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Abstract

Given an undirected network G(V,E) and a set of traffic requests R, the
minimum power-cost routing problem requires that each Rk ∈ R be routed
along a single path to minimize

∑
e∈E(le)

α, where le is the traffic load on edge
e and α is a constant greater than 1. Typically, α ∈ (1, 3]. This problem is
important in optimizing the energy consumption of networks.

To address this problem, we propose a randomized oblivious routing algo-
rithm. An oblivious routing algorithm makes decisions independently of the
current traffic in the network. This feature enables the efficient implementa-
tion of our algorithm in a distributed manner, which is desirable for large-scale
high-capacity networks.

An important feature of our work is that our algorithm can satisfy the inte-
gral constraint, which requires that each traffic request Rk should follow a single
path. We prove that, given this constraint, no randomized oblivious routing al-

gorithm can guarantee a competitive ratio bounded by o(|E|α−1
α+1 ). By contrast,

our approach provides a competitive ratio of O(|E|α−1
α+1 log

2α
α+1 |V | · logα−1 D),

where D is the maximum demand of traffic requests. Furthermore, our results
also hold for a more general case where the objective is to minimize

∑
e(le)

p,
where p ≥ 1 is an arbitrary unknown parameter with a given upper bound
α > 1.
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The theoretical results established in proving these bounds can be further
generalized to a framework of designing and analyzing oblivious integral routing
algorithms, which is significant for research on minimizing

∑
e(le)

α in specific
scenarios with simplified problem settings. For instance, we prove that this
framework can generate an oblivious integral routing algorithm whose competi-
tive ratio can be bounded by O(logα |V | · logα−1 D) and O(log3α |V | · logα−1 D)
on expanders and hypercubes, respectively.

Keywords: Oblivious Routing, Integral Routing, Randomized Algorithm,
Competitive Ratio, Energy Efficiency

1. Introduction

In a minimum power-cost routing (MPR) problem, we are given a network
G(V,E) and a set of traffic requests R = {R1, R2, · · · , Rk, · · · }. V and E
represent the node set and edge set of G, respectively. Here we consider a
typical case where G is undirected [6], i.e., each edge e ∈ E is bidirectional.
Each traffic request Rk ∈ R specifies its source-target pair {sk, tk} ∈ V ×V and
the demand (i.e., the volume of flow that needs to be routed) dk ≥ 1. Routing
traffic requests along any edge e ∈ E will incur a cost that grows superadditively
with the load. Formally, let le be the flow routed along e, the corresponding
cost will be a power function f(le) = (le)

α, where α is a constant greater than
1 and is typically in the interval (1, 3]. The objective is to route every Rk ∈ R
along a single path to minimize the overall cost

∑
e f(le). In the following, we

will also use an equivalent form of the overall cost, ‖�l ‖αα, where �l represents the
load vector composed of every le, and the operator ‖ · ‖αα represents the α-th
power of the α-norm.

The MPR problem is attracting great attention because of the emergence of
energy conservation issues in data networks [6, 8, 21, 28]. Research conducted
by the U.S. Department of Energy [1] indicates that over 50 billion kWh of
energy is annually consumed by data networks, whereas at least 40% of this can
be saved if the electric power consumption2 of network elements is in proportion
to the actual traffic. For this reason, the speed scaling technique has become
ubiquitous because it allows network devices to dynamically adjust their electric
power consumption according to traffic. The electric power consumption of a
network device with the capability of speed scaling can be characterized by the
function P (x) = xq with q > 1, where x is the working speed and q is a constant,
the value of which depends on the hardware. The value of q is usually assumed
to be around 3 [12, 24], while new studies indicate that it can be smaller. For
instance, it will respectively take the values 1.11, 1.62, and 1.66 for Intel PXA
270, Pentium M770, and a TCP offload engine [41]. This implies that results

2To avoid any ambiguity, throughout this paper we use electric power consumption to
refer to the electrical power consumed by actual devices, whereas when we talk about the
“power-cost”, we mean a cost function in the form of (le)α.
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of the MPR problem will help optimize the electric power consumption of the
entire network.

In this paper, we investigate oblivious routing strategies [15, 17, 20, 22, 26,
27, 31] for the MPR problem. For an oblivious routing algorithm, each of its
routing decisions is made independently of network traffic. This means that the
routing paths for each Rk ∈ R are determined only using knowledge of the topol-
ogy of the network G, the source-target pair {sk, tk}, and some random bits (if
needed), in the absence of any information on the set R−Rk, the value of dk, or

the load vector �l. An oblivious routing algorithm can be viewed as precomput-
ing a routing “template” before any traffic request is known. In particular, for a
deterministic oblivious routing strategy, the corresponding template specifies a
unit flow H(u, v) for each node pair {u, v} in G [15, 17, 31]. Then, each Rk will be
routed according to the flow dk·H(sk, tk). By contrast, for a randomized oblivious
routing strategy, the precomputed template contains a probabilistic distribution
over a collection of unit flows {H1(u, v), · · · , Hi(u, v), · · · } for each {u, v} [31]. In
such case, each Rk will be routed according to the flow dk · Hi(sk, tk) with the
corresponding probability pi(sk, tk), which implies that traffic requests with the
same source-target pair can go through different paths.

An oblivious routing algorithm is attractive because of its simplicity of im-
plementation. Since it allows for the routing strategy to be precomputed and
stored in the routing table of every node, the oblivious routing algorithm can be
efficiently implemented in a distributed manner [32]. It is especially significant
for high-capacity network routers, where traffic requests will dynamically arrive
on a transient timescale in the order of nanoseconds [37, 42]. In such a cir-
cumstance, path selection based on real-time assessment of the traffic pattern
is time-consuming, which implies that a routing algorithm depending on the
current traffic may be inefficient. By contrast, oblivious routing algorithms can
make timely routing decisions by simply generating random bits and looking up
the routing tables, which will be a desirable feature when dealing with the issue
of energy efficiency in large-scale high-capacity networks.

To the best of our knowledge, only a few oblivious routing algorithms have
been designed to minimize ‖�l ‖αα, including [11, 15, 27]. These works, how-
ever, only consider the splittable version of MPR, where traffic requests can be
partitioned into fractional flows. In this paper, we focus on the unsplittable
version, which requires that each Rk ∈ R should follow a single path. Through-
out this paper, we will refer to this requirement as the integral constraint. This
constraint is important for many practical environments [3], especially for data
networks where the frames are not arbitrarily divisible.

When the integral constraint exists, any deterministic oblivious routing al-
gorithm will have to specify a fixed path for each source-target pair [17, 20].
We prove that because of the superadditivity of the cost function, such a rout-
ing algorithm cannot provide a competitive ratio of o(|E|α−1), which implies
a lower bound of Ω(|E|) on the competitive ratio for the typical case α ≥ 2.
Competitive ratio here refers to the largest gap between the cost incurred by
the oblivious routing algorithm and the cost associated with the optimal solu-
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tion [27, 32]. Such a lower bound indicates that randomization is required by
oblivious routing strategies to guarantee a satisfactory performance.

1.1. Our Results

In this paper, we propose a Randomized Oblivious Integral Routing algo-
rithm, called ROI-Routing, to solve the MPR problem. For each traffic request,
we will select a path from a set of precomputed candidates in a randomized
manner. This selection procedure will be carried out independently for each
traffic request according to a precomputed probability distribution. The num-
ber of random bits used for each traffic request Rk is bounded by O(log |E|).
With regard to the performance of ROI-Routing, we prove that:

Theorem 1. ROI-Routing has a competitive ratio of O
(
|E|α−1

α+1 log
2α

α+1 |V | ·
logα−1 D

)
, where D = maxk dk.

Note that the parameter D will only be used in our analysis, whereas our
algorithm procedure does not depend on D. This competitive ratio is tight up

to a polylogarithmic factor O(log
2α

α+1 |V | · logα−1 D), since we have the following
lower bound:

Theorem 2. No randomized oblivious routing algorithm that satisfies the inte-

gral constraint can provide a competitive ratio of o(|E|α−1
α+1 ) for the MPR prob-

lem.

An important aspect of our results is that they are not restricted to cases
where the precise form of the cost function is known. As mentioned above,
the exponent of the power-cost function depends on the hardware, whereas
measuring its actual value may be complicated from a practical point of view.
For such applications, where the exponent of the cost function is not precisely
known, we need to find a solution that is simultaneously satisfactory for every
possible cost function. In this paper, the property of being able to yield such
solutions will be referred to as function-oblivious [15], and we prove that our
algorithm has this property. Formally,

Theorem 3. For the case that the cost function associated with every e ∈ E is
fp(le) = (le)

p, where p is an arbitrary unknown number in [1, α] and α is still
a given number greater than 1, ROI-Routing can still guarantee a competitive

ratio of O(|E|α−1
α+1 log

2α
α+1 |V | · logα−1 D).

Theorem 4. There is no o(|E|α−1
α+1 )-competitive randomized oblivious routing

algorithm for the case in Theorem 3.

Note that Theorem 4 is not a trivial application of Theorem 2, since Theorem
4 holds for a more general case where the routing algorithm is allowed to violate
the integral constraint.

It is remarkable that the constant hidden in the big O notations of our
competitive ratios given by Theorem 1 and Theorem 3 is at most c02

α+1Bα,
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where c0 is an absolute constant and Bα is the fractional Bell number with
parameter α. According to [10], Bα follows Dobiński’s formula [13], i.e., Bα =∑+∞

k=1
kαe−1

k! , where e represents Euler’s number. The values of Bα for some
typical α are given in Table 1.

α 1.1 1.62 1.66 2 3

Bα 1.0603 1.4945 1.5386 2 5

Table 1: The values of Bα for some typical α. Particularly, the values 1.1, 1.62, and 1.66 are
the exponents of the power-cost functions corresponding to Intel PXA 270, Pentium M770,
and a TCP offload engine, respectively [41].

Some of our intermediate results obtained in deriving the theorems above
can be further extended from the perspective of theory. In particular, the propo-
sitions established in proving Theorem 1 can be generalized to a framework to
develop and analyze oblivious integral routing algorithms for minimizing ‖�l‖α.
This framework is significant for research on MPR in specific scenarios where
input instances have good properties that can be used to simplify the problem.

An application of this framework is generating a new oblivious integral rout-

ing algorithm ΨE
I with a competitive ratio of O

([
ϑ(G) log |V |

h(G) log
2ϑ(G)

2ϑ(G)−h(G)

]α
logα−1 D

)
for MPR, where ϑ(G) represents the maximum node degree of the nodes in
V , and h(G) represents the edge expansion [23] of G. Compared with ROI-
Routing, the algorithm ΨE

I is more applicable to the scenarios where the net-
works have well-bounded maximum node degrees and edge expansions. Two
classes of networks with extensive applications in both computer science and
practical scenarios are specially investigated for purposes of illustration:

• Expander GEX [23], in which the maximum node degree has a constant
upper bound and the edge expansion has a constant lower bound.

• Hypercube GHC [30], which has a Θ(log |V |) maximum node degree and
a constant edge expansion.

We prove that the competitive ratio of ΨE
I can be respectively bounded by

O(logα |V | · logα−1 D) and O(log3α |V | · logα−1 D) on expanders and hyper-
cubes. We then again apply our framework to combine ROI-Routing with
ΨE

I to generate another oblivious integral routing algorithm Ψ∗
I , which has an

O(log
2α

α+1 |V | · logα−1 D)-tight competitive ratio as well as ROI-Routing, while
simultaneously preserving the advantages of ΨE

I over ROI-Routing on networks
with special topologies, including expanders and hypercubes.

1.2. Related Works

The MPR problem was first studied by Andrews et al. [6] to reduce en-
ergy consumption in data networks. They proposed a randomized algorithm
with an approximation ratio of 2αγα(log2 D)α, where γα denotes max{1 +
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jα2
α(jα+1)e, 2 + jα2

α(jα+1)} with jα = �2 log2(α + 4)�. In Table 2, we list
the values of γα for some typical α. The best known approximation of this
problem was provided by Makarychev and Sviridenko’s algorithm [28], the ap-
proximation ratio of which is bounded by (1 + ε)Bα for any ε > 0. These
algorithms are designed for static scenarios where all traffic requests are known
at the beginning of computation and routing decisions are made offline. In par-
ticular, their results depend on the global fractional optimal solutions, which
are difficult to obtain in dynamic scenarios.

α 1.1 1.62 1.66 2 3

γα 1.3194× 103 1.1463× 104 5.1336× 104 2.6722× 105 3.4204× 107

Table 2: The values of γα for some typical α.

