of
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Fig. 1: An illustration of the edge-assisted video analytics system.
Different CNN models are deployed on the single edge server to match
various video resolutions.

the latency constraint.
To our best knowledge, this is the first study to jointly

optimize configuration adaption and bandwidth alloca-
tion for multi-video in the edge environment, explicitly
taking into account the trade-off among the analytics
accuracy, service latency, and energy cost. The main
contributions of this paper are summarized as follows.

• We study a more practical model. We explicitly
consider limited and varying bandwidths between
video sources and edge servers. Each edge server
has limited computing resource. The accuracy func-
tion with respect to resolution or frame rate varies
depending on the video contents. Both transmission
energy consumption and processing energy con-
sumption are taken into account.

• We formalize the joint configuration selection and
bandwidth allocation problem, for optimizing the
trade-off between accuracy and energy cost, under a
long-term latency constraint. The insight behind our
problem is adapting video streams to bandwidth
variation and intrinsic dynamics of their contents.

• We develop novel online algorithms, i.e., JCAB and
mJCAB, which can efficiently adapt configurations
and allocate bandwidth resources for video streams
on the fly without foreseeing the future. Both al-
gorithms utilize the Lyapunov framework to trans-
form the original problem into a series of one slot
optimization problems, each of which is solved by
leveraging the Markov approximation and the KKT
condition. We prove that JCAB and mJCAB achieve
a close-to-optimal performance, while bounding the
potential violation of the latency constraint.

• We evaluate the performance of the design through
extensive and practical simulations with accuracy
profiles obtained from our experiments. Results con-
firm the superiority of our approach compared to
several algorithms.

The remainder of this paper is organized as follows.
Section 2 describes our system model. Section 3 develops
the JCAB algorithm. Section 4 shows how to deal with
the multi-edge scenario. We evaluate our proposed de-
sign in Section 5. Section 6 reviews the related work.
Section 7 discusses the limitations and future work.
Finally, Section 8 concludes the paper.
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Fig. 2: The architecture of the edge-based live video analytics system.

2 SYSTEM MODEL

We introduce the system model and present the problem
formulation for the single-edge scenario in this section.

Suppose that a set of K users or video streams,
denoted by U = {u1, u2, ..., uK}, connect to the same
edge server nearby. They keep offloading video frames
to the server, sharing a narrow uplink channel. As
illustrated in Fig. 1, there are N parallel CNN models
M = {m1,m2, ...,mN} deployed on the edge server,
with different input sizes of images. Let m0 be the most
lightweight CNN model in each local device. Let ri be
the input resolution for the ith CNN mi.

We use si and ci to denote the processing time and
cost, respectively, per frame for the ith CNN mi. It has
been well studied in [29] that a CNN can be compressed
to a smaller size at the expense of accuracy. Such tech-
niques include removing some expensive convolutional
layers and reducing input image resolution. Thus in our
design, a CNN with a lower input image resolution has
a faster processing speed (i.e., smaller si) and needs less
computational resources (i.e., smaller ci).

We divide time into discrete time slots, each of which
has a duration that matches the timescale at which
offloading configurations can be updated. The system
architecture is depicted in Fig. 2. We mainly focus on
video queries such as detecting certain objects (like cars
or pedestrians). On the client side, videos are continu-
ously recorded from cameras and object recognition can
be performed locally using lightweight CNNs, i.e., m0’s.
On the server side, the proposed algorithm runs in the
Adaptive Configuration (AC) controller and the Band-
width Resource (BR) manager. The former is responsible
for computing a configuration for the next time slot,
given accuracy profiles1, network conditions and latency
goals as the input; while the latter computes and sends
bandwidth allocation back to the clients.

In the remainder of this section, we first provide ana-
lytical models on the accuracy (Section 2.1), the energy
consumption (Section 2.2), and the latency (Section 2.3).
Then, we present the problem formulation (Section 2.4).

2.1 Analytics Accuracy Model
Since we want to optimize the time-averaged accuracy
through CNN model selection and bandwidth allocation,

1. We use ‘accuracy profile’ to represent the content-varying relation-
ship between the detection accuracy by a CNN model and the frame
rate and/or resolution of a video stream.
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Fig. 3: We implement YOLOv3 on NVIDIA Jetson TX2.

first of all, we have to know how the model selec-
tion and bandwidth allocation affect accuracy. In this
subsection, we provide the analytics accuracy models,
which captures the relationship between model selec-
tion (i.e., resolution) or bandwidth allocation (i.e., frame
rate) and accuracy. These models are derived based on
the performance measurements obtained from our real
experiments implemented on NVIDIA Jetson TX2.

Since a query configuration is multi-dimensional and
different decision variables may affect the analytics ac-
curacy in different ways, profiling the accuracy of a
configuration is no easy task. We first have to figure
out the relationship between the analytics accuracy and
the input image resolution. To do so, we implement
YOLO [30], an object detector CNN on NVIDIA Jetson
TX2 (shown in Fig. 3) to perform pedestrian detection
on a clip from a surveillance video. In this experiment,
video frames are resized to different resolutions, and
the accuracy of a compressed frame is computed by
comparing the detected objects with the objects detected
in the frame with the highest resolution, using the F1
score, which is the harmonic mean of precision and
recall. A detected object is identified as true positive
when its bounding box has the same label and it has
sufficient spatial overlap with the corresponding ground
truth [14]. The spatial overlap can be measured by IOU
(Interaction over Union). In our experiment, an object is
correctly detected when IOU is no less than 0.7.

The results are plotted in Fig. 4(a). The red dashed line
shows the detection accuracy when the targets are small
in the scene in time slot x1, while the blue line shows
the detection accuracy when pedestrians walk nearby in
time slot x2. There are two observations.