First investigated by Valiant et al. [38, 39], oblivious routing algorithms have
attracted considerable attention due to their efficiency of implementation. As
summarized in [15, 32], most of the existing research in the area is devoted to

two categories of objectives: congestion minimization (i.e., minimizing ‖�l‖∞,

see [20, 26, 31]) and dilation minimization (i.e., minimizing ‖�l‖1, see [9, 16]).
By contrast, only a few researchers [15, 22, 27] have considered the problem of
minimizing superlinear power costs using oblivious routing algorithms. Among
these, [22] proposed an oblivious routing algorithm for a restricted case where
the cost function f(le) = (le)

2 and all traffic requests are directed to the same
target. This result does not hold for the general case with arbitrary α > 1 or
multi-target traffic requests.

Englert and Räcke [15] designed an oblivious routing algorithm to minimize

‖�l ‖α. Their result was not constructive for the case α �= 2 until the problem
of determining the induced norm of a given matrix was solved by Bhaskara
and Vijayaraghavan [11]. When applied to minimize ‖�l‖αα, their approach can
guarantee a competitive ratio of O(logα |V |). However, their approach was
designed for the splittable case where fractional flow is permitted, and therefore
cannot satisfy the integral constraint. Furthermore, it is impossible to achieve
such a polylogarithmic competitive ratio when the integral constraint exists
because, in such cases, no randomized oblivious routing algorithm can guarantee

a competitive ratio of o(|E|α−1
α+1 ). This implies that the integral constraint makes

our problem much more difficult for oblivious strategies.
Based on the random walks (also called electric walks [26]), Lawler and

Narayanan [27] proposed an oblivious routing algorithm to simultaneously min-
imize all Lp-norms (p ∈ [1,∞)) of the load vector. Their approach can be viewed
as transforming G into an electricity network where each edge has a unit resis-
tance, and routing each traffic request between a node pair {u, v} according to
a unit electric current that flows into u and out of v. Such an approach cannot
satisfy the integral constraint either. Furthermore, we prove that any integral
routing algorithm that takes the electric current as a probabilistic distribution
will yield a high competitive ratio of Ω(|E| 12 max{1,α−2}) for MPR.
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1.3. Organization

The remainder of this paper is organized as follows: in Section 2, we intro-
duce and establish a series of probabilistic tools that will be used in our analysis.
In Section 3, we establish a sequence of lower bounds on the competitive ratios
of oblivious routing algorithms for the MPR problem; in particular, we prove
Theorem 2 and Theorem 4. In Section 4, we provide an overview of the de-
composition tree [15, 16, 31], a data structure that will be used to identify the
candidate paths, and present the details of our algorithm. To analyze the com-
petitive ratio of ROI-Routing, we first fix the candidate paths and study the
influence of the randomized selection procedure in Section 5. Section 6 contains
an analysis of candidate paths obtained by ROI-Routing, and completes the
proof of Theorem 1. Furthermore, we establish Theorem 3 in Section 6, which
shows that ROI-Routing is function-oblivious. In Section 7, some of our theo-
retical results are further generalized to a framework of designing and analyzing
oblivious integral routing algorithms for minimizing ‖�l‖αα. We apply this frame-
work to generate algorithms which can provide a better result on the specific
networks with well-bounded maximum node degrees and edge expansions. We
summarize our findings and offer concluding thoughts in Section 8.

2. Probabilistic Tools

In this section, we state and prove some moment inequalities on the sum
of independent random variables. The propositions here will be used in our
analysis of the competitive ratios of oblivious routing algorithms.

Lemma 5 (Jensen’s Inequality, [25]). Let X be a random variable and ϕ be a
convex function, then we have

ϕ(E[X]) ≤ E[ϕ(X)]

where E[·] represents the expectation of a random variable.

Definition 1 (Fractional Bell Number). For any p ≥ 1, the fractional Bell
number Bp represents the p-th moment of a Poisson random variable with ex-
pectation 1. It can be obtained using Dobiński’s formula [13],

Bp =
1

e

+∞∑
k=1

kp

k!

where e represents Euler’s number.

Lemma 6 ([8]). Let {Y1, Y2, · · · , Yi, · · · } be a set of independent random vari-
ables with Bernoulli distribution supported on the set {0, 1}, and λ

.
= E[

∑
i Yi].

For any p ≥ 1, E[(
∑

i Yi)
p] ≤ E[(Ψλ)

p], where Ψλ is a Poisson random variable
with parameter λ.

Lemma 7 ([8]). For any p ≥ 1 and λ ≥ 0, E[(Ψλ)
p] ≤ max{λ, λp} · E[(Ψ1)

p].

7



Lemma 6 and Lemma 7 directly imply that

E

[(∑
i

Yi

)p]
≤ Bp ·max

{
E

[∑
i

Yi

]
,
(
E

[∑
i

Yi

])p}
(1)

Note that unlike the result in [10] that is restricted to the discrete case p ∈ Z
+,

Eq. (1) holds for any real p ≥ 1. In the following, we extend Eq. (1) to a
more general case where the Bernoulli random variables are supported on the
set {0, d} for any d ∈ Z

+.

Lemma 8. For any d ∈ Z
+, let {Y d

1 , Y
d
2 , · · · , Y d

i · · · } be a set of independent
random variables with Bernoulli distribution supported on the set {0, d}. For
any p ≥ 1,

E

[(∑
i

Y d
i

)p]
≤ Bp ·max

{
dp−1 · E

[∑
i

Y d
i

]
,
(
E

[∑
i

Y d
i

])p}
Proof. For each Y d

i , let Y
′
i be a Bernoulli random variable supported on the set

{0, 1} such that Y d
i = d · Y ′

i . Then, we have:

E

[(∑
i

Y d
i

)p]
= E

[(∑
i

Y ′
i · d

)p]
= dp · E

[(∑
i

Y ′
i

)p]
≤ Bp ·max

{
dpE

[∑
i

Y ′
i

]
,
(
d · E

[∑
i

Y ′
i

])p}
= Bp ·max

{
dp−1

E

[∑
i

Y d
i

]
,
(
E

[∑
i

Y d
i

])p}
The second equality above follows from the commutative property of the multi-
plication of random variables and the linearity of the expectation. The inequal-
ity above follows from Eq. (1).

3. Lower Bounds on Competitive Ratio

In this section, we investigate the lower bounds on the competitive ratio of
any oblivious routing algorithm for the MPR problem, and in particular, prove
Theorem 2 and Theorem 4. We begin by proving the lower bound corresponding
to deterministic oblivious routing algorithms.

Theorem 9. For the MPR problem, any deterministic oblivious routing algo-
rithm will yield a competitive ratio of Ω(|E|α−1).

Proof. This proof is based on the network G1(V1, E1) shown in Fig. 1. There
are 
|E1|/2� edge-disjoint paths of length 2 connecting the node pair {u1, v1}.
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Figure 1: Network G1.

These parallel paths are called the canonical paths. We add a node w1 to G1

and connect u1 and w1 iff |E1| is odd.
Consider a traffic request set R1 = {R1, R2, · · · , R�|E1|/2�}. For each Rk ∈

R1, {sk, tk} = {u1, v1} and dk = 1. According to the definition, a deterministic
oblivious routing algorithm will route any traffic request between {u1, v1} by
scaling up a same precomputed flow. When the integral constraint exists, such
an algorithm will have to route every Rk ∈ R1 along a single fixed path. It
implies that at least one of the canonical paths will be used by all Rk ∈ R1,
which will incur a cost of at least f(
|E1|/2�)·2 = 2(
|E1|/2�)α. By contrast, the
optimal solution will route each Rk along a distinct canonical path whose cost
will be 2
|E1|/2�. Thus, the competitive ratio will be at least 
|E1|/2�α−1.

Randomized routing algorithms can guarantee a better competitive ratio
than deterministic algorithms. However, it is still impossible for them to yield a
polylogarithmic competitive ratio for our problem. To see this, we first consider
a typical case where α = 2. The lower bound obtained in this typical case
then will be extended to a general case with an arbitrary α > 1 in the proof of
Theorem 2.

Lemma 10. Given the integral constraint, no oblivious routing algorithm can
guarantee a competitive ratio bounded by o(|E|1/3) for the scenario where the

objective is to minimize ‖�l‖22, even if it can select paths in a randomized manner.

Proof. Here we consider the network G2(V2, E2) in Fig. 2. It is constructed as
follows: nodes u2 and v2 are directly connected by an edge eu2,v2 , called the
short canonical path between u2 and v2. Moreover, there are Δ = τ2 acyclic
disjoint paths of length τ = 
(|E2| − 1)1/3� connecting u2 and v2. They are
referred to as the long canonical paths. For the case that (|E2| − 1)1/3 /∈ Z

+,
a ring with |E2| − 
(|E2| − 1)1/3�3 − 1 edges will be attached to the node u2

9
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Figure 2: Network G2.

to complement the graph. A randomized oblivious routing algorithm A will
integrally route traffic requests between u2 and v2 along the short canonical
path with probability λA ≥ 0. We now consider two cases:

1. λA ≥
√
5−1
2 . In this case, we construct a set R2 of Δ independent traffic

requests between u2 and v2. For each request Rk ∈ R2, let dk = 1.
In such a case, the expected load on the short canonical path will be
E[leu2,v2

] = λA ·Δ. Since for any α > 1, the power function f(le) = (le)
α

is convex, by Lemma 5 we can bound the corresponding expected cost by:

E

[
(leu2,v2

)2
]

≥
(
E[leu2,v2

]
)2

= (λAΔ)2 = (λAτ
2)2 (2)

However, if we route each request along a distinct long canonical path,
the cost will be Δ · τ = τ3. Thus, the competitive ratio will be at least
(λA·τ2)2

τ3 = 3−√
5

2 τ .

2. λA <
√
5−1
2 . Now, there exists a single traffic requestRlarge with dlarge = Δ

between u2 and v2. Rlarge will be routed along a long canonical path with
a probability of at least 1 − λA. Therefore, the expectation of the total
cost will be greater than (1 − λA)Δ

2τ = (1 − λA)τ
5. By contrast, if we

simply route Rlarge along the short canonical path, the cost will be τ4.

The competitive ratio will be at least (1−λA)τ5

τ4 = 3−√
5

2 τ .

To sum up, the competitive ratio has a lower bound of 3−√
5

2 τ = 3−√
5

2 
(|E2| −
1)1/3�.

For the general case where the cost function has an arbitrary exponent α > 1,
we need to admit α as an argument in the construction of networks to deduce
the lower bound in Theorem 2.
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Proof of Theorem 2. We construct a network G3(V3, E3) in a similar manner to
G2. The differences are that the length τ and the number Δ of long canonical

paths are now set to
⌊
[(|E3| − 1)/2]

α−1
α+1

⌋
and

⌈
|E3|−1

2τ

⌉
, respectively. This theo-

rem can then be proved by plugging the new values of Δ and τ into the proof
of Lemma 10.

The lower bounds given above all correspond to the integral constraint. We
now proceed to prove Theorem 4 to show that even if the integral constraint
is allowed to be violated, the problem is still challenging when we desire the
property of function-oblivious. For a traffic request set R and a positive number
p ∈ [1, α], we use OPTp

I(R) to denote the cost of the integral solution that is
optimal with respect to the cost function f(x) = xp. For a routing algorithm

Φ, we use �l RΦ to represent the load vector incurred by routing R with Φ. Then,
we have:

Lemma 11. No deterministic routing algorithm ΦD can guarantee maxp∈[1,α]

maxR

{
‖�l R

ΦD
‖p
p

OPTp
I (R)

}
bounded by o

(
|E|α−1

α+1

)
, even if it is allowed to violate the

integral constraint.

Proof. We construct a network G4(V4, E4) based on the network G2 in Fig. 2.
In G4, the length τ and the number Δ of the long canonical paths are set as
follows:

τ =

⎢⎢⎢⎣[ |E|4 − 1

4 · (1/α) 1
α−1

]α−1
α+1

⎥⎥⎥⎦ , Δ =

⌈ |E4| − 1

2τ

⌉
(3)

Note that the value of τ here is set in a manner different from Theorem 2. Before
deducing a lower bound on the competitive ratio with G4, we will first prove
that the settings in Eq. (3) are feasible. Since α > 1, we have (1/α)1/(α−1) < 1.
Thus, we have τ > 1 for any |E4| ≥ 5. Under the same assumption on |E4|, it
can also be inferred that:

|E4| − 1

2τ
≥

[( |E4| − 1

2

)2
2α−1

α

] 1
α+1

≥
[( |E4| − 1

2

)2 (
2

1
ln 2−1 ln 2

)] 1
α+1

> 1

where the third inequality above follows from the fact that the value α0 = 1/ ln 2
can minimize 2α−1/α. This implies that:

1. Δ > 1 since Δ ≥ |E4|−1
2τ .

2. Δ < 2 · |E4|−1
2τ = |E4|−1

τ since for any positive number x > 1, �x� < x+1 <
2x. Therefore, τΔ < |E4| − 1.

Hence, the settings in Eq. (3) for τ and Δ are consistent.
Consider a traffic request R′ = {R1, R2, . . . , Rk, . . . , RΔ} such that for every

Rk ∈ R′, {sk, tk} = {u2, v2} and dk = 1. In this case, we have OPT1
I(R′) = Δ

(by simply routing all requests along eu2v2) and OPT2
I(R′) ≤ Δ · τ (by routing

11



each request along a distinct long canonical path). Let the flow routed by ΦD

along the short canonical path be ε · Δ with 0 ≤ ε ≤ 1. It renders ‖�l R′
ΦD

‖1 ≥
εΔ+τ(1−ε)Δ, and ‖�l R′

ΦD
‖αα ≥ εαΔα+τ(1−ε)αΔ. In such a case, the competitive

ratio will be at least:

max

{
‖�l R′

ΦD
‖1

OPT1
I(R′)

,
‖�l R′

ΦD
‖αα

OPTα
I (R′)

}
≥ 1

2

(
‖�l R′

ΦD
‖1

OPT1
I(R′)

+
‖�l R′

ΦD
‖αα

OPTα
I (R′)

)

≥ 1

2

[
(1− ε)τ + εαΔα−1/τ

]
≥ 1

2

{
(1− ε)τ + εα

[(|E4| − 1)/2]α−1

τα

}
To derive a lower bound on the competitive ratio, here we consider the case

that ε is set to the value ε∗ that can minimize the above formulation. Such
an ε∗ can be found through a second derivative test. Formally, let h(ε) =

(1 − ε)τ + εα[(|E4|−1)/2]α−1

τα . Taking τ and |E4| as constants independent of ε,
the derivative and the second derivative of h with respect to ε will respectively
be

h′(ε) = −τ+
αεα−1[(|E4| − 1)/2]α−1

τα
, h′′(ε) =

α(α− 1)εα−2[(|E|4 − 1)/2]α−1

τα

By solving the equality h′(ε∗) = 0, it can be obtained that ε∗ =
(
1
α

) 1
α−1 2τ

α+1
α−1

|E4|−1 .

This is the value that we need, since h
′′
( (

1
α

) 1
α−1 2τ

α+1
α−1

|E4|−1

)
> 0. Thus, the mini-

mum value of h is:

min
ε

h(ε) = h(ε∗) = h

((
1

α

) 1
α−1 2τ

α+1
α−1

|E4| − 1

)
= τ −

(
1

α

) 1
α−1 2(α− 1)τ

2α
α−1

α(|E4| − 1)

Plugging the value of τ in terms of |E4| and α into the second item in the
equation above, we have:

min
ε

h(ε) ≥ τ

[
1−

(
1

α

) 1
α−1 2(α− 1)

α(|E4| − 1)
τ

α+1
α−1

]
≥ τ

[
1− α− 1

2α

]
≥ τ

2

To sum up, we have

max

{
‖�l R′

ΦD
‖1

OPT1
I(R′)

,
‖�l R′

ΦD
‖αα

OPTα
I (R′)

}
≥ τ

4
(4)

Since maxp∈[1,α] maxR
‖�l R

ΦD
‖p
p

OPTp
I (R)

≥ maxp∈{1,α}
‖�l R′

ΦD
‖p
p

OPTp
I (R′) and τ ≥ 1

2

[
|E|4−1

4( 1
α )

1
α−1

]α−1
α+1

,

this theorem follows.
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Lemma 12. For any β ≥ 1, if there exists a randomized routing algorithm Φ

that can guarantee that maxp∈[1,α] maxR

{
‖�l R

Φ ‖p
p

OPTp
I (R)

}
≤ β, there must exist a

deterministic routing algorithm ΦD that can approximate every OPT p
I (R) (1 ≤

p ≤ α) by β when the integral constraint is allowed to be violated.

Proof. Let LR
Φ be the set of all load vectors that can be generated by Φ for the

traffic request set R with non-zero probability. In particular, each load vector
�lRΦ (i) ∈ LR

Φ will be generated by Φ with probability PrΦ(i). The expectation of
the cost incurred by Φ with respect to the cost function f(x) = xp will be:∑

�lRΦ (i)∈LR
Φ

‖�lRΦ (i)‖pp · PrΦ(i) ≥
∥∥∥ ∑
�lRΦ (i)∈LR

Φ

�lRΦ (i) · PrΦ(i)
∥∥∥p

p
(5)

which follows from the convexity of the power function. It is easy to see that
there exists a deterministic fractional routing algorithm ΦD that can generate
the load vector

∑�lRΦ (i)PrΦ(i). Eq. (5) implies that replacing the randomized
algorithm Φ with the corresponding deterministic algorithm ΦD will never in-
crease the cost. Thus, this proposition follows.

It can be directly inferred from Lemma 11 and Lemma 12 that:

Theorem 13. No randomized routing algorithm Φ can guarantee that maxp∈[1,α]

maxR

{
‖�l R

Φ ‖p
p

OPTp
I (R)

}
is bounded by o

(
|E|α−1

α+1

)
, even if it is allowed to violate the

integral constraint.

This theorem directly implies Theorem 4.

4. Algorithm Description

Our major contribution in this paper is proposing the ROI-Routing algo-
rithm for MPR. Here, we provide a few important definitions related to ROI-
Routing and the algorithm procedure. We start with an overview of the convex
combination of decomposition trees [15, 31], a data structure that is used by
ROI-Routing.

For a non-empty set U , a partition of U refers to a collection of non-
overlapping and non-empty subsets {υ1, υ2, · · · , υz} of U such that

⋃z
i=1 υi =

U . A decomposition tree T of a network G(V,E) is a rooted tree with the
following properties [5, 15, 16, 31]:

I. Each tree node vT in T corresponds to a non-empty node set S(vT ) ∈ V .

II. The root of T corresponds to V .

III. Each leaf node of T corresponds to a singleton set of node in V .

IV. For any internal node uT of T , the node sets corresponding to the children
of uT form a partition of S(uT ).
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It can be inferred from the definition of partition that:

Proposition 1. For each decomposition tree T of G(V,E), each node in V is
contained by exactly one singleton set corresponding to a leaf node of T .

Figure 3: Network G5(V5, E5). S1, S2, S3 and S4 are subsets of nodes where S1 =
{v1, v2, v3}, S2 = {v4, v5, v6}, S3 = {v1, v4, v5} and S4 = {v2, v3, v6}.

(a) Decomposition tree T1. (b) Decomposition tree T2.

Figure 4: Two decomposition trees with embeddings into G5. The dotted line in each Ti

marks the unique acyclic path that connects the leaf nodes respectively corresponding to v1
and v6 in G5.

Each decomposition tree T has an embedding (ξ,P) to the network G [15,
31], where ξ is a function mapping each tree node vT ∈ T to a node ξ(vT ) ∈
S(vT ), and P is a function mapping each tree edge eT = (uT , vT ) to a path
P(eT ) in G between ξ(uT ) and ξ(vT ). For illustration, consider the network
G5(V5, E5) shown in Fig. 3. Two decomposition trees, T1 and T2, of the network
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G5 are given in Fig. 4. To demonstrate the embeddings, in Fig. 4 we label each
leaf node vT by the corresponding node ξ(vT ), while labeling each internal node
uT by

{
S(uT ), ξ(uT )

}
. Moreover, each tree edge eT in Fig. 4 is labeled by the

corresponding path P(eT ). Note that decomposition trees corresponding to the
same manner of partitioning V can have different embeddings to G, and we will
determine the embedding of a specific T in the computation.

In a decomposition tree T , let the unique acyclic path connecting the node
pair {uT , vT } in T be PT

uT ,vT . For any pair of nodes {u, v} in G, we can obtain

a path Pu,v(T ) between them by concatenating the paths P(eT ) corresponding
to each tree edge eT ∈ PT

ξ−1(u),ξ−1(v). Here ξ−1 is the inverse function of ξ. Ac-
cording to Property III of decomposition tree and Proposition 1, the function
ξ induces a bijection between V and the leaf nodes of T [15, 31], which implies
that ξ−1 is well defined and maps each v ∈ V to a distinct leaf node in T . For
example, consider a node pair {v1, v6} in the network G5. On each decompo-
sition tree Ti in Fig. 4, an acyclic path marked by a dotted line connects the
leaf nodes respectively corresponding to v1 and v6. Through the embedding
function P, these tree paths can be respectively transformed into two different
paths Pv1,v6(T1) = {e3, e7} and Pv1,v6(T2) = {e1, e4, e5} between v1 and v6.

A routing strategy based on a decomposition tree T is assigning the path
Psk,tk(T ) to each traffic request Rk. Such a routing strategy can be identified
by an |E| × (

n
2

)
-dimensional matrix MT , whose j-th column is the load vector

incurred by routing a traffic request R with d = 1 between the j-th node pair.

Definition 2 (Convex combination of decomposition trees [15, 31]). Given
a network G(V,E), a convex combination CG of decomposition trees is a set
of decomposition trees {T1, T2, · · · , Ti, · · · }, each of which has a non-negative
weight λi such that

∑
i λi = 1. The superscript G in CG will be omitted when it

is obvious from the context.

Definition 3 (Tree-based matrix [15, 31]). A convex combination of decom-

position trees, C, can be identified by an |E| × (|V |
2

)
-dimensional matrix MC =∑

i λiMTi , which will be referred to as a tree-based matrix.

To illustrate these definitions, consider the node pair {v1, v6} of network
G5 in Fig. 4 again. Suppose that a convex combination CG5 consists of the
two decomposition trees T1 and T2 shown in Fig. 4 with weights λ1 = 0.6 and
λ2 = 0.4, respectively. For any vector �x, we use �x tr to represent the transpose
of �x. Then, according to the paths Pv1,v6(T1) and Pv1,v6(T2) given above, the
column vectors corresponding to {v1, v6} in MT1 and MT2 will respectively be
�mtr

1 = {0, 0, 1, 0, 0, 0, 1, 0} and �mtr
2 = {1, 0, 0, 1, 1, 0, 0, 0}. Thus, in the tree-

based matrix MCG5 , the column vector corresponding to {v1, v6} will be �mtr =
0.6�mtr

1 + 0.4�mtr
2 = {0.4, 0, 0.6, 0.4, 0.4, 0, 0.6, 0}.

In addition to the convex combination of decomposition trees and the tree-
based matrix, other concepts used in our algorithm are defined as follows:

Definition 4 (Column selector). A column selector Υ is a
(|V |

2

)×|E|-dimensional
matrix of Boolean variables. In particular, Υ(i, j) (i.e., the j-th element in the

15



i-th row of Υ) is 1 if the j-th edge ej is between the i-th node pair; otherwise
Υ(i, j) = 0.

Definition 5 (Induced Lp norm). For a matrix A and any p ≥ 1, ‖A‖p denotes

the induced p-norm of A, i.e., ‖A‖p = max‖x‖p 
=0
‖A·x‖p

‖x‖p
. Moreover, we use

‖A‖qp to represent (‖A‖p)q for convenience.

Lemma 14 ([11, 15]). There exists an absolute constant c0 ≥ 1 with the fol-
lowing property. For any p > 1, we can compute a convex combination C of
decomposition trees such that ‖MC ·Υ‖p ≤ c0 · log2 |V | in polynomial time 3.

Given the above definitions, we now present the algorithm procedure. Our
ROI-Routing algorithm consists of two phases:

1. Precomputation Phase. Given a network G(V,E), we precompute a spe-
cific convex combination C∗ of decomposition trees for G such that the
corresponding tree-based matrix MC∗ has the property

‖MC∗ ·Υ‖χ ≤ c0 · log2 |V | (6)

where χ is defined as follows:

χ =

⎧⎪⎪⎨⎪⎪⎩
α if (c0 · log2 |V |)α ≥ |E|1− 1

α (c0 · log2 |V |);

α+1

2−(α−1)
log2(c0 log2 |V |)

log2 |E|
otherwise.