The first observation is that a higher resolution pro-
duces a better analytics accuracy and the performance
gain decreases at a high resolution. Hence the relation-
ship between accuracy and resolution can be formulated
as concave functions, e.g., the red line in Fig. 4(a) can be
fitted as 0.988−4.469e−

r
200 with less than 0.02 root mean

square error.
The second observation is that the accuracy profile of a

video stream varies over time: high resolution is crucial
when targets are small, but the policy to lower resolution
will not hurt latency much when targets are big enough.
The accuracy models should be updated periodically
according to target size. Based on these observations, we
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Fig. 4: Impact of offloading configurations on the detection accuracy.

use εtk(r) to represent the accuracy function with respect
to resolution for user uk in time slot t. We also introduce
a binary variable xik,t to indicate whether the i-th CNN
model mi is selected by user uk in slot t, so

∑N
i=0 x

i
k,tri

is the frame resolution of uk in slot t.
The relationship between accuracy and the sampling

frame rate f is illustrated in Fig. 4(b). We perform cars
counting on a clip from a traffic video with different
sampling frame rates. Since the video segment consists
of many frames, we compute accuracy as the fraction of
frames with F1 score ≥ 0.67. To compute the accuracy
of a frame that was not sampled, we use the location of
objects from the previous sampled frame. In time slot y2,
the cars in the scene are moving fast, while in slot y1, all
cars slow down due to a traffic congestion. Similarly, we
model the accuracy function with respect to frame rate
as a concave function φtk(f), which should be updated
at the start of each time slot according to the velocities
of targets. These observations are consistent with many
previous studies [1], [14], in which the relationship be-
tween resolution or frame sampling rate and accuracy
can often be formulated as concave functions .

It has been experimentally observed in [14] that frame
resolution and frame sampling rate independently im-
pact accuracy, allowing us to model the accuracy of the
configuration of uk in time slot t as

εtk(

N∑
i=0

xik,tri)φ
t
k(fk,t), (1)

in which fk,t is the frame sampling rate of uk in time slot
t. Then, the average detection accuracy over K users in
time slot t is

at =
1

K

K∑
k=1

εtk(

N∑
i=0

xik,tri)φ
t
k(fk,t). (2)

2.2 Energy Consumption Model
Battery life may become the primary concern of end
users since it is usually inconvenient to recharge mobile
devices. Therefore, we take energy efficiency into consid-
eration. The energy consumption of a mobile device or
smart camera mainly consists of two parts: transmission
energy due to data transmission and processing energy
caused by local video frame processing.

The transmission energy consumption is proportional
to the size of data which is uploaded to an edge server.
The data size of a video frame with resolution r is
calculated as αr2 bits [3], where α is a constant. Let
γk represent the transmission energy consumption per
bit for uk. Then the transmission energy consumption of
user uk in slot t is

etrank,t =

N∑
i=1

γkα(xik,tri)
2fk,t. (3)

We use µk to denote the energy cost of processing
one frame on the local device of uk [31]. Then the data
processing energy cost for user uk in time slot t is

eprock,t = x0
k,tµkfk,t. (4)

Combining Eqs. (3) and (4) together, we know that the
average energy consumption of all users in time slot t is

et =
1

K

K∑
k=1

(etrank,t + eprock,t ). (5)

2.3 Service Latency Model

The latency per frame consists of two parts: data trans-
mission latency and CNN processing latency. The data
transmission latency is jointly determined by the data
size of a frame and the share of the upload bandwidth;
we use bk,t to denote the upload bandwidth shared by
uk at time slot t. Then, the latency per frame experienced
by uk in time slot t is

lk,t =

∑N
i=1 α(xik,tri)

2

bk,t
+

N∑
i=0

xik,tsi, (6)

where the first term is the transmission latency and the
second one is the processing latency. Thus, the average
latency for K video streams in slot t is

lt =
1

K

K∑
k=1

lk,t. (7)

Main notations are summarized in Tab. 1.

2.4 Problem Formulation

Analytics on live video streams is energy-consuming
and latency-sensitive, generally requiring high quality.
Hence on designing the adaptive algorithm, we aim at
achieving desirable analytics accuracy under the long-
term latency constraint, while keeping the energy cost as
low as possible. For simplicity of illustration, we define
the utility function of a configuration as the achieved
accuracy minus the energy cost. The natural objective
is the maximum of time-averaged utility for all video
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TABLE 1: Main notations for quick reference

Symbol Meaning Symbol Meaning
uk k-th user or video stream εtk(r) the accuracy function wrt. resolution r for uk in slot t
mi i-th CNN model xik,t indicating whether mi is selected by user uk in slot t
m0 the local CNN model φt

k(f) the accuracy function wrt. frame rate f for uk in slot t
ri the input resolution for mi µk the energy cost of processing one frame by m0 locally
si the processing time for mi γk the transmission energy cost per bit for uk

ci the computational cost for mi etrank,t the transmission energy cost of user uk in slot t
C the computational capacity of each server eprock,t the data processing energy cost of user uk in slot t

Lmax the long-term average latency threshold et the average energy cost over K users in time slot t
fk,t the frame sampling rate of uk in slot t bk,t the upload bandwidth shared by uk at time slot t
at the average accuracy of K users in slot t Bt the uplink bandwidth over the entire time slot t
lt the average latency of K users in slot t lk,t the latency per frame experienced by uk in time slot t

streams, which can be formulated as

P : max
{x,b,f}

lim
T→+∞

1

T

∑T

t=0
(at − ωet)

s.t. C1 :

N∑
i=0

xik,t = 1,∀uk ∈ U , t ∈ T

C2 : xik,t ∈ {0, 1},∀uk ∈ U , t ∈ T ,mi ∈M∪ {m0}

C3 : fk,t ≤
N∑
i=0

xik,t
1

si
,∀uk ∈ U , t ∈ T

C4 :

K∑
k=1

N∑
i=1

xik,tci ≤ C,∀t ∈ T

C5 :

K∑
k=1

bk,t ≤ Bt,∀t ∈ T

C6 : lim
T→+∞

1

T

T∑
t=0

lt ≤ Lmax.

(8)
The weighted parameter ω controls the trade-off be-

tween accuracy and energy consumption. As a result,
the optimal solution of Problem P trades the average
accuracy for lowering the energy consumption on mobile
devices. Constraints C1 and C2 ensure that, in each time
slot, one and only one CNN model can be selected
by user uk. Constraint C3 says that the selected frame
rate cannot exceed the processing frequency of the CNN
model (remote or local), otherwise video frames would
accumulate and lead to a long queue delay. The fourth
constraint C4 is due to the capacity of the edge server,
denoted as C. In this paper, we can estimate the available
bandwidth of the upload link to the edge server at the
beginning of each time slot, and we assume that the
bandwidth does not change in each single time slot. In fact,
this assumption can hold in many scenarios. Even if the
bandwidth changes frequently in some extreme case, we
can reduce the length of each slot to mitigate the effect
of the bandwidth change on the performance. Let Bt
represent the uplink bandwidth over the entire slot t,
constraint C5 imposes per-slot constraint on the available
bandwidth. The last constraint C6 requires that the long-
term average latency not exceed the threshold Lmax.