(7)
Without loss of generality, in this paper we only consider non-trivial input

cases where |V | ≥ 2 and |E| ≥ 1. In such cases, we have log2(c0 log2 |V |)
log2 |E| > 0,

which implies that χ > 1. According to Lemma 14, we can generate such
a convex combination C∗ in polynomial time.

2. Rolling Dice Phase. Whenever a traffic request R is given, we indepen-
dently select a decomposition tree T ∗

k ∈ C∗ in a randomized manner and
route R based on T ∗

k . The probability Pr∗k that a tree T ∗
k is selected is

equivalent to its weight λ∗
k. This setting is consistent because the weights

are non-negative and
∑

i λ
∗
i = 1.

Theorem 15. The number of random bits used by our algorithm for each traffic
request Rk is bounded by O(log |E|).
Proof. According to [11], we can find C∗ in O(|E|c′) steps, where c′ is an absolute
constant. Each step consists of O(|E| log |V |) iterations [31], and at most one
decomposition tree is obtained in each iteration. This implies that the total
number of decomposition trees in C∗ can be bounded by O(|E|c′+1 log |V |).
Thus, we need at most O(log(|E|c′+1 log |V |)) = O(log |E|) random bits to select
a decomposition tree from C∗.

3By simply plugging the constant factors in [11, 15, 16, 31] together, it can be inferred that
such a constant c0 can be found in the interval [1, 68].
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5. Randomized Path Selection

In this part, we will analyze the influence of the Rolling Dice Phase on the
competitive ratio independently of the Precomputation Phase. To isolate the
Rolling Dice Phase from the Precomputation Phase, we assume that a convex
combination C of decomposition trees is given as input, and the Rolling Dice
Phase is carried out according to C. We will prove that for any given C, the
Rolling Dice Phase can guarantee that the competitive ratio is bounded by
O

(
max {‖MCΥ‖1, ‖MCΥ‖αα} logα−1 D

)
.

For ease of reference, we first list the definitions of a few notations used in
our analysis:

• OPTF (R). The cost of the fractional optimal solution for the traffic re-
quest set R.

• OPTI(R). The cost of the integral optimal solution for R.

• �l ROPTF
. The load vector corresponding to the fractional optimal solution

for R. If there is more than one such vector, �l ROPTF
can be any one of

them. The notation �l ROPTI
is defined in a similar manner.

• �l ROBLF
. The load vector incurred by routing R according to the given

convex combination C with fractional flow in the manner of Englert–Räcke
[15], i.e., for each Rk ∈ R, routing the amount λidk of flow based on each
decomposition tree Ti ∈ C.

• �l ROBLI
. The load vector incurred by routing R through our ROI-Routing

algorithm.

• �l(e). It represents the element of the load vector �l corresponding to the

edge e, i.e., �l(e) = le. This notation will be used along with the subscripts
and superscripts defined above.

• [A]i and A(j). For a matrix A, we use Ai and A(j) to denote its i-th row
and j-th column, respectively. Moreover, we use A(i, j) to represent the
j-th element in the i-th row of A.

Let R′ be an arbitrary non-empty subset of R and �l ROBLI
(e,R′) be the load

of the edge e corresponding to the traffic requests in R′ in the case where all
requests in R are routed integrally according to C. The Rolling Dice Phase has
the following property:

Lemma 16. E

[
�l ROBLI

(e,R′)
]
= �l R

′
OBLF

(e).

Proof. For each traffic request Rk ∈ R, we construct a
(|V |

2

)
-dimensional vector

�dk. The i-th element in �dk is set to δ(σ(k), i) · dk, where δ is the Kronecker
delta function and σ(k) is the index of the source-target pair of Rk. Recalling
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that the probability with which the tree Ti ∈ C is selected is denoted by Pri, we
have:

E

[
�l ROBLI

(e,R′)
]
=

∑
Rk∈R′

dk ·
∑
i

Pri ·MTi(e, σ(k))

=
∑

Rk∈R′
dk ·

∑
i

λi ·MTi(e, σ(k))

=
∑

Rk∈R′

[∑
i

λiMTi

]
e

· �dk

=
∑

Rk∈R′
(MC)e · �dk

According to [15], �l R
′

OBLF
= MC ·

∑
Rk∈R′ �dk. Therefore, this lemma follows.

For two vectors/matrices A1 and A2 with the same dimensions, we say A1 is
dominated by A2 iff each element in A1 is no greater than the element with the
same index in A2. Such a relation will be denoted by A1 � A2 and A2 � A1.
Then,

Lemma 17. Let j1, j2, j3 be the indices of any three node pairs {uj1 , vj1},
{uj2 , vj2}, and {uj3 , vj3}, respectively. We have MC(j3) � MC(j1) +MC(j2) if
{uj1 , vj1}

⋂{uj2 , vj2} �= ∅ and {uj3 , vj3} ⊆ {uj1 , vj1}
⋃{uj2 , vj2}.

Proof. If j3 = j1 or j3 = j2, this proposition trivially holds. Otherwise, since
{uj3 , vj3} ⊆ {uj1 , vj1}

⋃{uj2 , vj2}, we assume without loss of generality that
uj3 = uj1 and vj3 = vj2 . In this case, vj1 = uj2 because {uj1 , vj1}

⋂{uj2 , vj2} �=
∅. For any tree T ∈ C, it is obvious that

PT
uT
j1

,vT
j1

⋃
PT
uT
j2

,vT
j2

= PT
uT
j1

,vT
j1

⋃
PT
vT
j1

,vT
j2

⊇ PT
uT
j1

,vT
j2

= PT
uT
j3

,vT
j3

where uT
jk

.
= ξ−1(ujk) and vTjk

.
= ξ−1(vjk) for each k ∈ {1, 2, 3}. In particular,

the superset inequality above follows from the fact that PT
uT
j1

,vT
j1

⋃
PT
vT
j1

,vT
j2

forms

a path between uT
j1

and vTj2 , and removing any edge in PT
uT
j1

,vT
j2

will disconnect uT
j1

from vTj2 . Thus, when we map these paths to G, the obtained paths Puj3
,vj3

(T )
and Puj1

,vj1
(T )

⋃
Puj2

,vj2
(T ) have a common sequence of |Puj3

,vj3
(T )| edges.

Since MT (j) is the load vector incurred by routing a unit demand between the
j-th node pair, MT (j3) � MT (j1) +MT (j2). Then,

MC(j3) =
∑
i

λiMTi(j3) �
∑
i

λi(MTi(j1) +MTi(j2)) = MC(j1) +MC(j2)

Thus, this proposition holds.

Lemma 17 directly implies the following lemma:
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Lemma 18. Let u, v be any two nodes in G, and let Pu,v be an arbitrary acyclic
path connecting u and v in G. For any e ∈ Pu,v, we denote the index of the pair
of its endpoints by je. Then, MC(j∗) �

∑
e∈Pu,v

MC(je), where j∗ represents

the index of the node pair {u, v}.
Lemma 19. For any request set R, let �l RI be the load vector corresponding to

an arbitrary integral feasible solution. Then, �l ROBLF
� MCΥ ·�l RI .

Proof. Suppose that �l RI is incurred by an integral routing algorithm Φ. We

then construct an |E| × (|V |
2

)
-dimensional matrix MΦ of Boolean variables such

that MΦ(i, j) = 1 iff the traffic request between the j-th node pair will be

routed by Φ along the i-th edge. Then, MΦ · ∑Rk∈R �dk � �l RI . Since [15]

indicates that �l ROBLF
= MC · ∑Rk∈R �dk, we can prove Lemma 19 by showing

that MC � MCΥMΦ.
For the sake of simplicity, let L = ΥMΦ. According to the definition of Υ

and MΦ, L(i, j) ≥ 1 if the path specified by Φ between the j-th node pair uses
the edge between the i-th node pair, and L(i, j) = 0 otherwise. Let ij1, i

j
2, · · · , ijK

be the indices of non-zero elements in L(j), and (MCL)(j) be the j-th column
of MCL. Then,

(MCL)(j) = MC · L(j) =
K∑

k=1

MC(i
j
k) · L(ijk, j) �

K∑
k=1

MC(i
j
k)

According to Lemma 18, MC(j) �
∑

k MC(i
j
k). Thus, MC(j) � (MCL)(j).

Lemma 20. For any �l RI , ‖�l ROBLF
‖p ≤ ‖MCΥ‖p · ‖�l RI ‖p.

Proof. From Lemma 19, we know that ‖�l ROBLF
‖p ≤ ‖MCΥ ·�l RI ‖p. According to

Definition 5 of induced norm,

‖�l ROBLF
‖p

‖�l RI ‖p
≤ ‖MCΥ ·�l RI ‖p

‖�l RI ‖p
≤ max

‖�l‖>0

‖MCΥ ·�l‖p
‖�l‖p

= ‖MCΥ‖p

Thus, this lemma follows.

Based on the results above, now we can prove our key result from this section:

Theorem 21. The Rolling Dice Procedure can guarantee that the competitive

ratio is bounded by 2α+1Bα(�log2 D�+1)α−1 ·max
{
‖MCΥ‖1, ‖MCΥ‖αα

}
, where

D = maxk dk.

Proof. Here, we construct an exponentially discrete request set R̂. Specifi-
cally, for each request Rk ∈ R, there exists a corresponding request R̂k ∈ R̂

such that {ŝk, t̂k} = {sk, tk} and d̂k = 2�log2 dk�, where {ŝk, t̂k} represents

the source-target pair of R̂k and d̂k represents the demand of R̂k. Accord-
ing to the definition of oblivious routing, the probability of routing R̂k along
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any edge e is equivalent to the probability that Rk goes through e, since Rk

and R̂k have the same source-target pair. Furthermore, as d̂k ≥ dk, we have

E

[
‖�l ̂R

OBLI
‖αα

]
≥ E

[
‖�l ROBLI

‖αα
]
. Thus, the competitive ratio can be bounded by

E

[
‖�l ̂R

OBLI
‖αα

]/
OPTI(R).

The request set R̂ can be divided into a sequence of subsets R̂1, · · · , R̂j , · · ·
such that R̂j = {R̂k | R̂k ∈ R̂ ∧ d̂k = 2j}, for each j ∈ [0, �log2 D�]. Applying
Lemma 8, we have:

E

[(
�l
̂R

OBLI

(
e, R̂j

))α]
≤Bα max

{(
E

[
�l
̂R

OBLI

(
e, R̂j

)])α

,
(
2j

)α−1
E

[
�l
̂R

OBLI

(
e, R̂j

)]}
≤Bα max

{(
�l

̂Rj

OBLF
(e)

)α

,
(
2j

)α−1 ·�l ̂Rj

OBLF
(e)

}
The second inequality above follows from Lemma 16. For notational conve-

nience, in the following, we will use γj
F (e) to represent �l

̂Rj

OBLF
(e). Then, for each

e ∈ E:

E

[(
�l
̂R

OBLI
(e)

)α]
= E

[( �log2 D�∑
j=0

�l
̂R

OBLI

(
e, R̂j

))α]

≤ E

[
(�log2 D�+ 1)α−1

�log2 D�∑
j=0

(
�l
̂R

OBLI

(
e, R̂j

))α]

≤ (�log2 D�+ 1)α−1

�log2 D�∑
j=0

E

[(
�l
̂R

OBLI

(
e, R̂j

))α]

≤ Bα(�log2 D�+ 1)α−1

�log2 D�∑
j=0

max
{
(γj

F (e))
α,

(
2j

)α−1
γj
F (e)

}
The first inequality above is based on the convexity of the power function [6].
We can now analyze the upper bound on the overall cost:

E

[
‖�l ̂R

OBLI
‖αα

]
≤

∑
e∈E

Bα(�log2 D�+ 1)α−1
∑
j

max
{
(γj

F (e))
α, (2j)α−1γj

F (e)
}

= Bα(�log2 D�+ 1)α−1
∑
j

∑
e∈E

max
{
(γj

F (e))
α, (2j)α−1γj

F (e)
}

For any two sequences of non-negative numbers {a1, a2, · · · , aN} and {b1, b2, · · · , bN},
it is easy to show that

∑N
i=1 max{ai, bi} ≤ ∑N

i=1(ai+bi) ≤ 2·max{∑N
i=1 ai,

∑N
i=1 bi}.
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Thus, ∑
e∈E

max
{(

γj
F (e)

)α

, (2j)α−1γj
F (e)

}
≤ 2max

{∑
e∈E

(
γj
F (e)

)α

, (2j)α−1
∑
e∈E

γj
F (e)

}
= 2max

{∥∥∥�l ̂Rj

OBLF

∥∥∥α

α
, (2j)α−1

∥∥∥�l ̂Rj

OBLF

∥∥∥
1

}
≤ 2max

{(∥∥∥MCΥ
∥∥∥
α

∥∥∥�l ̂Rj

OPTI

∥∥∥
α

)α

, (2j)α−1
∥∥∥MCΥ

∥∥∥
1

∥∥∥�l ̂Rj

OPTI

∥∥∥
1

}
≤ 2max

{
‖MCΥ‖αα, ‖MCΥ‖1

}
·
∥∥∥�l ̂Rj

OPTI

∥∥∥α

α

The second inequality above follows from Lemma 20. Due to the integral con-

straint, �l
̂Rj

OPTI
(e) must be an integer multiple of 2j . In this case,

(
�l

̂Rj

OPTI
(e)

)α

≥
(2j)α−1�l

̂Rj

OPTI
(e) for each e ∈ E, which implies the fourth inequality above. In

summary:

E

[∥∥∥�l ̂R

OBLI

∥∥∥α

α

]
≤ Bα(�log2 D�+ 1)α−12max

{
‖MCΥ‖αα, ‖MCΥ‖1

}∑
j

∥∥∥�l ̂Rj

OPTI

∥∥∥α

α

≤ 2Bα(�log2 D�+ 1)α−1 max
{
‖MCΥ‖αα, ‖MCΥ‖1

}∥∥∥�l ̂R

OPTI

∥∥∥α

α

≤ 2α+1Bα(�log2 D�+ 1)α−1 max
{
‖MCΥ‖αα, ‖MCΥ‖1

}∥∥∥�l ROPTI

∥∥∥α

α

= 2α+1Bα(�log2 D�+ 1)α−1 max
{
‖MCΥ‖αα, ‖MCΥ‖1

}
OPTI(R)

The second inequality follows from the superadditivity of the power function [6].

The third inequality holds because d̂k ≤ 2 · dk for each Rk. Thus, this theorem
follows.

Recall that α is a constant parameter. Thus, we have:

Corollary 22. Given any convex combination C of decomposition trees, the

Rolling Dice Procedure according to C has a competitive ratio of O
(
max{‖MCΥ‖αα,

‖MCΥ‖1} · logα−1 D
)
.

6. Minimizing Induced Norms

We have reduced the routing problem to the problem of simultaneously min-
imizing ‖MCΥ‖αα and ‖MCΥ‖1. The following theorem gives a lower bound on
max{‖MCΥ‖1, ‖MCΥ‖αα}.
Theorem 23. There exists a network G(V,E) for which no algorithm can com-
pute a convex combination C of decomposition trees such that max{‖MCΥ‖1,
‖MCΥ‖αα} is bounded by o(|E|α−1

α+1 ).
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Proof. Here, we consider the network G4 constructed in Theorem 13. Suppose

that there exists a C′ for G4 such that max{‖MC′Υ‖1, ‖MC′Υ‖αα} = o(|E|α−1
α+1 ).

As in Theorem 13, we use OPTp
I(R) to represent the cost of integrally routing R

that is optimal with respect to the objective of minimizing
∑

e(le)
p. According

to Lemma 20,

max
p∈{1,α}

max
R

‖�l ROBLF
‖pp

OPTp
I(R)

≤ max
p∈{1,α}

‖MC′Υ‖pp = o(|E|α−1
α+1 )

which conflicts with Eq. (4).

We now prove that the convex combination obtained in the Precomputation

Phase, C∗, can minimize max{‖MCΥ‖1, ‖MCΥ‖αα} up to O(log
2α

α+1 |E|).
Lemma 24. For any n × m-dimensional matrix A, any p ≥ 1 and q ≥ 1,

‖A‖p ≤ m| 1p− 1
q | · ‖A‖q.

Proof. Let �x be an arbitrary m-dimensional vector. According to the theory of
linear algebra, for any p′ > q′:

‖�x‖p′ ≤ ‖�x‖q′ ≤ ‖�x‖p′ ·m 1
q′ − 1

p′ (8)

Let �x∗ be an m-dimensional vector such that
‖A�x∗‖p

‖�x∗‖p
= ‖A‖p. We then analyze

two cases:

1. p > q. According to Eq. (8), ‖A�x∗‖p ≤ ‖A�x∗‖q and ‖�x∗‖p ≥ m
1
p− 1

q ·‖�x∗‖q.
Thus,

‖A‖p =
‖A�x∗‖p
‖�x∗‖p ≤ ‖A�x∗‖q

m
1
p− 1

q · ‖�x∗‖q
≤ m

1
q− 1

p max
‖�x‖q 
=0

‖A�x‖q
‖�x‖q = m

1
q− 1

p ·‖A‖q

2. p ≤ q. In this case, ‖A�x∗‖p ≤ m
1
p− 1

q ‖A�x∗‖q and ‖�x∗‖p ≥ ‖�x∗‖q. Then,

‖A‖p =
‖A�x∗‖p
‖�x∗‖p ≤ m

1
p− 1

q · ‖A�x∗‖q
‖�x∗‖q ≤ m

1
p− 1

q max
‖�x‖q 
=0

‖A�x‖q
‖�x‖q = m

1
p− 1

q ·‖A‖q

Hence, ‖A‖p ≤ m| 1p− 1
q | · ‖A‖q.

We can now state our key result regarding the simultaneous minimization of
the powers of the induced norms of the tree-based matrix.

Theorem 25. max{‖MC∗Υ‖1, ‖MC∗Υ‖αα} ≤ max
{
(c0 log2 |V |)α, (c0 log2 |V |) 2α

α+1 ·
|E|α−1

α+1

}
.

Proof. According to Eq. (7), we consider two cases in the following :
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1. (c0 ·log2 |V |)α ≥ |E|1− 1
α (c0 ·log2 |V |). In this case, ‖MC∗Υ‖α ≤ c0 log2 |V |.

According to Lemma 24,

‖MC∗Υ‖1 ≤ |E|1− 1
α c0 log2 |V | ≤ (c0 log2 |V |)α (9)

and ‖MC∗Υ‖αα ≤ (c0 log2 |V |)α. Thus, in this case, max{‖MC∗Υ‖1, ‖MC∗Υ‖αα}
≤ (c0 log2 |V |)α.

2. (c0 · log2 |V |)α < |E|1− 1
α (c0 · log2 |V |). Since α− 1 > 0,

log2(c0 log2 |V |) <
1

α
log2 |E| (10)

Eq. (6) indicates that in this case, ‖MC∗Υ‖χ ≤ c0 log2 |V |. According to
Eq. (7) and Eq. (10),

χ =
α+ 1

2− (α− 1)log2(c0 log2 |V |)/log2 |E| <
α+ 1

2− (α− 1)/α
< α (11)

According to Lemma 24, we have

‖MC∗Υ‖αα ≤ |E|αχ−1‖MC∗‖αχ
≤ |E|α−1

α+1−
α(α−1) log2(c0 log2 |V |)

(α+1) log2 |E| (c0 log2 |V |)α

= |E|α−1
α+1 ·

(
|E|

log2(c0 log2 |V |)
log2 |E|

)−α(α−1)
α+1

(c0 log2 |V |)α

= |E|α−1
α+1 (c0 log2 |V |)α−α(α−1)

α+1

= |E|α−1
α+1 (c0 log2 |V |) 2α

α+1 (12)

As mentioned in Section 4, for any non-trivial input case where |V | ≥ 2
and |E| ≥ 1, α+1

2− log2(c0 log2 |V |)
log2 |E|

≥ 1. According to Lemma 24,

‖MC∗Υ‖1 ≤ |E|1− 1
χ · ‖MC∗Υ‖χ

= |E|α−1
α+1+

(α−1) log2(c0 log2 |V |)
(α+1) log2 |E| (c0 log2 |V |)

= |E|α−1
α+1 (c0 log2 |V |) 2α

α+1 (13)

Thus, this theorem follows.

Since α is a constant parameter, the result of Theorem 25 can be bounded

by O
(
|E|α−1

α+1 log
2α

α+1 |V |
)
. According to Theorem 23, this bound is tight up to

O
(
log

2α
α+1 |V |

)
.

By combining Theorem 25 with Corollary 22, Theorem 1 is proved.
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6.1. Function-oblivious

We now prove that our ROI-Routing algorithm is function-oblivious. Con-
sider the case where each edge e ∈ E is associated with a cost function fp(le) =
(le)

p, where p is an arbitrary unknown number in [1, α]. In such a case, a
function-oblivious routing algorithm needs to guarantee a uniform upper bound
on the competitive ratios corresponding to every possible p.

Lemma 26 (Riesz-Thorin interpolation theorem [34, 36]). For any p, q which
satisfy that 1 ≤ p < q ≤ ∞, let θ be a number in [0, 1] such that 1

p = θ + 1−θ
q .

Then, ‖A‖p ≤ ‖A‖θ1 · ‖A‖1−θ
q .

Lemma 27. For any p ∈ [1, α], ‖MC∗Υ‖pp ≤ max
{
(c0 log2 |V |)α, |E|α−1

α+1 ·
(c0 log2 |V |) 2α

α+1

}
.

Proof. Let β = max
{
c0 log2 |V |, |E| α−1

α(α+1) (c0 log2 |V |) 2
α+1

}
. Equations (9),

(12), and (13) indicate that ‖MC∗Υ‖α ≤ β while ‖MC∗Υ‖1 ≤ βα. According to
Lemma 26,

‖MC∗Υ‖pp ≤ (βα·θ · β1−θ)p =
[
β

α(α−p)
p(α−1) · β1− α−p

p(α−1)

]p
= βα

Plugging the value of β into the equation above, this proof is completed.

It is easy to see that Theorem 21 holds for the case where the objective is
to minimize ‖�l ‖1. Combining it with Lemma 27, we obtain:

Theorem 28. For any p ∈ [1, α], our algorithm has a competitive ratio of

2p+1Bp(�log2 D�+ 1)p−1 ·max
{
(c0 log2 |V |)α, |E|α−1

α+1 (c0 log2 |V |) 2α
α+1

}
with re-

spect to the cost function
∑

e(le)
p, where Bp is the fractional Bell number with

parameter p.

Since p ≤ α, we can infer Theorem 3 directly from Theorem 28. According

to Theorem 13, the result of Theorem 28 is tight up to O
(
logα−1 D·log 2α

α+1 |V |
)
.

7. Extension and Application

The theoretical results proposed in the previous sections can be further ex-
tended to a framework of generating new oblivious integral routing algorithms
and evaluating their performance. In this part, we will show that such a frame-
work is significant for some specific application scenarios of reducing network
energy consumption.
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7.1. A Generalized Framework for Oblivious Integral Routing

Formally, our results on the Rolling Dice Procedure in Section 5 can be gen-
eralized as follows. Let ΨF be an arbitrary oblivious fractional routing algorithm
that operates deterministically, and let MΨF

be an |E| × (|V |
2

)
-dimensional ma-

trix, the j-th column of which is the load vector incurred by using ΨF to route
a traffic request with unit demand between the j-th pair of nodes in the given
network G. In the following, MΨF

will be called the routing matrix of ΨF . We
say that MΨF

is path-additive if for any node pair {u, v} and any acyclic path
Pu,v between u and v, MΨF

(ju,v) �
∑

e∈Pu,v
MΨF

(je), where ju,v represents

the index of the node pair {u, v}, and je represents the index of the node pair
containing the endpoints of each link e (i.e., the pair of nodes adjacent to ek).
For an oblivious integral routing algorithm ΨI that operates in a randomized
manner, we say that it follows a routing matrix MΨF

iff the probability that
ΨI routes a traffic request between the j-th node pair along ei is equivalent to
MΨF

(i, j); additionally, ΨI is said to be uncoupled iff for any edge e and any two
traffic requests Rk1

, Rk2
, the event that ΨI routes Rk1

along e is stochastically
independent of the event that Rk2 is routed by ΨI along e. Then,

Theorem 29. The competitive ratio of an oblivious integral routing algorithm
ΨI that operates randomly has an O(max{‖MΨF

Υ‖1, ‖MΨF
Υ‖αα} logα−1 D)-

bound if ΨI is uncoupled and follows a path-additive routing matrix MΨF
.