The first major challenge that impedes the derivation

of the optimal solution to the above problem is the
lack of future information. To optimally solve problem
P , near future information about the network condition
and the dynamics of video contents is required, which
is difficult to accurately predict in advance. Moreover,
P is a mixed integer nonlinear programming and is
very difficult to solve even if the future information
is known a priori. These challenges call for an online
approach that can efficiently adapt configurations and
allocate bandwidth resources for video streams on the
fly without foreseeing the future.

3 ONLINE ALGORITHM FOR THE SINGLE-
EDGE SCENARIO

To decouple the long-term latency constraint, we trans-
form the original time-averaged problem into a series of
minimization problems leveraging the Lyapunov frame-
work [28], and then we develop a lightweight online
algorithm which only relies on the current bandwidth
information and video content to derive the adaptation
strategy, without global information over the long run.

3.1 JCAB
A major challenge of directly solving Problem P (Eq. (8))
is that the long-term latency constraint couples CNN
model selection, frame rate adaption and bandwidth
allocation across different slots. To address this chal-
lenge, we define a virtual queue q(t) as a historical
measurement of the latency overflow and assume that
the initial queue backlog is 0 (i.e., q(0) = 0). Since the
queue is used to capture the latency overflow in each
slot, it is not hard to see that its length evolves as follows:

q(t+ 1) = [q(t) +
1

K

K∑
k=1

lk,t − Lmax]+, (9)

where [x]+ denotes the maximum among x and 0. From
Eq. (9), we see that the queue backlog at time slot (t+1) is
the sum of the backlog at slot t and the latency overflow
( 1
K

∑K
k=1 lk,t − Lmax) at the current time slot. Without

loss of generality, we assume that the arrivals (i.e., lt =
1
K

∑K
k=1 lk,t) for the queue backlog are independent and

identically distributed (i.i.d) over slots.
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If we aggressively pursue high accuracy by adopting
the most expensive configuration, the queue backlog
q(t) will increase unboundedly, leading to unacceptable
delays and poor user experience, so it is crucial to keep
the latency queue stable. We first define a quadratic
Lyapunov function as follows:

L(q(t)) =
1

2
(q(t))2, (10)

which represents a scalar measure of latency queue
congestion. For instance, a small value of L(q(t)) implies
that the queue backlog is small.

To keep queue stability by persistently pushing the
Lyapunov function towards a less congested state, we
introduce the one-slot Lyapunov drift as

∆(q(t)) = E[L(q(t+ 1))− L(q(t))|q(t)], (11)

in which E[x] denotes the expectation of variable x.
The drift ∆(q(t)) denotes the expected change in the

Lyapunov function over one time slot, given the current
state in time slot t. A smaller ∆(q(t)) implies that the
virtual queue has strong stability. Our goal is to find
the optimal adaption strategy for all video streams to
coordinate the network condition, taking the variation
of video contents into consideration as well. By incorpo-
rating latency queue stability into the trade-off between
accuracy and energy cost, we define a Lyapunov drift-
plus-penalty term as

∆(q(t))− V · E[at − ωet|q(t)]. (12)

The positive parameter V is used to adjust the trade-
off between latency minimization and utility maximiza-
tion. Rather than directly minimizing the drift-plus-
penalty term in each slot, the min-drift-plus-penalty
algorithm [32] in Lyapunov optimization seeks to mini-
mize an upper bound of it. We derive an upper bound
on the drift-plus-penalty term in our specific problem
and it is stated in the following lemma:

Lemma 1: Let the largest average delay of all video
streams in all time slots be lmax = maxt∈T {lt}, then B =
1
2 (lmax−Lmax)2 is a constant, which implies the second
moments of arrivals and service are bounded (i.e., ∀t,
E[ 1

2 (lt−Lmax)2|q(t)] ≤ B). For all possible values of q(t)
by using any offloading configuration over all time slots,
the following statement holds:

∆(q(t))− V · E[at − ωet|q(t)] ≤
B + q(t)E[(lt − Lmax)|q(t)]− V · E[at − ωet|q(t)].

(13)

Proof: From Eq. (11), we have

∆(q(t)) = E[L(q(t+ 1))− L(q(t))|q(t)]

=
1

2
E[q2(t+ 1)− q2(t)|q(t)]

≤ 1

2
E[(q(t) + lt − Lmax)2 − q(t)2|q(t)]

=
1

2
(lt − Lmax)2 + q(t)E[(lt − Lmax)|q(t)]

= B + q(t)E[(lt − Lmax)|q(t)].

(14)

Algorithm 1: JCAB for the Single-edge Scenario
Input: q(0)← 0, µk, γk, Lmax, C;

1 for t = 0 to T − 1 do
2 for k = 1 to K do
3 Based on the first few frames at slot t,

choose the most appropriate εtk(r) and
φtk(f) from a set of pre-defined functions;

4 Obtain {xt, ft, bt} by solving P1;
5 q(t+ 1)← [q(t) + lt − Lmax]+;

We now incorporate the expected utility over one time
slot to both sides of Eq. (14), then we have

∆(q(t))− V · E[at − ωet|q(t)] ≤ B
+ q(t)E[(lt − Lmax)|q(t)]− V · E[at − ωet|q(t)].

(15)

The lemma follows immediately.
Then we attempt to minimize the supremum bound

for the drift-plus-penalty function, and the new real-time
optimization problem can be presented as follows:

P1 : min
{x,b,f}

q(t) · lt − V · (at − ωet)

s.t. C1, C2, C3, C4, C5.
(16)

Notice that solving P1 requires only currently avail-
able information as the input. By considering the ad-
ditional term q(t) · lt, the system takes into account
the average latency incurred by data transmission and
processing in the current slot. As a consequence, when
q(t) is large, minimizing the latency is more critical.
Thus, our algorithm works by following the philosophy
of “when bandwidth becomes insufficient, degrade the
configuration to avoid violating the latency constraint”.
The latency queue is maintained without future informa-
tion, guiding the configuration adaption and bandwidth
allocation to follow the long-term latency constraint,
thereby enabling online decision making.