Proof. To prove this theorem, we now respectively transform Lemma 16 and
Lemma 20 to the propositions that hold for ΨI and ΨF :

• For any set R of traffic requests and any subset R′ ⊆ R, let �lRΨI
(e,R′)

be the part of the load on edge e corresponding to R′ when every traffic
request in R is routed by ΨI . Recall that we use σ(k) to represent the
index of the source-target pair of the traffic request Rk. Since ΨI follows

MΨF
, we have E

[
�lRΨI

(e,R′)
]
=

∑
Rk∈R′ dk ·MΨF

(e, σ(k)). According to

the definition of oblivious routing,
∑

Rk∈R′ dk · MΨF
(e, σ(k)) = �lR

′
ΨF

(e),

where �lR
′

ΨF
represents the load vector incurred by fractionally routing R′

with ΨF . Therefore, similar to Lemma 16, we have

E

[
�lRΨI

(e,R′)
]
= �lR

′
ΨF

(e) (14)

• Let �lRΨF
and �lRΦI

respectively be load vectors incurred by routingR through
ΨF and an arbitrary integral routing algorithm ΦI . Now, we show that,
similarly to Lemma 20, we have

‖�lRΨF
‖p ≤ ‖MΨF

Υ‖p · ‖�lRΦI
‖p (15)

The key observation here is that Lemma 20 can be directly inferred from
Lemma 19, which only depends on the fact that �lROBLF

= MC ·∑Rk∈R �dk
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and Lemma 18. Correspondingly, it can be derived from the definition of
oblivious routing that for any edge e,

�lRΨF
(e) =

∑
Rk∈R

MΨF
(e, σ(k)) · dk =

∑
Rk∈R

[MΨF
]e · �dk

which implies that �lRΨF
= MΨF

·∑Rk∈R �dk holds. Furthermore, it is easy
to see that Lemma 18 holds for MΨF

since we assume that MΨF
is path-

additive. Thus, we can prove Eq. (15) in a similar manner to the proofs
of Lemma 19 and Lemma 20.

Then this theorem can be established in a similar manner to Theorem 21. The
only differences are that we need to replace Lemma 16 and Lemma 20 with the
above two results, Eq. (14) and Eq. (15), respectively. Note that here we can
still use Lemma 8 as the proof of Theorem 21 because ΨI is assumed to be
uncoupled.

We remark that Theorem 29 is more general than the results of Section 5
since it is independent of any information on the actual operations of ΨF and
ΨI . It provides us a three-step framework for generating new oblivious integral
routing algorithms of MPR and for evaluating their performance as follows:

1. Finding a deterministic fractional oblivious routing algorithm ΨF with a
path-additive routing matrix, and identifying MΨF

.
2. Turning MΨF

into an integral routing algorithm with probabilistic tools.
Although our Rolling Dice Procedure can successfully transform MC into
an oblivious integral routing algorithm (i.e., ROI-Routing), it cannot be
applied to a general scenario due to its dependence on the existence of
the convex combination of decomposition trees. To enhance the usability
of our framework, in the following we provide a procedure that can con-
vert any routing matrix MΨF

to an oblivious integral routing algorithm,
independently of any data structure used by ΨF .
The conversion procedure provided here is based on the Raghavan-Thomp-
son (abbrv. R-T) flow decomposition approach [33]. Given a unit flow
H(u, v) between any node pair {u, v}, the R-T flow decomposition approach
can decompose it into at most |E| weighted paths Π = {π1, π2, · · · , πi, · · · }
connecting u and v in O(|E|2) time. Each path πi is associated with

a positive weight λi, such that
∑|Π|

i=1 λi = 1 and for any edge e ∈ E,∑
i:e∈πi

λi is equivalent to the part of H(u, v) along e.
We can then generate an oblivious routing algorithm ΨI that operates as
follows. Let Πj be the set of weighted paths obtained by decomposing the
flow identified by MΨF

(j) with the R-T flow decomposition approach. For
a traffic request Rk, ΨI will select a path πk from Πσ(k) independently
in a randomized manner, and will route Rk along πk. The probability
that each πi ∈ Ψσ(k) is selected will be λi. Obviously, ΨI is the routing
algorithm we need, since it is uncoupled and follows the routing matrix
MΨF

. Similar to ROI-Routing, the number of random bits used by ΨI for
each traffic request is also bounded by O(log |E|) since |Π| ≤ |E|.
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3. Find an upper bound β on max{‖MΨF
Υ‖1, ‖MΨF

Υ‖αα}. Then we can
claim that the competitive ratio of ΨI is bounded by O(β logα−1 D).

According to Theorem 1 and Theorem 2, designing any new oblivious in-
tegral routing algorithm cannot help us to significantly improve our results for
MPR with the general settings defined in Section 1. However, in some specific
application scenarios arising from practice, the input instances have some spe-
cial properties that can simplify the problem. For these instances, it is possible
to achieve a much better upper bound on the competitive ratio through our
framework. To show this, in the following we consider a special class of input
instances where the network has well-bounded edge expansion and node degree,
and we design new algorithms using our framework to improve our results for
these instances.

7.2. Expansion and Electric Flow-based Oblivious Fractional Routing

For a network G(V,E), let S be a non-empty subset of V , and ∂(S) be the
number of edges with exactly one endpoint in S. The edge expansion (also called
the isoperimetric number in the literature) of G is defined as:

h(G) = min
S:|S|≤|V |/2

∂(S)

|S| (16)

The significance of the parameter h(G) is that it can be used to measure the
connectivity of the network, i.e., a large edge expansion implies high connectivity
[23]. Let ϑ(v) be the degree of a node v ∈ V , and ϑ(G) = maxv∈V ϑ(v), which
will be referred to as the maximum node degree of G. For any connected network
G, we have 2

|V | ≤ h(G) ≤ ϑ(G).

Note that in the definition of MPR given in Section 1, we make no assump-
tion on any property of network’s topology, including the edge expansion, since
the networks in the general environment can have an arbitrary topology, espe-
cially the national backbone networks [7]. However, in some specific scenarios
such as the data center, we only need to focus on a regular network topology
instead of an arbitrary one. Typically, the topology of the data center network
(abbrv. DCN) is designed to have high connectivity (e.g., [2]), which implies a
well-bounded edge expansion.

Our approach to achieve a better result on the networks G with well-bounded
h(G) will utilize a routing strategy ΨE

F based on the electrical flow. Specifically,
ΨE

F associates a unit resistance to every edge e ∈ E. Let Iu,v(e) be the current
along the edge e when a unit current flows into u and out of v; ΨE

F will carry out
each traffic request Rk by scaling up Isk,tk(e) by a factor of dk for every e. For
instance, in Figure. 5 we show a simple network G6(V6, E6) with a corresponding
electricity network obtained by associating a resistance of 1 Ohm to each edge in
E6. According to Kirchhoff’s laws and Ohm’s law, if a unit of current flows into
v1 and out of v2, the current along the edges e1, e2, e3 and e4 will respectively
be 0.75A, 0.25A, 0.25A and 0.25A, where A represents “ampere”. Therefore,
for a traffic request Rk with {sk, tk} = {v1, v2} and dk = 2, ΨE

F will route a flow
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Figure 5: A 4-node 4-edge network G6 with its corresponding electricity network.

of 1.5 along the path {e1} and a flow of 0.5 along the path {e2, e3, e4}. This
indicates that ΨE

F cannot satisfy the integral constraint.
The routing matrix MΨE

F
of ΨE

F can be identified as follows. Similarly to

[26], we first designate a direction to every edge such that each e orients from

the node with a smaller index to the node with a larger index. Let �Iu,v be a

vector of |E| elements such that for any link e ∈ E, �Iu,v(e) = Iu,v(e) if the

current Iu,v(e) has the same direction as e and �Iu,v(e) = −Iu,v(e) otherwise.
For example, for the network G6 in Fig. 5, the edge e3 will be designated a
direction from v2 to v4. Then we have �Iv1,v2(e3) = −0.25, since if a unit current
flows into v1 and out of v2, a current of 0.25 Ampere will flow from v4 to v2.

For any vector/matrix X, let Xtr be the transpose of X. Then, according
to Kirchhoff’s current law,

Btr · �Iu,v = �δu − �δv (17)

where �δx is a |V |-dimensional vector whose y-th element is the Kronecker delta
function δ(x, y), and B is an |E| × |V |-dimensional matrix such that for each

e ∈ E, [B]e = (�δu − �δv)
tr if e directs from u to v. Let �φu,v be a vector of |V |

elements such that �φu,v(k) is the electric potential of the node k when a unit
current flows into u and out of v. Then, Ohm’s law indicates that:

B · �φu,v = �Iu,v (18)

Combining Eq. (17) with Eq. (18), we have �Iu,v = B(BtrB)+(�δu−�δv) [26], where
(BtrB)+ represents the pseudoinverse of BtrB. According to the uniqueness
principle [14], such a pseudoinverse is unique. Let {uj , vj} be the j-th node
pair. Then for the routing matrix MΨE

F
, we have

MΨE
F

= abs
(⊗

j

�Iuj ,vj

)
= abs

(⊗
j

[
B(BtrB)+(�δuj − �δvj )

])
(19)

where the symbol
⊗

represents the direct product, and abs is an operator that
takes the absolute value of every element in a matrix. Due to the operator abs,

28



the value of any entry in MΨE
F
will not be influenced by exchanging the positions

of �δuj and �δvj in Eq. (19). Therefore, without loss of generality, we assume that
the index of uj is smaller than that of vj .

The following property of BtrB can help us associate the performance of ΨE
F

with the edge expansion of network G:

Lemma 30 ([26]). ‖(BtrB)+‖1 ≤
(
4 ln |V |

2

)
·
[
h(G) · ln 2ϑ(G)

2ϑ(G)−h(G)

]−1

7.3. New Oblivious Integral Routing Strategy

Using our framework, in this part we develop a new oblivious integral routing
strategy ΨE

I based on MΨE
F
, and prove that compared with ROI-Routing, ΨE

I

can guarantee a better upper bound on the competitive ratio for the input cases
where the network G owns a large edge expansion h(G) and a small maximum
node degree ϑ(G). We first prove that the matrix MΨE

F
is path-additive.

Lemma 31 ([27]). For any three nodes vj1 , vj2 , vj3 ∈ V , �Ivj1 ,vj2 + �Ivj2 ,vj3 =
�Ivj1 ,vj3 .
Lemma 32. For any three pairs of nodes {uj1 , vj1}, {uj2 , vj2} and {uj3 , vj3}
with indices j1, j2 and j3, MΨE

F
(j3) � MΨE

F
(j1)+MΨE

F
(j2) when {uj1 , vj1)

⋂{uj2 ,

vj2} �= ∅ and {uj3 , vj3} ∈ {uj1 , vj1}
⋃{uj2 , vj2}.

Proof. Since {uj1 , vj1} �= {uj2 , vj2} and {uj1 , vj1)
⋂{uj2 , vj2} �= ∅, without

loss of generality, we assume that uj2 = vj1 , which implies that {uj3 , vj3} =
{uj1 , vj2}. According to the definition of MΨE

F
, we have:

MΨE
F
(j1) +MΨE

F
(j2) = abs

(
�Iuj1

,vj1

)
+ abs

(
�Iuj2

,vj2

)
= abs

(
�Iuj1

,vj1

)
+ abs

(
�Ivj1 ,vj2

)
� abs

(
�Iuj1

,vj1
+ �Ivj1 ,vj2

)
= abs

(
�Iuj1

,vj2

)
= MΨE

F
(j3)

The third equality above follows from Lemma 31.

By inductively applying Lemma 32, it can be proved that:

Lemma 33. For any node pair {u, v} and any acyclic path Pu,v between u and
v, ME

ΨF
(ju,v) �

∑
e∈Pu,v

ME
ΨF

(je).

Lemma 33 implies that we have found an oblivious fractional routing algo-
rithm with a path-additive routing matrix. Then with the R-T flow decompo-
sition approach, we can convert ΨE

F to an oblivious integral routing algorithm
ΨE

I that is uncoupled and follows MΨE
F
. According to our framework, we now

need to analyze the upper bound on max{‖MΨE
F
Υ‖1, ‖MΨE

F
Υ‖αα}.
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Lemma 34 ([29]). For any m×n-dimensional matrix A, ‖A‖1 = maxnj=1

∑m
i=1

|A(i, j)|, and ‖A‖∞ = maxmi=1

∑n
j=1 |A(i, j)|.

Lemma 35. ‖MΨE
F
Υ‖1 = ‖B(BtrB)+Btr‖1.