We develop the JCAB algorithm (shown in Alg. 1)
to solve Problem P . In our online control algorithm
JCAB, we divide time into T discrete time slots. At
the beginning of each time slot, based on the first few
frames, JCAB chooses the most appropriate εtk(r) and
φtk(f) from a set of pre-defined functions. These pre-
defined functions can be obtained as follows: we roughly
divide targets into several categories according to their
relative sizes in the video, and we profile several accu-
racy functions with respect to frame resolution under
different conditions; similarly, different accuracy func-
tions with respect to frame rate are drawn when targets
move at different speed levels. Note that this heuristic
method is not always accurate but it is flexible and
quick, while the profiling cost is relatively low. Given
the accuracy functions, we can find a good configuration
and bandwidth allocation scheme for the current slot
by solving problem P1. Finally, the average latency is
utilized to update the virtual queue.
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3.2 Theoretic Analysis of JCAB

In this subsection, we analyses the performance of JCAB.
We first introduce the following lemma:

Lemma 2: For any δ > 0, there exists a stationary and
randomized policy Π for P , which decides bΠt , xΠ

t and
fΠ
t independent of the current queue backlogs q(t), such

that the following inequalities are satisfied:

E[lΠt − Lmax] ≤ δ, (17)

and
E[aΠ

t − ωeΠ
t ] ≤ ν∗t + δ, (18)

in which ν∗t is used as the optimum for instantaneous
subproblem per slot.

Proof: We prove this based on Theorem 4.18 in [28].
The evolution of the model selection, frame rate selec-

tion, and bandwidth allocation from time 0 to (T − 1)
can be seen as a walk in the solution space of Problem
P . According to Theorem 4.18 in [28], we know the
stationary and randomized policy Π is in the closure of
the optimal solution. If it is closed, then Eqs (17) and (18)
hold with δ = 0. If the optimal solution is not closed,
then Π is a limit point of the optimal solution, yielding
Eqs (17) and (18) hold with δ > 0.

Now we can present the performance bound of JCAB.
Theorem 1: JCAB achieves the following performance

bounds on the time-averaged utility and service latency:

lim
T→+∞

1

T

T∑
t=0

E[at − ωet] ≥ νopt −
B

V
, (19)

lim
T→+∞

1

T

T∑
t=0

E[lt] ≤
B

ε
+
V

ε
(νopt − νmin) + Lmax, (20)

where νmin is the objective value of the worst solution
for P , νopt is the optimal utility of Problem P that can be
achieved by ignoring the delay constraint, and ε>0 is a
constant which represents the long-term latency surplus
achieved by some stationary control strategy.

Proof: Recall that JCAB seeks to choose strategies
that minimize P1 among the feasible decisions including
the policy in Lemma 2. By plugging Lemma 2 into the
drift-plus-cost inequality in Eq. (13), we obtain

∆(q(t))− V · E[at − ωet|q(t)]
≤ B + q(t)E[(lΠt − Lmax)|q(t)]− E[aΠ

t − ωeΠ
t |q(t)]V

≤ B + δq(t)− V (ν∗t + δ).
(21)

By letting δ approach zero, summing the inequality
over t ∈ {0, 1, · · · , T −1} and then dividing the result by
T , we have

1

T
E[L(q(t))− L(q(0))]− V

T

T−1∑
t=0

E[aΠ
t − ωeΠ

t ]

≤ B − V · 1

T

∑
t

ν∗t

≤ B − V · νopt,

(22)

where the second inequality holds since for a minimum
optimization, the sum of dynamic optimums is less than
the sum of the global one for all slots.

Rearranging the terms and considering the fact that
L(q(t)) ≥ 0 and L(q(0)) = 0 yield the time-averaged
utility bound:

lim
T→+∞

1

T

T∑
t=0

E[at − ωet] ≥ νopt −
B

V
. (23)

To obtain the service delay bound, by using Lemma 2,
we have there are ε > 0, Φ(ε) and a policy Γ that satisfy

E[lΓt − Lmax] ≤ −ε, (24)

and
E[(aΓ

t − ωeΓ
t )− ν∗t ] = Φ(ε). (25)

Plugging the above into Eq. (13), we have

∆(q(t))− V · E[at − ωet] ≤ B − εq(t)− V Φ(ε). (26)

By summing the above over t ∈ {0, 1, · · · , T − 1} and
rearranging terms, we have

1

T

T−1∑
t=0

E[q(t)]

≤
B − V (Φ(ε)− 1

T

T−1∑
t=0

E[aΓ
t − ωeΓ

t ])

ε

≤ B

ε
− V

ε
(νopt − νmin).

(27)

Note that
T−1∑
t=0

E[q(t)] ≥
T−1∑
t=0

E[lt − Lmax], (28)

we have

1

T

T−1∑
t=0

E[lt] ≤
B

ε
− V

ε
(νopt − νmin) + Lmax. (29)

Taking a lim sup of Eq. (29) as t→ +∞ yields the service
delay bound. The theorem holds immediately.

Note that Eqs. (19) and (20) characterize the utility
delay tradeoff within [O(1/V ), O(V )]. Specifically, we
can use an arbitrarily large value of V to drive the time-
averaged utility arbitrarily close to the optimal νopt at a
cost. As Eq. (20) implies, the time-averaged queue back-
log grows linearly with V . Such a utility-delay tradeoff
allows JCAB to make flexible configuration adaption.
We will explain how the value of V impacts the overall
performance in Section 5.

3.3 A Practical Algorithm for Solving the One-Slot
Problem for JCAB
In the last subsection, we give the performance guaran-
tee of JCAB. However, to complete the JCAB algorithm,
it remains to solve the optimization problem P1. Unfor-
tunately, even this real-time optimization problem P1 is
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NP-hard in general [33], due to its combinatorial nature.
In this subsection, we present a practical algorithm for
solving the one-slot problem for JCAB. Note that, the
performance analysis presented in the last subsection
does not depend on the algorithm discussed in this
subsection.

Let xt denote {xik,t|∀mi ∈ M,∀uk ∈ U}, which is
the collection of model selection variables in time slot t.
Similarly, we use ft = {fk,t|∀uk ∈ U} to represent frame
rate selection for all video streams in time slot t, and
bt = {bk,t|∀uk ∈ U} is the bandwidth allocation scheme
in time slot t. Supposed that model selection xt is fixed,
there are two problems left to be solved.

The first problem is optimizing bandwidth allocation to
reduce latency. Since the utility function is totally deter-
mined by the configuration, while bandwidth allocation
only influences the service latency, the main objective of
bandwidth allocation is to minimize the average latency
lt in each time slot,

P2 : min
{bt}

q(t) · lt. (30)

The solution satisfies the Karush-Kuhn-Tucker (KKT)
condition [34], so the optimal bandwidth allocation can
be derived as follows:

bk,t
∗ =

√∑N
i=0 α(xik,tri)

2∑K
k=1

√∑N
i=0 α(xik,tri)

2
. (31)

The second problem is adapting frame rates to maximize
configuration utility. Given the bandwidth allocation bt
and model selection xt, the frame resolutions are fixed
and the average latency can be seen as a constant.
The objective of frame rate adaption is to find the
optimal tradeoff between detection accuracy and energy
consumption, which is equal to the maximum of the
following utility function:

P3 : max
{ft}

at − ωet. (32)

As we mentioned before, the relationship between
detection accuracy and frame rate can be formulated as
a concave function. Suppose that the accuracy function
with respect to frame rate for uk in slot t is h1 −
h2e
−fk,t/h3 , where h1, h2, and h3 are known constant

coefficients. Therefore, Problem P3 is a simple convex
optimization problem [34] with only one kind of vari-
ables, i.e., fk,t. It is not hard to find the optimal frame
rates that make Eq. (32) reach its global maximum:

fk,t
∗ =

−h3 log( ωµkh3

g2·ε(
∑N
i=0 α(xik,tri)

2)
) if x0

k,t = 1,

−h3 log(
ωγkh3α

∑N
i=0(xik,tri)

2

h2·ε(
∑N
i=0 α(xik,tri)

2)
) otherwise.

(33)

Based on the analysis above, we can come to the
conclusion that once the optimal CNN model selection
xt is found, P2 and P3 are both easy to solve. However,
since model selection variables are binary, the whole
problem is still a mix-integer nonlinear problem, hence,
it is impossible to find an optimal solution in polynomial

Algorithm 2: One Slot Optimization for JCAB

Input: εtk(r), φtk(f), µk, γk, Lmax, C, initial model
selection vector xt;

Output: model selection xt, frame rate selection
ft, bandwidth allocation bt;

1 repeat
2 Randomly pick a user uk and change its

model selection vector xk,t into x̂k,t by
selecting a new model m̂;

3 if x̂k,t is feasible then
4 x̂t ← {x1,t, x2,t, ..., x̂k,t, ..., xK,t};
5 Obtain b̂∗t by solving P2 using Eq. (31);
6 Obtain f̂∗t by solving P3 using Eq. (33);
7 η ← 1

1+e(
ĝ−g
τ

)
;

8 With probability η, user uk accepts the new
model m̂, bt ← b̂∗t , ft ← f̂∗t ;

9 With probability (1− η), uk keeps xk,t
unchanged;

10 until Tmax iterations have been reached or there is no
significant improvement (i.e., |ĝ − g| < 0.01) in the
objective value for more than 10 iterations;

11 return xt, ft, bt;

time. In this work, we propose to leverage Markov
approximation [35] to obtain a near-optimal solution for
model selection, as shown in Algorithm 2.

The one slot optimization algorithm for JCAB is de-
scribed in Alg. 2. Without causing any confusion, we use
xk,t = {x1

k,t, x
2
k,t, ..., x

N
k,t} to denote the model selection

vector for uk. JCAB has multiple optimization objectives.
On the one hand, it aims to find the optimal configu-
ration to maximize the utility in Eq. (8); on the other
hand, it should find the optimal bandwidth allocation
since all cameras connected to the edge server share the
same network channel and video streams vary in data
size and bandwidth requirement. Firstly, we randomly
select a user uk to choose a new CNN model m̂, while
the model selection for other users keeps unchanged,
then the new model selection vector x̂t is obtained, under
which the optimal b̂t and f̂t can be derived by solving P2

and P3, respectively. Afterwards, the new objective value
ĝ is calculated, and g is known as the objective function
value for the old solution {xt, bt, ft}. In the current
iteration, the model selected by uk is updated to m̂
with probability η and keeps unchanged with probability
1−η depending on the objective value difference (ĝ−g).
Therefore, changing CNN model selection is more likely
to occur if the new configuration ˜{x̂t, b̂t, f̂t} results in
a lower objective value. The above iterative loop will
continue until Tmax iterations have been reached or there
is no significant improvement (i.e., |ĝ − g| < 0.01) for
more than 10 iterations.

The parameter τ ≥ 0 (Line 7), referred to as the
smooth parameter, is used to control exploration versus
exploitation (i.e. the degree of randomness). When τ is
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small, the algorithm tends to keep a new decision with a
larger probability if it is better than the current decision.
However, in this case, it takes more iterations to identify
the global optimum since the algorithm may be stuck
in a local optimum for a long time before exploring
other alternatives that may lead to more efficient so-
lutions. When τ becomes large, the algorithm tries to
explore all possible solutions from time to time without
convergence. The selection of τ will be discussed in
Section 5. As shown in [36], by proper parameter tuning,
the Markov approximation-based Alg. 2 can converge in
a super-linear rate.

3.4 Summary
To summarize this section, we list the major assumptions
made in our work for using the Lyapunov framework:
• The bandwidth is assumed to be stable within each

time slot.
• The Lyapunov framework actually supports multi-

ple queues. However, there is only one virtual queue
backlog in our work, whose arrivals in slot t are
lt = 1

K

∑K
k=1 lk,t and the service is a fixed threshold

Lmax. Here, we assume that the arrivals are i.i.d
over slots and their mean rate, E[lk,t], is constant.

• In order to measure the stability of virtual queue
backlog, the latency overflow is used per slot (i.e.,
the latency overflow for slot t is lt−Lmax). Then, the
Lyapunov framework requires such latency over-
flow to be bounded from two aspects: 1) the second
moments of arrivals and service are bounded

∀t, E[
1

2
(lt − Lmax)2|q(t)] ≤ B,

where B > 0 is a finite constant as shown in Lemma
1; and 2) the expected latency overflow is negative

∀t, E[lΓt − Lmax] ≤ −ε,

where ε > 0 exists for a policy Γ as shown in
Inequality (24) in our paper and it is equivalent to
Lemma 2. Here, the policy Γ is independent of cur-
rent queue backlog, which implies a certain policy
always exists for improving the queue backlog to
be cleared. In sum, these two assumptions imply
that the overflow for the queue backlog could be
controlled and cleared to avoid the violation of time
averaged constraints.

• The distance between the feasible sudation of in-
stantaneous subproblem and its optimum is accept-
able, ∀t, E[aΓ

t −ωeΓ
t −ν∗t ] = Φ(ε), which also implies

the policy is independent of current queue backlog.