Proof. Let B =
⊗

j [B(BtrB)+(�δuj − �δvj )]. According to Eq. (19), ‖MΨE
F
Υ‖1 =

‖ abs(B)Υ‖1. Then the j-th element in the i-row of abs(B)Υ will be
∑

k |B(i, k)|·
Υ(k, j). Let ς(j) be the index of the node pair containing the endpoints of the
j-th edge. According to the definition of the column selector Υ, there will be
only one non-zero element Υ(ς(j), j) = 1 in Υ(j). Then we have

∑
k |B(i, k)| ·

Υ(k, j) = |B(i, ς(j))| = |∑k B(i, k) ·Υ(k, j)|. Therefore,

‖MΨE
F
Υ‖1 = ‖ abs(B)Υ‖1 = ‖ abs(BΥ)‖1 = ‖BΥ‖1

where the last equality follows from Lemma 34. By expanding B in the above
formulation, we have:

‖MΨE
F
Υ‖1 =

∥∥∥⊗
j

[
B(BtrB)+(�δuj−�δvj )

]
Υ
∥∥∥
1
=

∥∥∥B(BtrB)+
[⊗

j

(�δuj−�δvj )
]
Υ
∥∥∥
1

Let B̃ = [
⊗

j(
�δuj − �δvj )]Υ. Then:

B̃(i, z) =
∑
k

(�δuk
(i)− �δvk(i))Υ(k, z) = �δuς(z)

(i)− �δvς(z)(i)

The last equality holds since for each z, the only non-zero Υ(k, z) is Υ(ς(z), z) =
1. Recall that without loss of generality, we assume the index of uς(z) is smaller
than the index of vς(z). Then:

B̃(i, z) = �δuς(z)
(i)−�δvς(z)(i) =

⎧⎪⎨⎪⎩
1 if the z-th edge directs from the i-th node

−1 if the z-th edge directs to the i-th node

0 otherwise

Thus, B̃ = Btr. This completes the proof.

It can be proved in a similar way that:

Lemma 36. ‖MΨE
F
Υ‖∞ = ‖B(BtrB)+Btr‖∞.

Lemma 37. ‖B(BtrB)+Btr‖1 ≤
(
8ϑ(G) ln |V |

2

)
·
[
h(G) · ln 2ϑ(G)

2ϑ(G)−h(G)

]−1

Proof. We first give the upper bound on ‖B(BtrB)+‖1. Let B̂ = (BtrB)+.
Then the sum of the absolute values of all the elements in the j-th column of
BB̂ will be:∑

i

|Bi · B̂(j)| =
∑
i

∑
k

|B(i, k) · B̂(k, j)| =
∑
k

∣∣∣∑
i

B(i, k)
∣∣∣ · |B̂(k, j)|
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Note that in the column B(k), there are at most ϑ(G) non-zero elements in
{−1, 1}, each of which corresponds to an edge adjacent to the i-th node. There-
fore, −ϑ(G) ≤ ∑

i B(i, k) ≤ ϑ(G). According to Lemma 34, we have:

‖B(BtrB)+‖1 = max
j

∑
i

∣∣∣∑
k

B(i, k)B̂(k, j)
∣∣∣

≤ max
j

∑
k

(
|B̂(k, j)| ·

∑
i

|B(i, k)|
)

≤ ϑ(G) ·max
j

∑
k

|B̂(k, j)|

= ϑ(G)‖B̂‖1
The gap between ‖B(BtrB)+Btr‖1 and ‖B(BtrB)+‖1 can be estimated in a

similar manner. In each column of Btr, there will be only two non-zero elements,
which are 1 and −1. This implies that a column of B(BtrB)+Btr will be the
difference between two columns in B(BtrB)+. Let B = B(BtrB)+, then:

‖B(BtrB)+Btr‖1 ≤ max
j1,j2:j1 
=j2

∑
i

|B(i, j1)− B(i, j2)|

≤ max
j1,j2:j1 
=j2

∑
i

(|B(i, j1)|+ |B(i, j2)|)

≤ max
j1

∑
i

|B(i, j1)|+max
j2

∑
i

|B(i, j2)|

≤ 2‖B‖1
According to Lemma 30, this lemma follows.

Lemma 38. ‖B(BtrB)+Btr‖∞ = ‖B(BtrB)+Btr‖1.
Proof. According to Lemma 34, for any matrix A, ‖A‖1 = ‖A‖∞ if A is symmet-
ric. In the following, we will prove that the matrix B(BtrB)+Btr is symmetric
by showing that it is equivalent to its transpose:[
B(BtrB)+Btr

]tr
= (Btr)tr

[
(BtrB)+

]tr
Btr = B

[
(BtrB)tr

]+
Btr = B(BtrB)+Btr

where the second equality follows from the property of pseudoinversion.

Theorem 39. We have ‖MΨE
F
Υ‖pp ≤

[(
8ϑ(G) ln |V |

2

)/[
h(G) ln 2ϑ(G)

2ϑ(G)−h(G)

]]p
for any p ≥ 1.

Proof. When p = 1, this theorem trivially follows from Lemma 35 and Lemma
37. Now we consider the case where p > 1. Lemma 26 indicates that:

‖MΨE
F
Υ‖pp ≤

(∥∥∥MΨE
F
Υ
∥∥∥ 1

p

1
·
∥∥∥MΨE

F
Υ
∥∥∥ p−1

p

∞

)p

=
∥∥∥B(BtrB)+Btr

∥∥∥
1
·
∥∥∥B(BtrB)+Btr

∥∥∥p−1

∞

=
∥∥∥B(BtrB)+Btr

∥∥∥p

1
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where the first equality follows from Lemma 35 and Lemma 36, and the last
equality follows from Lemma 38. Then this theorem follows from Lemma 37.

According to Theorem 29, the competitive ratio of ΨE
I for MPR can be

bounded by O
([(

ϑ(G) log |V |
)
·
(
h(G) log 2ϑ(G)

2ϑ(G)−h(G)

)−1]α
· logα−1 D

)
. To see

how ΨE
I improves the result of ROI-Routing on networks with well-bounded edge

expansions and node degrees, here we first consider a class of networks called
expanders, which has a large variety of applications in computer science [23]. A
network GEX is said to be an expander if its maximum node degree ϑ(GEX) has
a constant upper bound and its edge expansion h(GEX) has a constant lower
bound. According to Theorem 29 and Theorem 39, we have:

Corollary 40. The algorithm ΨE
I can guarantee that the competitive ratio is

bounded by O(logα |V | · logα−1 D) on expanders GEX.

Another class of networks considered here for illustration are the hypercubes
GHC. A hypercube GHC contains 2n nodes, each of which has a label of n-bit
binary digits. Any two nodes u, v in GHC are connected iff their labels differ
in exactly one digit. This implies that ϑ(GHC) = log2 |V |. Moreover, it can be
inferred from Cheeger’s inequality [4] that h(GHC) = 1 [40]. Then we have:

Corollary 41. The competitive ratio of the algorithm ΨE
I can be bounded by

O(log3α |V | · logα−1 D) on hypercubes GHC.

Proof. From Theorem 29 and Theorem 39, we can infer that the competitive

ratio of ΨE
I for MPR on hypercubes can be bounded by O

([(
ϑ(GHC) ln |V |

)(
h(GHC) log

2ϑ(GHC)
2ϑ(GHC)−h(GHC)

)−1]α
logα−1 D

)
= O

([
log2 |V |

(
log 2 log |V |

2 log |V |−1

)−1]α
logα−1 D

)
. Then, we need to reduce

(
log 2 log |V |

2 log |V |−1

)−1

to a simplified form.

Since:

2
2 log2 |V |·log2

2 log2 |V |
2 log2 |V |−1 =

( 2 log2 |V |
2 log2 |V | − 1

)2 log2 |V |

=
[(

1− 1

2 log2 |V |
)2 log2 |V |]−1

≥ exp(1)

we have 2 log2 |V | · log2 2 log2 |V |
2 log2 |V |−1 ≥ log2(exp(1)), which means(

log2
2 log2 |V |

2 log2 |V | − 1

)−1

≤ 2

log2(exp(1))
log2 |V |

Therefore, the competitive ratio can be bounded by O
(
log3α |V |·logα−1 D

)
.

To sum up, on both expanders and hypercubes, the upper bound on the

competitive ratio of the algorithm ΨE
I is better than the O

(
|E|α−1

α+1 log
2α

α+1 |V | ·
logα−1 D

)
-bound guaranteed by ROI-Routing.

32



7.4. Combination

We have shown that the algorithm ΨE
I can guarantee a polylogarithmic com-

petitive ratio on the networks with special topologies. However, such a good
result does not hold for every possible network. Formally, we have:

Theorem 42. Any oblivious integral routing algorithm Φ′
I following MΨE

F
can-

not guarantee an o
(
|E| 12 max{1,α−1}

)
-bound on the competitive ratio for every

network.

Remark. Note that this theorem only requires that Φ′
I follows MΨE

F
, but makes

no assumption on whether Φ′
I is uncoupled or not.

Proof. We construct a network G6(V6, E6) in a similar manner to G2 in Fig. 2.
The only difference is that in G6, Δ = τ =

⌊
(|E6| − 1)1/2

⌋
. Let the node pair

in G6 which corresponds to {u2, v2} in G2 be {u6, v6}. By Ohm’s law and
Kirchhoff’s integral theorem, when a unit current flows into u6 and out of v6:

• There is no current in the (|E6| −Δτ)-node ring attached to u6, if such a
ring exists.

• The amount of current flowing across the short canonical path is 1/2.

Consider the case where there is only one traffic request R1 between (u6, v6)
with d1 = 1. The optimal cost of routing R1 will then be 1. However, Φ′

I will
route R1 along one of the long canonical paths with probability 1/2, which will
incur an expected cost of τ/2. Another case here is that there are Δ traffic
requests R1, · · · , RΔ between (u6, v6) with dk = 1. Routing them with Φ′

I will
burden the short canonical path with an expected load of Δ/2. According to
Lemma 5, the expectation of the cost incurred by Φ′

I will be at least (Δ/2)α.
By contrast, the strategy of routing each traffic request along a distinct long
canonical path accrues a cost of Δτ . Thus, the competitive ratio of Φ′

I will be

at least max
{

τ
2 ,

(Δ/2)α

Δτ

}
. Plugging the values of Δ and τ in terms of |E6| into

this equation completes this proof.

The difference between Theorem 2 and Theorem 42 indicates that, when we
take every possible network topology into consideration, there exists a gap of

Ω
(
|E| 16 max{1,α−1}

)
between the competitive ratios of the best possible oblivi-

ous integral routing algorithm and the algorithm ΨE
I . By contrast, Theorem 1

indicates that the algorithm ROI-Routing can narrow this gap to O(log
2α

α+1 |V | ·
logα−1 D). An interesting problem is that considering how to guarantee a com-
petitive ratio that is tight up to a polylogarithmic factor as well as ROI-Routing,
while simultaneously preserving the advantages of ΨE

I on special networks, such
as expanders and hypercubes.

Our approach to this issue is combining ROI-Routing with ΨE
I . Correspond-

ing to the first step of our framework, we first generate the matrices MC∗ and
MΨE

F
respectively with the Precomputation Phase defined in Section 4 and
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Eq. (19), and then choose the one among {MC∗ ,MΨE
F
} to minimize F (M), where

F (M) = max{‖MΥ‖1, ‖MΥ‖αα} is a function defined over the set {MC∗ ,MΨE
F
}.

The minimization of F (M) requires the calculation of the exact values of the
induced norms of MC∗Υ and MΨE

F
Υ. In particular, ‖MC∗Υ‖1 and ‖MΨE

F
Υ‖1

can be identified through Lemma 34. We now show that we can approximate
‖MC∗Υ‖αα and ‖MΨE

F
Υ‖αα by a factor of 1 − ε for any 0 < ε < 1 in polynomial

time. It has been proved in [11] that:

Lemma 43 (Bhaskara-Vijayaraghavan’s iteration algorithm [11]). For any ε ∈
(0, 1) and any n × n-dimensional matrix A that only contains non-negative el-
ements, there exists an iteration algorithm that can obtain an n-dimensional

vector �x satisfying
‖Ax‖p

‖x‖p
≥ (1− ε)‖A‖p in the time polynomial in n and 1

ε .

Let �xC∗ and �xΨE
F
be two |E|-dimensional vectors obtained by the Bhaskara-

Vijayaraghavan’s iteration algorithm such that ‖MC∗Υ�xC∗‖α

‖�xC∗‖α
≥ (1− ε)‖MC∗Υ‖α

and
‖M

ΨE
F
Υ�x

ΨE
F
‖α

‖�x
ΨE

F
‖α

≥ (1− ε)‖MΨE
F
Υ‖α for some properly chosen constant ε > 0,

and M∗ be an |E| × (|V |
2

)
-dimensional matrix defined as follows:

M∗ =

⎧⎨⎩MC∗ if max{‖MC∗Υ‖1, ‖MC∗Υ�xC∗‖α
α

‖�xC∗‖α
α

} ≤ max{‖MΨE
F
Υ‖1,

‖M
ΨE

F
Υ�x

ΨE
F
‖α
α

‖�x
ΨE

F
‖α
α

}
MΨE

F
otherwise

(20)
Then we have:

Lemma 44. M∗ can minimize F (M) up to a constant factor of
(

1
1−ε

)α

.

Proof. Without loss of generality, here we assume that F (MC∗) ≤ F (MΨE
F
).

Then this lemma trivially holds when M∗ = MC∗ . For the case where M∗ =
MΨE

F
, we have:

F (M∗) ≤
( 1

1− ε

)α

max
{
‖MΨE

F
Υ‖1,

‖MΨE
F
Υ�xΨE

F
‖αα

‖�xΨE
F
‖αα

}
≤

( 1

1− ε

)α

max
{
‖MC∗Υ‖1, ‖MC∗Υ�xC∗‖αα

‖�xC∗‖αα
}

≤
( 1

1− ε

)α

max{‖MC∗Υ‖1, ‖MC∗Υ‖αα}

The first inequality follows from ‖M∗Υ‖α = ‖MΨE
F
Υ‖α ≤ 1

1−ε

‖M
ΨE

F
Υ�x

ΨE
F
‖α

‖�x
ΨE

F
‖α

.

The second inequality follows from Eq. (20). The last one follows from Definition
5 of induced Lp-norm. Therefore, this lemma is established.

Then, we can apply the procedure given in the second step of our framework
to generate an oblivious integral routing algorithm Ψ∗

I that is uncoupled and
follows M∗. Combining Theorem 25, Theorem 29, Theorem 39 and Lemma 44
together, we have:

34



Theorem 45. The competitive ratio of the algorithm Ψ∗
I can be bounded by O

(
min

{
|E|α−1

α+1 log
2α

α+1 |V |,
[(

ϑ(G) log |V |
)(

h(G) log 2ϑ(G)
2ϑ(G)−h(G)

)−1]α}
logα−1 D

)
.

Obviously, such a competitive ratio is tight up to a factor of O(log
2α

α+1 |V | ·
logα−1 D), and also has upper bounds O(logα |V | · logα−1 D) and O(log3α |V | ·
logα−1 D) on expanders and hypercubes, respectively. Furthermore, according
to Lemma 27 and Theorem 39, this competitive ratio holds for any cost function
‖�l‖pp with 1 ≤ p ≤ α, which means that the algorithm Ψ∗

I also has the property
of function-oblivious. In Appendix A, we will use the pseudocode to provide
more details on the implementation of Ψ∗

I .

8. Conclusion

In this paper, we investigate the minimum power-cost routing (MPR) prob-
lem. It involves an undirected network G(V,E) where each edge e is associated
with a superlinear cost function f(le) = (le)

α and a set of traffic requests R,
and requires the minimization of the cost of routing R in G. For this problem,
we proposed an oblivious routing algorithm — ROI-Routing. The property
of being oblivious to the network traffic enables ROI-Routing to be efficiently
implemented in a distributed manner, which is significant for large-scale high-
capacity networks.

Our research is different from related work on oblivious routing algorithms
because ROI-Routing is designed for the unsplittable version of the MPR prob-
lem, where the integral constraint needs to be satisfied. Compared with the
splittable version, the unsplittable version is closer to a real network configura-
tion, but is more difficult to solve. Specifically, we proved that given the integral
constraint, no randomized oblivious routing algorithm can yield a competitive

ratio of o(|E|α−1
α+1 ), whereas ROI-Routing can guarantee a competitive ratio of

O
(
|E|α−1

α+1 log
2α

α+1 |V | · logα−1 D
)
, which is tight up to a polylogarithmic factor

O
(
logα−1 D · log 2α

α+1 |V |
)
.

In addition to being oblivious to traffic, ROI-Routing has the property
of being function-oblivious, which is essential for scenarios in which the pre-
cise value of the degree of the cost function is unavailable. We proved that
for any p ∈ [1, α], ROI-Routing can guarantee a uniform upper bound of

O
(
|E|α−1

α+1 log
2α

α+1 |V | · logα−1 D
)

on the competitive ratio for the case where

the cost function is the p-th power of the load. This result was also proved to

be tight up to a polylogarithmic factor O
(
logα−1 D · log 2α

α+1 |V |
)
.

The theoretical results obtained in the analysis of ROI-Routing can be gen-
eralized to a framework that can help researchers design and analyze oblivi-
ous integral routing algorithms for specific input instances. To illustrate the
significance of this framework, we apply it to generate routing algorithms ΨE

I

and Ψ∗
I , which can guarantee a better competitive ratio than ROI-Routing on

the networks with well-bounded maximum node degrees and edge expansions.
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In particular, ΨE
I has a competitive ratio of O

([
ϑ(G) log |V |

h(G) log
2ϑ(G)

2ϑ(G)−h(G)

]α
logα−1 D

)
for MPR, which can be respectively bounded by O(logα |V | · logα−1 D) and
O(log3α |V | · logα−1 D) on expanders and hypercubes. Another algorithm Ψ∗

I ,
which combines ROI-Routing with ΨE

I , has a competitive ratio that is tight up

to O
(
logα−1 D · log 2α

α+1 |V |
)
like ROI-Routing, while simultaneously having the

same upper bounds as ΨE
I on the expanders and hypercubes.

An interesting problem is determining the competitive ratio that can be
achieved by Ψ∗

I on the emerging network topologies designed for data centers,
including BCube [18], DCell [19], etc. This problem is challenging since it is
not easy to bound the edge expansions of these network topologies. This will
be the subject of our future work.
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Appendix A. Description of Algorithm in Pseudocode

In Algorithm 1, we give the pseudocode of the algorithm Ψ∗
I . Particularly,

three functions will be defined and implemented in this part:

• Get Routing Matrix: Corresponding to the first step of our frame-
work, this function will generate the routing matrixM∗ defined in Eq. (20)
by respectively computing MC∗ and MΨ∗

F
, and comparing their induced

Lp-norms.

• Get Candidate Paths: Corresponding to the second step of our frame-
work, this function takes a network G, a routing matrix M and a node
index i as parameters, and converts M to a series of integral paths that
connect the i-th node vi to each vj with j �= i. The input parameter M
has a default value MΨ∗

F
. For each vj �= vi, this function yields a path

set Πj and a weight vector �λj , where each element �λj(i) is the weight
associated with the corresponding path Π(i). The output is a hash table

which stores every key-value pair (j, [Πj , �λj ]).

• Find Path: Based on the hash table given by Get Candidate Paths,
this function will select a path for a given traffic request Rk in a random-
ized manner.

In Algorithm 1, we assume that the following functions are provided by
external libraries:
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• Calculate Covex Combination: It refers to the algorithm proposed
in [11, 15] which takes a network G and a real number p > 1 as input
parameters and can output a convex combination MC∗ of decomposition
trees and the corresponding matrix MC∗ such that ‖MCΥ‖p ≤ c0 log2 |V |.

• Bhaskara Vijayaraghavan Iteration: It refers to Bhaskara-Vijaya-
raghavan’s iteration algorithm proposed in [11], which takes a non-negative
square matrix A, a real number p > 1 and a real number ε > 0 as the
input parameters, and returns a (1− ε)-approximation of ‖A‖p.

• Raghavan Thompson Decomposition: It refers to the R-T flow de-
composition algorithm proposed in [33]. Given a network G, an |E|-dimen-
sional load vector, a source node s and a target node t, this function will
decompose it into a series Π of weighted paths between s and t.

Additionally, the following functions are assumed to be provided by the
system:

• zeros: This function takes two integers m,n as input parameters and
outputs a m× n-dimensional matrix which only contains zeros.

• Matrix Transpose: It calculates the transpose of a given matrix.

• Matrix Multiplication: It calculates the multiplication of two given
matrices.

• pinv: This function will return a pseudoinverse of a given matrix.

• binomial: Calling binomial(n, k) will get the binomial coefficient
(
n
k

)
.

• abs: This function will return the absolute value of each element in the
input parameter.

• max: Returning the larger of two input parameters.

• new hashtable: This function will yield a new hashtable which is empty.

• index: Given a node v in the network, this function will return the index
of v as an integer in [1, |V |].

• random: This function returns a random number uniformly distributed
in the interval [0, 1].
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Algorithm 1 A full description of the algorithm Ψ∗
I , Part 1

1: function Get Routing Matrix(Network G, Real α, Real ε)
2: /* First compute MC∗ */

3: if (c0 · log2 |V |)α ≥ |E|1− 1
α (c0 · log2 |V |) then

4: χ = α;
5: else

6: χ = (α+ 1)
[
2− (α− 1) log2(c0 log2 |V |)

log2 |E|
]−1

;

7: end if
8: [C∗,MC∗ ] = Calculate Covex Combination(G, χ);
9: /* Proceed to compute MΨE

F
*/

10: B = zeros(|E|, |V |)
11: for k = 1 → |E| do
12: for i = 1 → |V | do
13: for j = i+ 1 → |V | do
14: if ek connects vi and vj then
15: B(k, i) = 1; B(k, j) = −1;
16: end if
17: end for
18: end for
19: end for
20: Btr = Matrix Transpose(B);
21: tmp = Matrix Multiplication(Btr, B);

22: B̂ = pinv(tmp);

23: B = Matrix Multiplication(B, B̂);
24: N = binomial(|V |, 2); MΨE

F
= zeros(|E|, N);

25: k = 1;
26: for i = 1 → |V | do
27: for j = i+ 1 → |V | do
28: �δi = zero(|V |, 1); �δi(i) = 1;

29: �δj = zero(|V |, 1); �δj(j) = 1;

30: MΨE
F
(k) = Matrix Multiplication(B, �δi − �δj);

31: MΨE
F
(k) = abs(MΨE

F
(k));

32: k = k + 1;
33: end for
34: end for
35: /*Start to to minimize F (M) */
36: y1 = y2 = 0;
37: A1 = Matrix Multiplication(MC∗ , Υ);
38: A2 = Matrix Multiplication(MΨE

F
, Υ);

39: /*Compute ‖MC∗Υ‖1 and ‖MΨE
F
Υ‖1 */

40: for j = 1 → |E| do
41: sum1 = sum2 = 0;
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42: for i = 1 → |E| do
43: sum1 = sum1+abs(A1(i, j));
44: sum2 = sum2+abs(A2(i, j));
45: end for
46: y1 = max(y1, sum1);
47: y2 = max(y2, sum2);
48: end for
49: tmp = Bhaskara Vijayaraghavan Iteration(A1, α, ε);
50: y1 = max(tmp, y1);
51: tmp = Bhaskara Vijayaraghavan Iteration(A2, α, ε);
52: y2 = max(tmp, y2);
53: if y1 ≤ y2 then M∗ = MC∗ ;
54: else M∗ = MΨE

F
;

55: end if
56: return M∗;
57: end function
58:

59: functionGet Candidate Paths(Network G, Integer i, MatrixM = M∗)
60: ans = new hashtable( );
61: for j = 1 → |V | do
62: if i �= j then
63: if i < j then
64: k = (i− 1) ∗ |V | − i ∗ (i− 1)/2 + (j − i);
65: else
66: k = (j − 1) ∗ |V | − j ∗ (j − 1)/2 + (i− j)
67: end if
68: [Π, �λ] = Raghavan Thompson Decomposition(G, M(k), i, j);

69: ans.add(j, [Π, �λ]);
70: end if
71: end for
72: return ans;
73: /* The weight paths in ans will be stored in the routing table of vi */
74: end function
75:

76: function Find Path(Hashtables HT, Request Rk)
77: /* HT is a series of hashtables, where HT(i, j)stores the weighted paths
78: between vi and vj . */
79: i = index(sk); j = index(tk);

80: [Π, �λ] = HT (i, j);
81: r =random( );
82: for k = 1 → sizeof(Π) do

83: if �λ(k) ≥ r then
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84: return Π(k);
85: else
86: r = r − �λ(k)
87: end if
88: end for
89: end function
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