4 THE MULTI-EDGE SCENARIO

In the last section, we present the online algorithm JCAB
for the single-edge scenario. In this section, we discuss
how to extend JCAB to handle the multi-edge scenario.

Problem Formulation. We first present the problem
formulation. Assuming that there are M edge servers,

each of which contains K CNN models m1, m2, · · · ,
mK . We assume that the edge servers are close with
each other, thus, the propagation delay can be ignored.
The capacity of the j-th edge server is Cj . The uplink
bandwidth of the j-th edge server in time slot t is Bjt .
We use yjk,t to indicate whether user uk chooses the j-th
server to offload in time slot t; we use xj,ik,t to indicate
whether user uk chooses the i-th CNN model on the j-th
server to offload in time slot t. The other notations are
similar to those in the single-edge case. The problem can
be formulated as follows:

PM : max
{y,x,b,f}

lim
T→+∞

1

T

∑T

t=0
(at − ωet)

s.t. C1 :

M∑
j=1

N∑
i=0

yjk,tx
j,i
k,t = 1,∀k, t

C2 : xj,ik,t ∈ {0, 1},∀k, t, j, i

C3 : fk,t ≤
M∑
j=1

N∑
i=0

yjk,tx
j,i
k,t

1

si
,∀k, t

C4 :

K∑
k=1

N∑
i=1

yjk,tx
j,i
k,tci ≤ Cj ,∀j, t

C5 :

K∑
k=1

yjk,tbk,t ≤ B
j
t ,∀j, t

C6 : lim
T→+∞

1

T

T∑
t=0

lt ≤ Lmax

C7 :

M∑
j=1

yjk,t = 1,∀k, t

C8 : yjk,t ∈ {0, 1},∀k, t, j
C9 : xj,ik,t ≤ y

j
k,t,∀k, t, j.

The above problem has three new constraints. Con-
straints C7 and C8 ensure that, in each time slot, one and
only one edge server can be chosen by a user. Constraint
C9 says that a user cannot use the CNN model on an
edge server which is not chosen by it. This problem is
harder than Problem P , since it allows one more decision
for each user about which edge server to choose.

Algorithm Design. The main idea is to decouple
the edge server assignment from the other decisions.
Initially, we assign users or video streams to edge servers
based on the capacities and uplink bandwidths of edge
servers; we then update or improve the edge server
assignment at the beginning of each time slot based
on the change of the uplink bandwidths and accuracy
functions. The details are shown in Alg. 3.

Initially, we use first-fit to assign video streams to edge
servers: the size of each video stream is seen as 1, while
the volume of the j-th edge is seen as d (Cj+σB

j
0)∑M

h=1(Ch+σBh0 )
Ke.

By doing so, we can ensure these M edge server can
accommodate K video streams. Here, σ is a parameter
controlling the trade-off between computing resources
and bandwidth resources. Intuitively, an edge server
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Algorithm 3: mJCAB for the Multi-edge Scenario

1 for j = 1 to M do

2 volj0 ← d
(Cj+σB

j
0)∑M

h=1(Ch+σBh0 )
Ke;

3 Assign K users to M edges using first-fit [37];
4 for t = 0 to T − 1 do
5 for k = 1 to K do
6 Based on the first few frames at slot t,

choose the most appropriate εtk(r) and
φtk(f) from a set of pre-defined functions;

7 for j = 1 to M do
8 Kj ←the set of users assigned to j-th edge;

if
∑
k∈Kj (auc(ε

t
k(r))− auc(εt−1

k (r))) < 0,∑
k∈Kj (auc(φ

t
k(f))− auc(φt−1

k (f))) < 0, or
its uplink bandwidth decreases then

9 uk ← argk mink∈Kj (ε
t
k(r) + φtk(r));

10 Move uk to another edge whose uplink
bandwidth increases or the total auc
of all users on that edge increases;

11 Choose {xt, ft, bt} by solving P1 for each
edge server using Alg. 2;

12 for j = 1 to M do

13 qj(t+ 1)← [qj(t) +
∑K
k=1 y

j
k,tlk,t∑K

k=1 y
j
k,t

− Lmax]+;

with a large computing capacity and a large uplink
bandwidth should accommodate more video streams.

At the beginning of each time slot, mJCAB tries to
adapt the edge server assignment to the changing accu-
racy functions and bandwidths. The bandwidth change
is easy to capture, however, how can we represent
the change of an accuracy function? We introduce the
concept of AUC (area under curve). The auc of a curve
is the area bounded by the y = 0, the curve itself,
x = x1, and x2. For example, in Fig. 4(a), the auc of
the red dashed line is the area bounded by y = 0, the
red dashed curve, x = 360p, and x = 1080p. When the
auc of a curve decreases, it means we need a higher
resolution or frame rate to achieve the accuracy as before.
Therefore, in the mJCAB algorithm, when the uplink
bandwidth of an edge server decreases, the total auc of
all users on this edge decreases, we try to move one user
that has the smallest auc to another edge whose uplink
bandwidth increases or the total auc of all users on that
edge increases.

We then choose {xt, ft, bt} by solving P1 for each
edge server using Algorithm 2, after which we update
the virtual queue length for each edge server. Note that,
each edge server has a different virtual queue.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of JCAB
and mJCAB through simulations, and compare its per-
formance against several baselines. We simulate each

edge server with five CNN models, corresponding to
each model, the input images are 360p, 540p, 720p, 900p
and 1080p, respectively. The processing time per frame
of these remote CNN models increases from 20ms to
250ms, according to their model sizes. Video frames
processed by the local CNN model are scaled to 360p,
but the processing speed can be much lower with the
mean value of 200ms per frame. The network bandwidth
varies from 20Mbps to 100Mbps, according to the ex-
perimental measurements in [5]. Energy consumption of
local processing (µk) is 5 J/frame and γk for all front-end
devices are uniformly set to be 0.5× 10−5 (J). Similar to
Chameleon [14], frame rates and resolution of a video
stream can be dynamically adjusted by FFmpeg [38].

We roughly divide targets into three categories accord-
ing to their relative sizes in the video, and we profile
several accuracy functions with respect to resolution.
Similarly, different accuracy functions with respect to
frame rate are drawn when targets move at different
speed levels. At the beginning of each time slot, the
most appropriate model will be selected according to the
characteristics of targets. In the simulation, we compare
our algorithms with three other algorithms:

• Non-adaptive: All video streams pick the most ex-
pensive configurations throughout the simulations
to maximize the accuracy, while the energy and
latency constraint are ignored.

• Delay-optimal: It aims to minimize the average
service delay in each slot, regardless of the analytics
accuracy and energy consumption.

• Delay-myopic: It imposes a hard latency constraint
in each slot. It can satisfy the long-term delay con-
straint without requiring future information. How-
ever, it is less adaptive and purely myopic.

The reasons for choosing the above algorithms are as
follows. Firstly, as we mentioned before, the joint con-
figuration adaption and bandwidth allocation problem
in this paper is significantly different from any existing
studies, thus, none of existing algorithms can be used as
comparison algorithm without any modifications.

Secondly, since we are mostly interested in the fol-
lowing two metrics: accuracy and delay, we want to
compare JCAB and mJCAB with other baselines on
these two metrics. Non-adaptive ignores the energy and
delay constraints and it always pick the most expensive
configurations, i.e., the highest resolution and the high-
est frame rate, therefore, Non-adaptive can achieve the
highest accuracy in any situations and it can provide an
upper bound on the accuracy. Delay-optimal minimizes
the delay while ignoring the accuracy and energy con-
straints, thus, it provides a lower bound on the delay.
Delay-myopic imposes a hard delay constraints in each
slot, which means it may lose some possible opportuni-
ties to increase the accuracy with temporarily violating
the delay constraint. Delay-myopic can be seen as a
degeneration of JCAB when the Lyapunov optimization
techniques are not used.
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5.1 Comparison in the Single-Edge Scenario

We compare JCAB with Non-adaptive, Delay-optimal,
and Delay-myopic in this subsection.

Figs. 5 and 6 show the average system delay and
accuracy over time of four different algorithms. Note
that JCAB has a convergence process, during which
the algorithm gradually finds the optimal trade-off be-
tween latency and accuracy. Generally, JCAB achieves a
desirable average accuracy while closely following the
long-term energy constraint. The Non-adaptive scheme
achieves the highest system accuracy as expected. How-
ever, it is achieved at the cost of an extremely long
average latency per frame. Compared to Non-adaptive,
JCAB slightly sacrifices the accuracy performance to
meet the latency constraint. In contrast to Non-adaptive,
the Delay-optimal method achieves the lowest latency
in every slot, but the short latency comes with a big
sacrifice in the average accuracy. For the Delay-myopic
scheme, the long-term latency constraint Lmax = 0.23
is also satisfied. However, because a hard latency con-
straint is imposed in every time slot, the algorithm is
less flexible, resulting an inferior accuracy performance
compared to JCAB.

Impact of bandwidth. Figs. 7 and 8 show the impact
of bandwidth on the converged time-averaged system
delay and accuracy. Bandwidth traces are generated with
the mean value increasing from 25Mbps to 100Mbps,
according to the experimental measurements in [5]. As
shown in Fig. 7, generally, all algorithms except Non-
adaptive achieve a higher accuracy when bandwidth

increases, since a higher bandwidth can support more
expensive configurations. The average service latency
of both JCAB and Delay-myopic are bounded. There is
an insignificant latency performance gap between them
when bandwidth is insufficient, but the gap decreases
when bandwidth increases. However, the other two
algorithms are more sensitive to bandwidth variation,
under which the system latency decreases dramatically
when the uplink bandwidth increases.

Impact of user number. Fig. 9 shows the average
perceived latency and analytics accuracy versus the
number of users. For the Non-adaptive scheme, the
latency increases significantly due to serious bandwidth
contention. Accordingly, the converged time-averaged
accuracy has a slight decrease when the user number
exceeds 6, due to the limited computing resource of
the edge server. For the Delay-optimal offloading, the
achieved accuracy remains at a relative low level with a
steady growth in system latency. The long-term average
latency of JCAB and Delay-myopic closely follows the
latency constraint under various user numbers. When
serving more users, the latency constraint is achieved
at a slight sacrifice in the analytics accuracy. For the
Delay-myopic method, the time-averaged latency can be
even slightly below the latency constraint when the user
number is small.

5.2 A Running Example

Fig. 11 shows how the configurations adapt to band-
width variation and video content dynamics. There are



IEEE/ACM TRANSACTIONS ON NETWORKING 12

0 10 20 30 40
Time Slot

0

20

40

60

80

Sh
ar

e 
of

 b
an

dw
id

th video3
video2
video1

(a) Bandwidth

0 10 20 30 40 50

Time Slot

400

600

800

1000

R
e

s
o

lu
ti
o

n

video1

video2

video3

(b) Resolution

0 10 20 30 40 50

Time Slot

0

10

20

F
ra

m
e

 r
a

te

video1

video2

video3

(c) Frame rate

Fig. 11: Runtime behavior of JCAB over time.
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three cameras connected to the same edge server. The
video content varies over time; in the 20th slot, targets in
video stream 1 move slow, while targets in video stream
2 move fast, and thus the optimal frame rate for these
two video streams changes accordingly. The intuition
behind this adaption is that “more frames can be skipped
if the difference between adjacent frames is small”. In the
15th slot, targets in video stream 3 move near, we can
degrade resolution for energy saving, while still main-
taining the desired accuracy. As illustrated in Fig. 11(a),
there are occasions when available bandwidth decreases
dramatically, and all video streams subsequently lower
the resolution to reduce the bandwidth requirement.
Specifically, Camera 3 switches to local video processing,
since it is less sensitive to resolution degradation relative
to the other two video streams.

5.3 The Impact of Hyperparameters
We evaluate the impact of several hyperparameters in
this subsection.

Accuracy-energy tradeoff. Fig. 10 presents the con-
verged time-averaged accuracy and energy consumption
of JCAB under different values of the control parameter
ω. We observe that when increasing ω from 0.001 to 0.003,
the algorithm gains up to 44% energy consumption
reduction with only 4% loss of the analytics accuracy.
It implies that when a proper ω is set, our proposed al-
gorithms will efficiently save energy consumption while
maintaining a desirable accuracy.

Convergence. Fig. 12 shows the convergence process
of Alg. 2. In general, a smaller τ leads to a faster con-
vergence speed. When τ = 0.05, the algorithm converges
within 50 iterations. However, blindly decreasing τ im-
pedes the identification of global optimum and results in

the convergence to inferior solutions. In our experiment,
the most appropriate value for τ is 0.1, which can achieve
a good trade-off between the solution quality and the
convergence rate.

Latency-accuracy tradeoff. Fig. 13 shows the accu-
racy of JACB under different values of Lmax between
the 800th and 1,000th time slots in an experiment. We
observe that a higher accuracy can be achieved with
a looser latency requirement. The accuracy fluctuates
because of the variability of network bandwidth and
video content. It is also obvious that the distribution
of accuracy is more centralized to the median as Lmax
increases. When Lmax is small, the latency constraint can
be easily violated and sometimes accuracy should be
greatly sacrificed to meet the latency constraint. On the
contrary, a large Lmax reduces the fluctuation range of
the accuracy. As we mentioned before, the parameter V
also controls the accuracy-latency tradeoff. Fig. 14 com-
pares the average queue backlog with different values
of the control parameter V . In Fig. 14, we know that
all queue backlogs gradually converge to certain values,
respectively. Thus, if there are more time slots, the long-
term constraint can be satisfied. When the parameter V
is large, it needs more time slots to converge. On the
contrary, when the parameter V decreases, minimizing
the system latency becomes the primary goal, which
makes the service latency more stable.

5.4 Comparison in the Multi-Edge Scenario
We compare mJCAB with mNon-adaptive, mDelay-
optimal, and mDelay-myopic in this subsection. mNon-
adaptive denotes Non-adaptive with the same edge as-
signment with mJCAB; mDelay-optimal denotes Delay-
optimal with greedy edge server assignment at the be-
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ginning of each time slot; and mDelay-myopic denotes
Delay-myopic with randomly generated edge assign-
ment at the beginning of each time slot. The results are
shown in Figs. 15, 16, and 17.

Fig. 15 shows the impact of bandwidth on the con-
verged time-averaged detection accuracy. The band-
width traces are generated using the same way in the
single-edge scenario. When the available bandwidths
increase, all algorithm achieve better accuracies. Figs. 16
and 17 show the comparison results in terms of delay. In
general, the mNon-adaptive scheme achieves the highest
system accuracy but has the worst system delay; the
mDelay-optimal scheme achieves the best delay but has
the lowest accuracy. mJCAB achieves a desirable average
accuracy while closely following the long-term energy
constraint. In other words, mJCAB slightly sacrifices the
accuracy performance to meet the latency constraint.

6 RELATED WORK

We discuss the most closely related work in 3 categories.
Cloud-assisted video stream processing. Several

studies [5], [18], [19] focused on cloud-assisted video
stream processing. For example, VideoStorm [18] takes
the resource-quality trade-off and the variety in quality
and latency goals into account; GigaSight [19] contin-
uously collects crowd-sourced videos from mobile de-
vices. However, they all rely on remote clouds to ingest
video streams, and assume that sufficient bandwidth is
provisioned between cameras and the cloud. Different
from them, we promote pushing computation to the
network edge in proximity to data sources. In addition,
we allow performing video analytics locally leveraging
the computing power of smart cameras [39].

Video analytics with single edge. Chameleon [14] pe-
riodically searches an exponentially large configuration
space to find the optimal configuration for a video query,
however, it only focuses on the trade-off between analyt-
ics accuracy and computation resource, while ignoring
the fact that bandwidth is a scarce resource in video
analytics. EAAR [16] utilizes dynamic RoI encoding and
the decoupling of rendering and offloading to optimize
the end-to-end latency, while we aim to find the opti-
mal tradeoff between accuracy and energy consumption.
DDS [40] uses server-side lightweight feedbacks to save

bandwidth usage, however, it ignores client-side energy
consumption and CNN model selection. Reducto [41]
relies on camera-side filtering to mitigate the server-side
load, however, Reducto did not consider camera-side
energy consumption and the server latency constraint.
O3 [42] employs online learning to find the best trigger
threshold for switching objection detection on edge and
tracking on camera. The most related work is proba-
bly [43], in which the authors considered the complex
interaction among model accuracy, video quality, battery
constraints, network data usage, and network conditions
to determine an optimal offloading strategy. However,
there are no analytical models for resource demand
and quality for a query configuration in [43], and they
focused on client-side scheduling whereas we focus on
server-side decisions for multiple video streams, with
constraints on the network bandwidth and the capacity
of edge servers.

Video analytics with multiple edges. CrowdVi-
sion [20] parallelizes frame offload and local detection to
optimize the processing time. FACT [3] enables fast and
accurate object analytics. In these frameworks, images
are extracted from the video with a fixed sampling
rate, the analytics of different frames is treated as tasks
with the same complexity and accuracy. The assumption,
however, is improper since the frame rate and frame res-
olution will impact both the accuracy and query process-
ing time for video analytics applications. JetStream [21]
is the first to use configuration degradation to address
bandwidth limits, but it requires developers to write
manual policies which are generally sub-optimal. Our
work aims to find the optimal tradeoff between accuracy
and energy consumption in edge-assisted video analytics
systems, with a long-term latency constraint, and thus
none of these previous works can be directly and effec-
tively applied to our problem.

7 DISCUSSION

In this section, we discuss several potential limitations
and future research directions.

More general accuracy model. In our work, we pre-
trained some accuracy models in edge servers, and the
accuracy profiler selects models for each video stream
according to the characteristics of targets. However, for
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two different video streams, the accuracy function with
respect to resolution may not be exactly the same even
if they have the same target size currently. Although our
model is not perfect, we believe that it is a reasonable
and valuable step towards studying content-aware adap-
tive video analytics in the edge environment.

Intra-frame encoding. To decrease the amount of
video data per frame, we can further utilize the redun-
dancy of video frames by encoding frames based on
intra-frame difference. This is especially useful when
the bandwidth is the bottleneck while the computing
resources are adequate.

Deploying JCAB in practice. JCAB and mJCAB can
run on the user-side. This approach offers several ad-
vantages over deployment on the server-side. First,
video streams do not need to send observations to edge
servers, which avoids unnecessary information exchange
and latency. Second, there is no need to modify edge
servers; in other words, this adaptive configuration se-
lection can be transparent to edge servers. Therefore,
client-side JCAB can be seen as an overlay on the ex-
isting video stream-based applications; whenever there
is failure in JCAB, we could disable the configuration
selection service and fall back to the default one. This
fault recovery mechanism could be invaluable.

8 CONCLUSION

In this paper, we study joint configuration adaption
and bandwidth allocation for the edge-assisted real-time
video analytics system. We proposed efficient online
algorithms which can select appropriate configurations
for multiple video streams according to the network con-
dition and video contents, taking energy consumption,
system latency, analytics accuracy into consideration.
The proposed algorithm is easy to implement while
providing provable performance guarantee.
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